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step towards the possibility of using Wilcoxon’s test for samples from any
population.
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CORRECTION TO “ON CERTAIN METHODS OF ESTIMATING
THE LINEAR STRUCTURAL RELATION”

By J. NEYMAN AND Eri1zaBETH L. ScoTT
University of California, Berkeley

We are indebted to Professor J. Wolfowitz for calling our attention to a blun-
der in our paper under the above title (Annals of Math. Stat., Vol. 22 (1951),
pp. 352-361). In the statement of Theorem 3 on page 358 the symbols &,, and
£1-p, should bé replaced by X,, and X;_,, , respectively. It will be noticed that
this change does not affect the proof nor the implications of the theorem.
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ABSTRACTS OF PAPERS

(Abstracts of papers j)resented at the Washington meeting of the Institute,
October 26-27, 1951)

1. On the Law of Propagation of Error. (Preliminary Report.) CHURCHILL
Ei1seNHART AND I. RicHARD SAvacGE, National Bureau of Standards.

In the main the results presented in this paper are not new, being at most minor exten-
sions of known results. The aim is a unified treatment of the ‘‘law of propagation of error,”
with emphasis on the practical meaning of the formulas, and attention to the details of
their rigorous derivation.

2. Multivariate Orthogonal Polynomials. (Preliminary Report.) L. W. CooPER

AND D. B. DunNcaN, Virginia Polytechnic Institute.

It is'well known that the work of fitting a regression function, which is a polynomial in
one variate, viz., (1) y = Z]_,b:z* can'be greatly simplified by the use of orthogonal poly-
nomials of the form (2) ¢; = E;_ok,-a;f . It is sometimes required to fit a regression function
of the more complex multivariate polynomial form

3) y = 2 big...x®Yieegh
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Following suggestions of Tyler (TyLER, G. W., “The experimental evaluation of definite
integrals,”” unpublished thesis, Virginia Polytechnic Institute, Blacksburg, Va., 1949) and
DeLury (DELury, D. B., Values and Integrals of the Orthogonal Polynomials up to n = 26,
University of Toronto Press, 1950), polynomials can be defined as €,j.....s = €;-¢€j *** &,
which effects the same simplicity for fjtting the functions (3). These are termed multivari-
ate orthogonal polynomials. Their properties are investigated and short methods for using
them are developed.

3. An Analysis of Variance for Paired Comparisons. HENRY ScHEFF£, Columbia
University.

In a paired comparison test of m brands of a product each of the jm(m — 1) pairs is
presented to 2r judges: to r in one order, and to r in the other. An analysis of variance is
developed for the case in which the judges’ preferences are expressed on a 7- or 9-point
scale. Account is taken of the effects of order of presentation. Main effects are defined for
the brands. The hypothesis of subtractivity, analogous to the hypothesis of additivity in a
two-way layout, states roughly that the results for any pair, after order effects are elimi-
nated, can be attributed entirely to the difference of the main effects of the two brands in
the pair. F-tests for the hypothesis of subtractivity and for the significance of the main
effects are given, as well as estimates of various parameters and their standard errors. A
numerical example illustrates the method. (Work sponsored by the office of Naval Re-
search.)

N

4. Statistical Theory of Fatigue Failures. E. J. GumBEL, Consultant, Stanford
University, ANp A. M. FREUDENTHAL, Columbia University.

The interpretation of the results of fatigue tests is made difficult by the fact that pro-
gressive damage, which finally leads to fatigue failure, is a highly structure-sensitive proc-
ess. It produces, therefore, a very wide scatter of the test results for the rational analysis of
which the character of the statistical distribution must be known. If n specimens are sub-
mitted to repeated stress cycles of amplitudes S they break at varying numbers N of cycles.
The interpretation of the relative ranks as cumulative frequencies'of survival for N cycles
at different stress amplitudes leads to criteria for the consistency of the observed series.
The frequencies of survival are reproduced by the third asymptotic probability of smallest
values, and it is assumed in first approximation that the probability of survival reaches
unity only for N = 0. If the decimal logarithms of N are traced on the extremal probability
paper in descending scale at the plotting positions m/(n + 1), the two parameters in the
survivorship function which depend upon S may be estimated in the same way as for the
first asymptotic probability function of extreme values. The fit of the theoretical straight
lines obtained for copper, steel, and aluminum specimens is very good. Extrapolations give
the number of cycles for which the probability of survival for a given stress level differs
from unity by any desired small value. (Work done in part under the sponsorship of the
Office of Naval Research.)

5. Analysis of Chain Block Designs. (Preliminary Report.) W. S. Connog,

Jr., aND W. J. YoupEn, National Bureau of Standards.

One and a fraction replications can be arranged in incomplete blocks so that there is a
carry over of two (or more) treatments from one block to the next block. Estimates of the
treatment and block effects and the analysis of variance have been obtained for these chain-

“block designs.
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6. An Approximation Theorem. (Preliminary Report.) I. RICHARD SAVAGE,
National Bureau of Standards.

