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By Max Havperin'
USAF School of Aviation Medicine’

1. Summary. In this paper we prove that certain estimators and tests of sig-
nificance used in regression analysis when observations are independent are
equally valid in the presence of intra-class correlation. An application of this
result is presented for the situation in which several replications of the correlated
set of observations are available. As a special case of this application, it is shown
that the usual test of “column effects” in the analysis of variance for a two-way
classification remains valid when rows are independent and columns are uni-
formly correlated. This latter fact is also pointed out in [3].

2. Introduction. In the usual treatment of regression theory, as in [1] (Chapters
VIII and IX), it is assumed that we have a sample of n independent observations,
Y1, ' * , Yn, Where y, arises from a normal distribution with mean Y%, Cppa
and variance o°. Here, the x,, are taken to be fixed variates. On the basis of
these assumptions, unbiased estimates of Cy1, Cz, -, Cx are obtained, and
two theorems are proved, one concerning the joint distribution of the estimates
of the C, and the sum of squares of deviations from regression, the other con-
cerning tests of significance of the C, .

Now, on the one hand, it may happen that the results given in [1] are applied
when, unknown to the experimenter, the observations are actually correlated.
On the other hand, it may be clear, a priori, that the observations are correlated
and that estimates and tests of the C, are required in the light of the particular
kind of correlation assumed to hold. In either case an investigation of estimates
and distributions is called for. We consider these questions in Section 3 for the
case that y;, - -+, ¥» have a variance matrix
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In Section 4 we consider an application of our result to several replications of
the correlated set of observations.
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(2.1) R, = ¢

3. Estimates and significance tests in normal regression theory for correlated
observations. We slightly modify the regression model indicated in Section 2
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by supposing that the expected values of the y. are given by
k

(31) Ey¢=”'+zlopxpa, a=1’2’...,n.
P=

The reason for this modification will be apparent later. Assuming then that
the y, have the covariance matrix, R, , the appropriate sample likelihood of
Y1, -, Yn is readily seen to be

R, | 1 "
(32) p(yh MY yn) = [—(m%mexp hand -2'{y - Ey} Rnl{y - Ey}

’
b
where

Y= (Y1, , Yn)s
3.21 ~ & )
( ) Ey:I-‘(l""al)+z;Cp(xpla"'sxpn)-
p=

The maximum likelihood equations for the estimation of parameters from
(8.2) are of such a formidable character that an explicit solution does not ap-
pear possible. As alternative estimates for u, Cy, ---, Ci, one can use

.k
b=7- ; Cp“-:m
(3.3)

k
Cr=gsrﬂsm’ p=1:27’°°’k’
where
(3.31) Sy = 21 (Tra — %) (Ya — 7), r=12---,k

and the S,, are elements of the inverse of

S o+ S

(3.32) S=. -,
Sk1 v Skk
where
(3.33) 8 = 2; (T — T (ja — %), =12,k
We go on now to investigate the distribution of ¢y, -+, Cp, when (3.2)
holds. We have the following
THEOREM A. Let y1, -+, Yo be a sample of one from a multivariate normal

population with covariance mairiz R, and means p + Z;;l Cplpa,a =1, ,m.
Let estimates of u and the C,p be i and the C, as defined in (3.3). Then
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(a) the (C, — C,) have a multivariate normal distribution with zero means and
covariance matriz (1 — p)o°S™", and

(b) the quantity Dy (o — & — Db yCptpa)’(= V) is distributed as (1 — p)o’x*
with (n — k — 1) degrees of freedom, and independently of the C, .

Proor. Conclusion (a) of the theorem follows readily from the fact that the
C, are linear functions of variables obeying a multivariate normal law and from
some simple calculations to verify that the €, are unbiased and have the indi-
cated covariance matrix. The details are omitted.

Now let
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be an n X n orthogonal matrix, and let

2z = yL,,
(3.5) )
wp=xPL"’ p=1)2:”"k

By this transformation (3.2) becomes

1 1 .
Pla, o+, 2n) = 53—y} OXP [— 270 = p) 2 (2a — Ez2) ]

a=1

(8.51)

1 [: (2n — Ez,)? :l
"ov2r {1+ (n — Dp) PP T 221 + (0 — Dp)

while

n
8if = Z Wia Wia — Win Win
a=1

n—~1
= Z Wia Wia,
a=1

n—1
Sy = E WraBa = Sz .

a=1

Applying the transfonhation (3.5) to the , and V, it is easy to show that

k
Cy = r}; 8r2 Srp,y

n—1 k . 2
v=z@_zmwy

a=1 =1
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Since it can also be shown that
k
EZ¢=Eprp¢’ a=l,2,"',n—1’
=1

it is clear that the transformation (3.5) has reduced the problem to the standard
one indicated in Section 2, with (n — 1) variables instead of n, and the theorem

follows by the arguments given in [1].
TaeoreM B. Let i1, - - - , Y. be as specified in Theorem A. Let H, be the statistical

hypothesis that Crpn = Cry10, +++, Cr = Cio, regardless of the values of
Ci, .-+, C.. When H, is true, the quantities
k
v = z(ya ~ i = 3 Cyzyn)
a=]l =1
and

k

a=_ % ball; = Con(Cs = Cro)
are independently distributed as (1 — p)o’x” with (n — k — 1) and (k — r) degrees
of freedom respectively. Here C, is defined by (3.3) and the b, are defined by the
matriz equation
-1

brpreir oo brprk Serttr oo Sei
(3.6) . =
brgpgr oo+ b Sk,r1 eee S
Also
_(n—k—-1)gqg
F= k—-—nV

provides a test of Hyfor 1 > p > — 1/n — 1.

