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ON A CONNECTION BETWEEN CONFIDENCE AND
TOLERANCE INTERVALS

By Gorrrriep E. NOETHER
Boston University

The purpose of this note is to point out the close connection which exists
between confidence intervals for the parameter p of a binomial distribution and
tolerance intervals.

Let & be the number of successes in a random sample of size n from a binomial
population with probability p of success in a single trial. Then it is well known
that a confidence interval with confidence coefficient at least 1 — a; — a» for
the parameter p is given by

1) n(k) < p < paA(k),

where pi(k) and p.(k) are determined by I, wm(k, » — k + 1) = a and
Lipyiyn — Kk k+ 1) =1 — I,,uk+ 1,n — k) = o, respectively, I.(a, b) =

[T(a + b)/(T(a)T(b))] fo (1 — w)* du being the incomplete B-function.

Let X;, ---, X, represent a random sample of size n from a population
having continuous cdf F(z). For simplicity assume that the X’s are already
arranged in increasing order of size and define Xo = — o, X,43 = +o. The
coverage provided by the interval (X;, Xin), 2 = 0, 1, -+, n, is called an
elementary coverage.! If we then let U, stand for the sum of r elementary cover-

ages, U, > U,(«) unless an event of probability a has occurred, where U.(a)
Ur(a)

is defined by a = [C(n 4+ 1)/(TA)T@ — r + 1)) fo w1 — W) du =

IU,(a>(r, n—r + 1)
In this notation (1) becomes

Uk(al) <p< Uk+1(1 ol 0[2).

Thus the lower end point of a confidence interval for p on the basis of k ob-
served successes is determined by the corresponding lower limit for the sum of
k elementary coverages, while the upper end point is determined by the cor-
responding upper limit of the sum of (k¢ + 1) elementary coverages. The reason
for this becomes obvious if we look at the k successes as the observations
X1, -+, Xi-which are smaller than the p-quantile g, of F(x), so that the cover-
age Uy of the chance interval (X, , X;) provides an “inner” estimate of p, while
the coverage Uy, of the chance interval (Xo , Xi41) provides an “outer” estimate.

We may ask what kind of a confidence interval we obtain if we consider as
successes the k observations belonging to an arbitrary interval I for which

/ dF(z) = p, as long as I does not coincide with either (— o, ¢,) or (¢i—p , + ).
I

" For rigorous definitions and formulas see, e.g., Wilks [1], p. 13.
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It is easily seen that an “outer” estimate of p is still given by Ujy,. However,
an ‘“inner’”’ estimate is now given by Uj_;, leading to a lower end point of the
confidence interval which is unnecessarily small.

The method of obtaining a confidence interval for p discussed in this note is
in a certain sense the reverse of the method discussed in an earlier paper of the
author [2]. There it was shown how confidence intervals for p can be used to
obtain confidence intervals for quantiles, which then can be used to obtain
tolerance intervals.
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1. On Stieltjes Integral Equations of Stochastic Processes. MARIA CASTELLANI,
University of Kansas City.

This paper considers two methods of sblvin;g certain S-integral equations.
a. A Fredholm-Stieltjes integral equation of generating functions. We give the F-S integral

equationf A(s, ) dg(x) = f(s), where A(s, ) = Zp_, ar(z)s™* and f(s) = Zas* for s —
E
¢(s) and @ = 0 if k = 0. Let us assume that u(x) and »(x) are respectively solutions of

/ A(s,z)-A(—s1, ) du(z) = 1/(S — S1) andf A(s, z) dv(x) = 0. If we consider
E E

f As, 2)A(—s1, 2)f(s1) du(z) = f(s1)/(8 — 8y)
E

and if v(z) is the coefficient of —1/8; in the serial expansion of A(—s, z)f(s1), then under
fairly general conditions the required solutions are given, almost everywhere, by g(z) =

z z
const. f dv(z) + f v(z) du(x). The proof is based on a Murphy D’Arcais linear operator

and on the p operatior of S-integrals.
b. A Volterra-Stieltjes integral of recurrent random functions. Let us have over a time
interval (r,t) an unknown rfé(¢ — 7) satisfying the following recursive equation:§(t — 7) =
¢

&(r) — f 8(x — 7)p(x) dF (x) where F(x) is a df and p(x) is bounded. We assume the inter-

val divided into n parts and also that the set of the n discrete values of & satisfy the follow-
ing relation: 8(t — 7)/8(r) = Ii_L(1 — p(s)AF(s)). If F = F, + F,, where the F, is a con-
tinuous function and F, is a jump function over a set S of points, then by a generalized
method of Cantelli, taking finer and finer partitions, we obtain as a limit §(¢t — r)/8(r) =

t
l:exp (— f o(x) dFl(z)>] I,.e(1 — p(s) dF3(s)). This gives almost everywhere the re-
;]uired solutions.