The distribution of a function of a sample mean is studied and the rapidity at which this
function’s distribution approaches notmality is investigated. Berry’s theorem about the
distributions of sample means is used. The theorem proved gives a remainder term in the
case where the function is increasing and has a continuous second derivative. The remainder
is the same as Berry’s, plus another term which depends on the second derivative of the
function and is of size 1/4/n.

7. Testing Multiparameter Hypotheses. E. L. LeamMaNN, Stanford University
and University of California, Berkeley.

Let the distributions of some random variables depend on real parameters 6, , -+ , 6,
and consider the hypothesis H: 8; < ¢;forz = 1, -+ , 8. It i8 shown under certain regular-
ity assumptions that unbiased tests of H do not exist. Tests of minimum bias and other types
of minimax tests are derived under suitable monotonicity conditions. The two-sided hy-
potheses H': a; < 6; S b;, 4 =1,--+, 8 are discussed as well as certain related multi-
decision problems.

8. Analysis of a Certain Random Walk by the Monte Carlo Method. RoBERT
Mirsky, Cornell Aeronautical Laboratory.

A point object B(z, y) starting from (d, 0) moves toward its ultimate destination T'(0, 0)
in the following manner: every r seconds B takes a sight reading on T' and attempts to fol-
low the rectilinear course until the next reading is taken; the speed of B is a constant v.
Because of imperfections of. the sight reading instruments, the actual course followed at
each time deviates from the true line of sight BT so that in general a zigzag path is deter-
mined. The angular errors s , s, -+ - , are assumed to be symmetric about BT, independ-
ent, and to have the same distribution at each time 7. This random walk was studied by
M. Kac who obtained several results which are compared in this paper with results obtained
by Monte Carlo sampling. It is shown that while statistical analysis can be used to check the
accuracy of the Monte Carlo process, Monte Carlo results can at the same time be used
to determine the validity of analytic formulas whose derivation involved simplifying as-
sumptions or approximations. (This work was carrled out under the sponsorship of the
Office of Naval Research.)

9. On Certain Estimators Based on Large Samples of Extremes. (Preliminary
Report.) Jurius LieBLEIN, National Bureau of Standards.

E. J. Gumbel and B. F. Kimball have given estimators for the parameters of the asymp-
totic distribution of largest values, Prob {X < z} = exp [—e—2~%], which have been
applied in the analysis of data in large samples. The present paper applies the theory of
order statistics to the problem of seeking more efficient estimators which are at the same
time simpler to compute. Several large-sample estimators are found which, with one excep-
tion, appear to have greater efficiency than those derived from the methods of Gumbel and
Kimball, yet require much less effort in computation. If punch cards are used the work can
by handled by a mechanical sorter which ranks the observations in order of size and then

+selects a small number of them with predetermined ranks. (This work was sponsored by
the National Advisory Committee for Aeronautics.)
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10. The Use of Previous Experience in Reaching Statistical Decisions. J. L.
Hopoces, Jr., University of California, Berkeley, anp E. L. LEHMANN,
Stanford University and University of California, Berkeley.

Instead of minimizing the maximum,risk it is proposed to restrict attention to decision
procedures whose maximum risk does not exceed the minimax risk by more than a given
amount. Subject to this restriction one may wish to minimize the average risk with respect
to some guessed a priori distribution suggested by previous experience. It is shown how
Wald’s minimax theory can be modified to yield analogous results concerning such restricted
Bayes solutions. A number of examples are discussed.

11. Results of Some Tests of Randomness on Pseudo-random Numbers. (Pre-
liminary Report.) J. M. CameRroN, National Bureau of Standards.

A method for generating random numbers on automatic computing machines (such as
the SEAC) has been developed by Dr. Olga Taussky-Todd. Using this method about 24
pseudo-random numbers can be generated by taking residues (mod 242) of successive powers
of 517. The results of some tests of the randomness applied to these numbers are presented.
The evidence from these tests is in agreement with the hypothesis of randomness.

—

(Abstracts of papers presented at the Boston meeting of the Institute, December 26-29, 1951)

12. Two Rank Order Tests Which Are Most Powerful against Specific Para-
metric Alternatives. MiLron E. TERRY, JR., Virginia Polytechnic Institute.

The most powerful rank order tests of thé hypotheses that two samples come from the
same population and that in each of k groups of two samples the two samples came from a
common population are considered, and most powerful rank order tests against certain
normal alternatives are derived. For the two tests of immediate practical importance,
asymptotic, approximate, and (for certain small sample sizes) exact distributions are
given. The relationship of these tests with others are investigated.

13. Partially Balanced Designs withk > » = 3, \; = 1, A, = 0. R. C. Bosk
AND W. H. CrarworTHY, University of North Carolina.

Incomplete block designs with a few replications are of practical importance to experi-
menters. Partially balanced designs with k > r = 2 have been studied by one of the au-
thors (R. C. BosE, “Partially balanced incomplete block designs with two associate classes
involving only two replications,’” Calcutta Stat. Assoc. Bull., Vol. 3 (1951), pp. 120-125).
The present paper extends this investigation to the case k¥ > r = 3,\ = 1, = 0. It has
been shown that only three types of partially balanced designs belong to this class, viz.
(a) designs obtained by dualizing balanced incomplete block designs with & = 3, A = 1;
(b) lattice designs with » = 3; (¢) partially balanced designs belonging to the series v =
(t+2)@2t+38),b=32+3),r=3k=t+2,n=3¢+1), n=20¢+1? p;; =t It
has been shown that for the series (c) the only combinatorially possible design for which
k > 3,is the design with { = 3. The casest = Oand¢ = 1, though not belonging to the class
k > r, are combinatorially possible cases. Designs corresponding to all other values of ¢
have been shown to be impossible.