Proor. It is clear that application of the transformation (3.5) will reduce the
problem to that of proving the corresponding theorem in standard regression
theory with a sample of (n — 1) independent observations. The theorem follows.

4. An application. We suppose we have m replications of the correlated
sample of Section 3, generalizing slightly by further assuming that u differs
from replication to replication, assuming the value r; for the ith replication.
Thus, if y:, is the ath measurement in the ¢th replication,

1=12¢-0,m,

k
(4.1) Eyia = ri + Z Cp Tpa,
7=l a=12 :--,n,

and we ask for estimates of the r; and C,, and tests of significance for the C,.
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It follows easily from Section 3 that unbiased estimates of the r; and the C,
are given by

k
T;fﬂs.-—éépip, t1=12 :--,m,
(4.2) .
ép=gsﬂ7'gﬁ’) p=1’2""’k’
where
Sy = ;(xm—.’?,)(ﬂ.a—g..),
1 &
i —»n‘;yw
io= Ly,
Ya ml-lym’
g.. = L i iye«
mn =1 =0

and S,, is defined as in (3.33). i
We now ask for the joint distribution of €y, - -- , C; and
m n k 2
(422) y=3 Z{y;, = 3 Colara — 5:1,)}
t=1 a=l Pl .
It follows as in Section 3 that €y, - -+, Cz, have a multivariate normal distribu-

tion, and it is sufficient for our purposes to examine the joint distribution of V'
and W, where

W=mC-0S8C-¢0, C—-C=(C —C,--,C — C.

By an application of the transformation z; = y.L, to the n observations of
each replication, one obtains

TeEOREM A’. Let yu, +++, Yt = 1,2, --- | m) be a sample of one from a
multivariate normal population with means given by (4.1) and the mn X mn variance
matrix

o
* =
S
oo

0 0 --- R,
Then (G, — Cy), -+, (Cx — Ck), have a multivariate normal distribution with

zero means and variance matriz [(1 — p)o’/mlS™, and W and V are independent
“(1 — p)o’x’ variates with k and m(n — 1) — k degrees of freedom respectively.
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We can also prove
TuaeoreM B’. Let ya, -+, Yyt = 1, 2, -+, m) salisfy the conditions of
Theorem A'. Let Hy be as specified in Theorem B. Then the statistic

_[mn—-1) - Klgq,
F= k—n7V

where
k

q= E bah(éo - Ca.o)(éh - Ch.0)

grh=r+1
and bgy s defined by the matrix equation

-1
br—t-l.r-l-l eee br+1.k Sr+l.r+1 R Sr+l.k

= mi- ’

besr oo b Skt v S
18 distributed as Snedecor’s F and provides a test of Hy .
The proof of Theorem B’ is along the same lines as that of Theorem A’ and is

omitted.
We also remark that theorems akin to A’ and B’ holdif r; = r, = 1,2, --- ,m.

We simply may take
k
#=g.— 2, Cm,.
p=1

The estimates of the C, need not be changed. If now we let
m n k 2
V= 3w =0 - % Gl - 2,
=] j=1 p=1
Theorems A’ and B’ hold with r; and #; replaced by r and #, with V replaced by
V’ and m(n — 1) — k degrees of freedom replaced by nm — k — 1 degrees of

freedom.
As an example of the application of these notions we consider an analysis of

variance problem. The same problem has been considered in [3]. Suppose we
have mn observations,

Yu - Y

Ymi *** Ymn
where the y;, are jointly normal with covariance matrix R,.. and with means
given by
(4-3) Eyia =1+ C..
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In [3] it is shown that the F ratio for “columns” calculated in the usual way
has the usual F distribution when the C; are equal. To deduce this test from
our results we Writeg(4.3) as

(4.31) Eyia = i+ 2, CpZpa,
=1

where
Tpa = 0, P # a
=1, P = o

We have then

n
Z (xzm - 1-37) (xqa - i’q)
a=1

1
= —'ﬁ’p;éq,

n—1 .
= " 7p‘=Q-

The n X n matrix, S, is singular. To overcome this difficulty we can, since we
are only interested in class differences rather than in the absolute values of the
C, , arbitrarily assign to one of the C,, say C,, the value zero. The test of
column differences then becomes a test that C; = C; = -+ = Cpy = 0.1t
is then easy to see that €, = §., — Fun,p = 1,2, --- ,n — 1, and

rs = Ys. — ’,,—', p; 0 .
If we substitute these values in ¢ = m ¢ S* ¢’ and
m n n—1
V= Z Z (Yia — 75 — E cpxpa)2:
t=] a=] p=1

where
é = (017 e ;én—l)
and S* is the minor of s, in S, we find after a little algebraic reduction that

- Dm—1)g ™= Dm-1D 4_‘: @ — 7.

F (n— 1)V

(n—1) g g (ysi — §s. — G5+ 3.)°

and this is the desired statistic.
Suggestions of the referee for simplifying the proofs are gratefully acknowl-

‘edged.
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