14. Some Observations on the F-Test in Analysis of Variance. S. N. Roy, Uni-
versity of North Carolina.

It is well known that analysis of variance deals with a class of problems which can be
reduced to a problem of testing of a (composite) linear hypothesis (within a certain model)
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and for which the test in common use is the F-test; and within the last few years several
optimum properties of this test have been brought out by different workers. It was also
noted in 1948 by Lehmann and Stein (E. LEaMANN AND C. STEIN, ‘“Most powerful tests of
composite hypotheses I. Normal distributions,” Annals of Math. Stat., Vol. 19 (1948),
pp. 495-516) and the author (S. N. Roy, “Notes on testing of composite hypotheses—II,”
Sankhya, Vol. 9 (1948), pp. 19-38) that for this problem of testing of a (composite) linear
hypothesis it is possible to construct an infinite class of similar region tests among which
there is a most powerful test against a specific (composite) alternative (which differs from
alternative to alternative). The corresponding statistic (whose structure depends upon the
alternative) has the ¢ distribution, when the hypothesis to be tested is true; and the test
itself could be properly called a generalized ¢-test, since the ordinary ¢-test could be shown
to be a special case of it. This paper works out a connection between the ordinary F-test
and this generalized ¢-test, showing that the F-test at a level of significance, say «, could be
derived in a certain manner from the infinite class of (most powerful) -tests of the hypothe-
sis at a level 8(<a) against the infinite class of possible speqiﬁc (composite) alternatives.

15. The Neyman-Pearson Lemma Factor Functions. L. M. CourTt, American
Power Jet Company, New York.

According to the Neyman-Pearson lemma, recently proved necessary as well as suffi-
cient by Dantzig and Wald (‘On the fundamental lemma of Neyman and Pearson,”
Annals of Math. Stat., Vol. 22 (1951), pp. 87-93), the optimum ecritical region w of size a
for testing po(z) = po(21, ++- , 7.) against pi(x) is given by w: p(x) = kpo(x), where k
is a suitable constant (factor). There obviously is a relationship between the size « and the
factor k, i.e., « = 7(k) or k = r~'(a), where the functions = and +~! need not be as naive
as the ones encountered in the elementary calculus. The writer establishes four properties
of 7(k) and 7~'(a): (1) to any value of k there corresponds in general a closed interval of
a-values (which may reduce to a point); (2) to any value of «, there corresponds in gen-
eral an interval of %-values, open at the bottom and closed at the top; (3) (k) is a non-
increasing function of ¥ in a generalized sense; and (4) v~!(«) is a nonincreasing function
of a in a generalized sense. These properties are extended, with some restrictions, to
the functions o; = 7¢(k1, -+ , km)(¢ = 1, --- , m) and their inverses, where k1, **+ , km

are the factors resulting when a region w is sought maximizing f fmi1(x) dz subject to
w

f fi(z) dz - a;(t =1, -+ , m), this region being characterised by fms1(z) = k;gl(z) + ..
w

+ kmpm(x)—the general Neyman-Pearson lemma. (Every fi(x) is assumed nonnegative
throughout R..)

16. The Probability of a Correct Ranking. (Preliminary Report.) RoBerT E.
BrcuroOFER, Columbia University.

Let X;; be normally and independently distributed with mean p; and unit variance
(i=1,2,---,kj=1,2 -.-,N). Let p[1], u[2], - -, u[k] be the ordered p; ; let X(z)
be the sample arithmetic mean associated with the population having mean u[2](z = 1,
2, -++ , k). The p; are unknown; it is not known which population is associated with
ult]. Specify positive integers 71, 72, -, 7,(s £ k) such that Z;_,r; = k. Define
“indifference regions” 8% as the smallest differences, u[t + 1] — uft], ¢ =1,2,---, k — 1),
which it is desired to detect. Define the symbol S; = Ef_,,r.- . We wish to determine
Py(5%,8%, -+ ,8,_1) = Inffors;>83(1=1,2,---, k — 1) of Prob [Max{X(S; + 1), --- ,
X(S;jn)} < Min{X(Sj + 1), --+ , X(Sj42)} simultaneously for j = 0,1, 2, -+, s — 2
with 7o = 0]. The required probability is expressed as a volume under a (k — 1)-variate
normal surface. For given (0 < 8 < 1), the desired N is the smallest one for which
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Py(%,0%,+,0_1) = 1 — B. An analogue of power is defined. A method of making
confidence statements is described. It is shown that many analysis of variance (Model I)
problems can be more meaningfully formulated as problems involving multiple ranking of
means, and how experimental designs (randomized blocks, Latin squares, etc.) can be used
to increase the probability of a correct ranking. A procedure similar to the one described
above is applied to the ranking of variances when the population means are known or un-
known, the required probabilities being expressed as volumes under (k — 1)-variate gener-
alized F-distribution surfaces. Other directions of generalization are indicated. (Part of
this work was done under the sponsorship of the ONR.)

17. A Nonparametric Analogue Based upon Ranks of One-way Analysis of
Variance. WirLiam KruskaL, University of Chicago.

Given independent random variables £ (i = 1, -+ ,C;5 = 1, -++ ,ni ; Zn; = N) with
continuous distribution functions Pr{t{"> < x} = Fi(z), one may wish to test the null
hypothesis: F;, = F, = ... = Fgagainst alternatives of form Fi(x) = F(z — 6,)(¢ = 1,
-++, C) with not all the 8’s equal. The following test (essentially proposed by Wallis) is
discussed: replace the £’s by their ranks in the N-fold sample, X{*’, and compute H =
12/ NNV + MIZ{,(1/n:) (B: — 3n:(N + 1))2, where RB; = 27%,X{9; reject if H is too
large. This test is a generalization of the symmetrical two-tail version of the Wilcoxon-
Mann-Whitney test, and is also equivalent to the use of the standard F-test for one-way
analysis of variance after replacement of observations by ranks. H is shown to be asymp-
totically chi-square with C—1 degrees of freedom. A condition for consistency is stated and
given an intuitive interpretation; the translation alternatives mentioned above satisfy this
condition, but so do many others. The variance of H under thenull hypothesisand the maxi-
mum value of H are obtained explicitly and their use in approximating the distributionof H
is suggested. The possibly discontinuous case is considered, and a method for handling ties
proposed by Wallis is discussed.

18. A Series of Group Divisible Designs for Two-way Elimination of Hetero-
geneity. S. S. SHRIKHANDE, University of Kansas.

From the affine resolvable design v = 82, b =s?4+s,r =s+ 1,k = s,A = 1 omit a
complete replication, and from the remaining blocks omit the treatments lying in any
n(<s — 1) blocks of the omitted replication. We get a group divisible design with » =
s(s—m),b=2s%,r=s,k=s— n, where the » treatments can be divided into s — n
groups of s each where any two treatments of the same group do not occur together in any
block, whereas any two treatments coming from different groups occur together in just one
block. This design can be used for two-way elimination of heterogeneity by suitably inter-
changing the positions of treatments in the various blocks if necessary. All treatment com-
parisons are made with at most two accuracies.

19. A Test of the Uniformity of a Circular Distribution. (Preliminary Report.)
J. ArrHUR GREENWOOD, Manhattan Life Insurance Co., AND DaviDp
Duranp, National Bureau of Economic Research.

Let X;, ---, X, be a sample from an unknown distribution on the circumference of a
circle. To test the hypothesis that the distribution is uniform, the use of the statistic 4 is
proposed, where n24% = (2_, cos X;)? + (2!_, sin X;)2. The distribution of A is essen-
tially given by the solution of Pearson’s random walk problem (K. PEArsonN, ‘‘Mathemati-
cal contributions to the theory of evolution. XV. A mathematical theory of random migra-
tion,” Drapers’ Co. Res. Mem. Biometric Series 3, Cambridge University Press, 1906) and
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L
is P{A < a} = f [Jo®)]" na Ji(nat) dt; this distribution is also obtained readily by the
(]

use of characteristic functions. For the alternatives given by the cyclical distribution of
von Mises (Uber die “Ganzzahlbarkeit’” der Atomgewichte und verwandte Fragen,”
Physik. Zeitschr., Vol. 19 (1918), ppt 490-500) the method of characteristic functions gives
the power function in terms of similar but less tractable integrals.

20. A Method for Limit Theorems in Markov Chains. T. E. Harris, The Rand
Corporation.

The following Markov process has been used by Mosteller in a psychological application.
Let @y, 1, -+ be the random variables of the process, 0 < #; < 1. Let S(z) = oz and
T(x) =a+ (1 — a)z,0 < a,¢ < 1, be two linear functions of z, and let f(x) = a + bz
be a third linear function such that 0 < f(z) < 1 when 0 < 2 < 1. The transition law is
as follows. Suppose . is given. Then z,,, = S(z,) with probability f(z.) and 2,41 = T(z,)
with probability 1 — f(z.). It is shown that the distribution of z. approaches a limiting
distribution independent of z, as # — «. The method can be modified to give a proof of
the “‘ergodi¢’’ theorem for Markov processes with discrete states and also, in the generali-
zation of renewal theory by Chung and Pollard, to random variables with positive and nega-
tive values, to remove the restriction to distributions with an absolutely continuous com-
ponent.

21. On Tests of Certain Hypotheses about Multivariate Normal Populations.
S. N. Roy, University of North Carolina.

Large classes of problems in multivariate analysis can be brought under one or other of
the three problems of testing of the composite hypotheses of (i) equality of the dispersion
matrices for two p-variate normal populations; (ii) equality of the means (of each separate
variate) for K(>2) p-variate normal populations; (iii) independence between two sets of
variates p; and p: under a (p; + p.)-variate normal distribution. It is partly shown in
previous papers by different workers and more fully shown here that, if we take over and
carry through the idea behind discriminant analysis, we would get in each case a test which,
for case (i), would be based on the largest and smallest roots, and, for cases (ii) and (iii),
on the largest root of certain determinantal equations (different for the three cases). Such
tests would have all the known desirable properties of other possible similar region tests
(including the likelihood ratio tests) of the composite hypotheses concerned. The main
purpose of the present paper, however, is to show that the three tests given here (for the
three cases), at any level, say a, could each be derived in a certain manner from an infinite
class of most powerful tests at another level 8(<a) against different possible (composite)
alternatives.

22. An Inequality for Orthogonal Arrays of Strength 2. 8. S. SHRIKHANDE, Uni-
versity of Kansas.

A matrix A(a;;) with I rows and N columns where each element a;; is one of the n integers
1,2, --- , nis called an orthogonal array of strength 2 if for every pair (31 , 72) of two rows,
the pairs (a:,; , @i35),7 = 1,2, --- , N contain each of the n possible pairs exactly x times
(N = pn?). The array is said to be of size N, I constraints and n levels. It is known that
Imex < I((un? — 1)/(n — 1)), where I(z) is the largest integer contained in z. If n and ¢
are integers (n > 2, ¢t > 0), then with N = n2((n — 1)t + 1), where n is the number of
. levels, the above inequality gives lnax < %2t + n 4+ 1. Using a result due to Plackett and
Burman (“The design of optimum multifactorial experiments,’’ Biometrika, Vol. 33 (1946),
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pp. 305-325) it can be shown that ln.x < n% + n in the three cases of impossibility of
affine resolvable balanced incomplete block designs announced at the thirteenth summer
meeting of the Institute of Mathématical Statistics in September, 1951.

23. The Distribution of the Range ifi Samples from a Compound Normal Popula-
tion. Kennera H. KraMER, Youngstown Sheet and Tube Company.

The distribution of the range, R, in samples of »n observations from a population having
the distribution function F(z) = p®(x; m, o) + q®(x; 0, 1), where &(z; m, ¢) = 1/(1/x20)

x
[ exp {—(t — m)2/(2s?)} di, 0 < p < 1, is considered. This type of distribution pro-
00
vides a good model for many industrial processes, and the range is used extensively in in-
0
dustrial statistics. For n = 2, 3, the range distribution function G,.(R) = n f [F(x + R)
N o OO

— F(z)]*1 dF () is integrated, giving G»(R) in terms of integrals of the normal frequency
function, and G3(R) in terms of integrals of the bivariate normal frequency function over
rectangular regions. These expressions for G:(R) and G;(R) are then used to derive similar
expressions for the mean range, R, and the standard deviation of the range, oz. To compute
G.(R) for n > 3, an expression by Hartley, (E. S. PEarsoN, ‘“The probability integral of
the range in samples of n observations from a normal population. I. Foreword and tables,”’
Biometrika, Vol. 32 (1942), pp. 301-308. H. O. HarTLEY, “The probability integral of the
range in samples of » observations from a normal population. II. Numerical evaluation of
the probability integral,”” Biometrika, Vol. 32 (1942), pp. 309-310. H. O. HarTLEY, ‘‘The
range in random samples,’’ Biometrika, Vol. 32 (1942), pp. 334-348, especially pp. 341, 342)
is generalized. Tables given by Hastings, Mosteller, Tukey, and Winsor, (‘‘Low moments
for small samples: a comparative study of order statistics,”’ Annals of Math. Stat., Vol.
18 (1947), pp. 413-426) provide a basis for approximate formulas for R and oz (all n);
these formulas are asymptotic in m, and in the case of B give a lower bound on the exact
value. Tables and graphs of G,(R/s.) and R/s. , where af = pe? 4+ ¢ + pgm? is the var-
iance of the compound normal population, are given forp = 0,%,3,m=0,1,2,2,0 =
1,2, AR = 1,n = 2,3, -+, 20. The tables are then used to construct power curves for the
Shewhart control chart for ranges under various types of alternatives.

24. On the Operating Characteristics of Certain Quality Control Tests. JoEN
E. Waisg, U. S. Naval Ordnance Test Station, Pasadena.

This paper presents values of the operating characteristic (OC) function for a common
type of quality control test and for two possible substitutes for this test. The situation
considered is that of small samples from a normal population. The common type of quality
control test investigated is based on the sample mean and the sample standard deviation
(using » — 1). One of the substitute tests is based on the ¢-statistic and the sample standard
deviation. The other substitute test is based on the sample mean and the estimate of the
population standard deviation obtained by using the mean of the population which deter-
mined the control limits. Each of the three types of tests is found to have regions where its
operating characteristics are poor. No one type of test has uniformly better operating char-
acteristics than the others. For each type of test there exist regions where its operating
characteristics are superior to those of the other two. On the whole, however, the tests
based on the ¢-statistic and the sample standard deviation appear to be inferior to the other
two types, which are roughly equivalent. An extensive OC function analysis is presented
for the common type of quality control test. This analysis furnishes a fairly comprehensive
picture of the operating characteristics for this kind of test.



ABSTRACTS 143

25. Operating Characteristic of the Control Chart for Sample Means. (Prelim-
inary Report.) Epcar P. Kina, Carnegie Institute of Technology.

A study is made of the Type I and Type II errors of the control chart for sample means
in the case where process standards arg unspecified. Under the null hypothesis, the distribu-
tion of the process is N (u, 02), where p and o are unknown constants. Under the alternative,
the process mean is a random variable with a N (u, 6%?) distribution (8 > 0). The two types
of errors are tabulated for cases ranging from 2 samples of size 2 to 4 samples of size 10.
Bounds on these errors are tabulated for cases ranging from 5 samples of size 2 to 25 samples
of 10. The effect of altering the traditional ‘‘3-sigma’’ limits is investigated and the power
is compared with that of the corresponding analysis of variance test.

26. Joint Sampling Distribution of the Mean and Standard Deviation for Fre-
quency Functions of the Second Kind. MeLviN D. SprinGER, U. S. Naval
Ordnance, Indianapolis. .

The joint sampling distribution of # and s is derived for frequency functions of the
second kind, i.e., for frequency functions defined on the interval (0, «). The joint distribu-
tion has the integral form

Fz,s) = f f . f F@)f @) - f(5n_) - RInE — Zn=22; — QP-D)f (Hink — Zi-2z; +00-D))

2n?%s /Q"~Ddx,_s - - - dz, dz, , where the limits of integration of z,_.(r = 2,8, ---,n — 1)
are given in terms of &, s, and ©,_,_;( = 1,2,*-- ,n — r — 1) and depend largely upon
which of the intervals I;: (vj/{n — j1%, V{7 + 1}/in — G+ D}%),j=0,1,--- ,n— 2,
contains s. The limits of integration of z,_.(r = 2,83, ---, n — 1) also involve Q¥ , m = 1,
2,:+,n—1,k=0,1,---,n—2 where 2} = [—m(m + 2)2kz] — 2mTk-1Z4-le.x; 0 +
2nmzZiz; — mn(n — m — 1)22 + (m + 1)mns?]}. As an example, F(Z, s) is evaluated
when f (x) is a chi-square universe. Throughout this paper n represents sample size.

27. Statistical Theory of Droughts. E. J. GumBEeL, Consultant, Stanford Uni-
versity.

The droughts, z, the annual minima of discharges, are analyzed by the asymptotic theory
of smallest values of a positive statistical variate and, the extremal probability paper used
up to now for the floods is used for the logarithms of the droughts. If the observed cumula-
tive frequencies are scattered about a straight line and, in particular, not bent downward
toward the end, the limiting value of the droughts may be assumed to be zero. In this case
the scale parameter 1/« and the location parameter u are estimated by the methodsused for
the floods. If the observed points approach a curve which is bent downward toward the end,
the lower limit e exceeds zero, and the asymptotic probability function contains three
parameters. They may be estimated by the method of moments which leads to Gamma
functions depending only upon the scale parameter 1/a. The three parameters 1/a, u, ¢,
are then obtained with the help of a table calculated by Gladys Garabedian. A statistical
criterion is given which decides whether the lower limit may be assumed to be zero or not.
The droughts of 13 rivers analyzed by this procedure show a very good fit between theory
and observations. The theoretical curves can be used to estimate the most severe drought
to be expected within a given number of years, provided that the basic conditions will pre-
vail. This procedure may be important for solving problems arising for storage and irriga-
tion.

28. Some Tests Based on the First r Ordered Observations Drawn from an
Exponential Distribution. BEnJaMIN EpPSTEIN AND MirTON SoBEL, Wayne
University.
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In this paper we study statistical problems which arise when the observations become
available in an ordered manner. There exist many practical test situations, e.g., life testing,
fatigue testing, and other kinds of destructive test situations where the data occur in order
of magnitude (i.e., the weakest item fails first, the second weakesc item fails next, etc.).
It seems that in such cases we can if we choose, discontinue experimentation after the first
r (r < n, the number of items tested) failures in a life test have occurred. Two principal
advantages stem from the fact that the observations occur in an ordered manner. These
are that we may be able to reach a decision in a shorter average time or with fewer observa-
tions on the average or both than if we were to utilize a procedure which has the same risks
of making wrong decisions but which involves taking all m out of m observations (and thus
in effect disregards the basic fact that information is becoming available in an ordered
manner). The problem is explored in some detail for the special case where the life X is
a random variable whose probability law is given by the pdf f(z, 8) = ¢~#/9/6,2 > 0,6 > 0.
A number of procedures meeting either one or both of the desirable objectives mentioned
above are given in connection with various simple and composite tests on the parameter 6.
(Research supported by the Office of Naval Research under Contract No. Nonr-451(00).)

29. Some Theorems Relevant to Life Testing. MiLToN SOBEL AND BENJAMIN
ErstEIN, Wayne University.

A set S of N independent exponential random variables X;(z = 1, 2, --- , N) is con-
sidered, the density of X; being f(z;) = e~ @—2)0/9 ©. > a;, § > 0, where 6 is the com-
mon unknown parameter to be estimated. One of the cases considered is a; = a(i = 1,
‘2, --- , N), where « is known and positive. All possible ways are considered of bregking up
the set S into subsets. A total of R observations are taken subject to the condition that
within each subset the observations are ordered. For each of these ways the distribution of
the maximum likelihood estimate & of # is the same, namely a distribution of Type III.
Hence they are all equivalent relative to any properties depending only on the distribution
of 6, c.g. the variance of 6. A replacement procedure is also considered in which the experi-
menter can only work with a maximum of one set of n(0 < n < N — R + 1) random
variables. After each observation he takes a new random variable to replace the item that
failed. If R observations are taken the distribution of @ is again the same as above. Some
results on the average time required are also obtained. (Research supported by the Office
of Naval Research under Contract No. Nonr-451(00).)

30. A Method of Reducing the Time Required to Complete Certain Fatigue
Tests. LeoNarp G. JornsoN, General Motors Corporation, Detroit.

If it is assumed that the form of a specimen’s life distribution is known, and that there
is but one unknown parameter, the author shows that the distribution of the maximum
likelihood estimate of the parameter based on the r first failures out of a sample of n is
independent of n. As a result, it can be concluded that the testing time required to fail the
first 7 specimens, r being fixed, can be made as small as desired simply by making n suffi-
ciently large.

31. On the Multivariate Poisson Distribution. HENrRY TEicHER, Purdue Uni-
versity.

The joint distribution of correlated Poisson variables X1 , X, --- , X, may be derived
from a multinomial population and involves a (2 — p — 1)-fold summation as well as
.22 — 1 parameters. Its cfis ¢(t1, - - - , tp) = Cexp {27 a:di + Dicitijzizi + - - - + 62122 -« 2,},
“where z; = i, the a;, ai;, ai;z etc. are nonnegative parameters and C is such that
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¢, -+, 0) = 1. For p = 2, one has the known result Pr {X = z, ¥ = y} = Z}_,
(w1 — )" *(ue — p)v %k /[(x — k) Wy — k) k1] e~ 1+42-#) where w = min (z, y), m = E(X),
pz = E(Y),u = Cov (X, Y). The cases p = 2 and p = 3 are considered in detail and the
preceding distribution is generated from three simple postulates. The limiting distribu-
tion and some properties are -discussed.

32. Formulas for Approximating the Hypergeometric and Binomial by the
Poisson Distribution. Irving W. Burr, Purdue University.

Let a sample of n be drawn from a lot of m objects of which d are of one sort; let d/m
be p and np be \. Then if the hypergeometric, binomial and Poisson probabilities of exactly
z in the sample are respectively h(z; n, m, d), b(z; n, p), and p(z; \) we have approximately
k(z; n, m, d) = b(z; n, Pl + (z — (z — N)/@2mp(l — p))}; b(z; n, p) = p (z; M1
+ (z —(z — X\)?)/(2n)]. The former is to within terms of the order 1/(m?p?) while the lat-
ter is to within terms ofthe order of 1/n%. Since the second terms in the brackets are ap-
proximate relative errors, they may be added in going from p(z; \) to h(z; n, m, d). Using
the formulas as a correction to tabulated values of the Poisson distribution, we get excellent
approximations to hypergeometric probabilities.

33. Distributions of Ranges from an Arbitrary Discrete Population. Irving W.
Burr, Purdue University.

The exact sampling distribution for the range, R, for small samples from any discrete
population (with finite range) may be obtained from formulas involving combinations of
sums of nth powers of certain sums of consecutive probabilities. The calculation is not at
all prohibitive for samples of five or less if probabilities are taken to the nearest .01 or .005.

34. Sufficient Statistics and Selection Depending on the Parameter. D. A. S.
Frasgr, University of Toronto.

For a class of density functions with respect to a fixed measure, ‘“functional sufficiency’’
or “f-sufficiency”’ is defined by the density factorization usually associated with sufficiency.
Conditions are immediately available under which sufficiency and f-sufficiency are equiva-
lent. A minimal f-sufficient statistic is defined and proved to be essentially unique; its
construction is given. The minimal f-sufficient statistic is shown to be equivalent to the
combination of a “statistic of selection’ and the minimal f-sufficient statistic for a class
of densities for which the region of positive density is fixed. Subject to mild continuity
conditions, sufficient statistics in this latter case have been treated by B. O. Koopman. If
the parameter is a parameter of selection from a fixed distribution, then the statistic of
selection is the minimal f-sufficient statistic. If in addition the regions of poesitive density
are monotone and are indexed monotonely by a real parameter, then the statistic of selec-
tion is sufficient according to the Halmos and Savage definition.

35. On a Problem Suggested by Blackwell. (Preliminary Report.) CHARLES
STEIN, University of Chicago.
If M, M' are probability measures concentrated on a finite set of points in n-space, we

say that M D M’ if for every convex function ¢, f ¢dM > f ¢ dM', and we say that M > M’

if there exists a stochastic matrix (p;;) (one with ps; > 0, Z;ps; = 1) such that\; = Z\ps; ,
)‘;y; = ZNyips;i , where M, M’ are concentrated on y; , y; respectively and M(y:) = A,
M'(yj) = \j . It is obvious that M > M’ implies M D M’ and here the converse is proved.
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The following lemma is used. If ¢ is a convex function defined on the convex set [y, , --- ,

yx] generated by the points v, , -+ , yx in a real vector space, then there exists a convex
function ¢, on [y, -+, y:] such that ¢1 > ¢, ¢1(y:) = ¢(y:) for ¢ = 1 --- k, and there
exists a decomposition of [y , -+ , y&] into simplexes with vertices among %, , - - , yx such

that ¢, is linear on each of these simplexes. It is proved that the set of all M” such that
M DO M” > M’ ordered by > has a maximal point. It is proved that any maximal M” must
be concentrated on the set of points to which M assigns positive probability. The proof is
completed by the additivity of >. The significance of this result for statistical decision
theory is explained by Blackwell (‘‘Comparison of experiments,’”’ Proceedings of the Second
Berkeley Sympostum on Mathematical Statistics and Probability, University of California
Press, 1951, pp. 93-102).

36. On a Class of Infinitely Divisible Distributions. GopPINATH KALLIANPUR,
University of California, Berkeley, ANp HErBERT RoBBINS, University of
North Carolina. )

Let ®#(x) be a non-lattice df having a finite moment of order 2 4+ (5 > 0) and let ¢(¢)
be its characteristic function (cf). Set ¢’(0) = 7a and ¢”(0) = —b2. A study is made of log-
arithms of cf’s (lef) which are given by one of the representations,

(A) o) = it + [ (o(tu) — 1 — datu/(1 -+ I + u)/ud] dG(w),

(B) g(t) = iyt + [o [¢(tu) — 1 — datul(l /u?] dG(w),

where v is a real constant and G(u) is a nondecreasing function of B.V. with G(—®) = 0.
The following results are proved. (1) The limit of a sequence of lef’s of type (A) is also the
lef of type (A). (2) The formula (A) uniquely determines vy and G(u). (3) A necessary and
sufficient condition for a sequence g.(t), (n = 1,2, ---) of lef’s of type (A) to converge to
the lef g(¢) is that as n — «,vy, — v and G.(u) — G(u) at points of continuity of the latter.
Analogous results for lef’s of type (B) are stated. Lef’s of types (A) and (B) occur naturally
in connection with the investigation of limiting distributions (as A — «) of r.v.’s of the

8
form (*) f R\(u) dX(u) — Ay, where (i) «, B are finite, (ii) Rx(u) is for A > 0 a continu-
a

ous, monotone function in (a, 8), (iii) 4» is a constant depending on X only, and (iv) X (u)
is a generalized Poisson process, with A as the Poisson parameter. Using the above results,
it is proved that the class of limit laws of (*) is the class of distributions whose lcf’s have
the representation (A).

37. Almost Sure Estimability of Linear Structuresin n Dimensions. T. A. JEEVES,
University of California, Berkeley.

Let B denote an n X n matrix of rank r of sure numbers. Let X and U be independent
unobservable n-dimensional random row vectors, and ¥ be an observable n-dimensional
random rowvector, such that ¥ = XB + U. Assume that U has a multinormal distribution
and that B is identifiable. The problem considered is to use a sequence of N independent
observations of ¥ to construct an almost sure estimate Sy of S, the space spanned by the
row vectors of B. Let Ay = max min | ay — a | for all unit vectors ay in Sy, and all

a a

N
_unit vectors @ in 8. Then Sy is said to be an almost sure estimate of S if the probability
“ of Ay converging to zero is unity. The estimate Sy defined below generalizes the procedure
of Neyman for the case of two dimensions. Let Zy be the N X n matrix of N observations
on Y. A function Gy(Zy , K) of Zy and the row vector K is obtained which converges with
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probability one to G(K), a function which is zero if and only if K is perpendicular to S.
Let Ky be the vector which minimizes Gy (Zy. , K), and let Ky; (for7 = 2,3, --- ,n — 1)
be the vector which minimizes Gy (Zx , K), subject to the restraint that Ky; is perpendicular
to Kyjforj=1,2,--+-,7—1. 8y isqthe space orthogonal to the vectors Ky; forz = 1,
2, ,m—r.

38. Completeness of the Class of Admissible Decision Procedures. HERMAN
Rusin, Stanford University.

Let a space Q of distributions and a space ® of actions be given, and for each action ¢
and distribution 0 let a risk (¢, ) be given. For every sequence ¢; such that for all 9, (¢:,
0) > (¢i_1, 9) for all 7, let there be a ¢ such that (¢: , ) > (¢, 6) for all <. Then if (¢, 9) is
continuous in @ for each ¢ in some topology in which Q@ has a countable dense set, or if (¢,
6) is lower semicontinuous in some topology in which every subset of £ has a countable
dense subset, then the admissible elements of ® form a complete class. An example of the
applicability of this theorem is as follows. Let a sequential decision problem be given with
a finite set of terminal actions. Then if the density of the first n observations is continuous
for each 7 in some topology in which every subset of @ has a countable dense subset (in
particular, if each observation can have only countably many values), the admissible pro-
cedures form a complete class.

39. Moment-Problem Solutions with Continuous Derivatives. (Preliminary Re-
port.) LioNEL WEIss, University of Virginia.

Given a finite sequence of moments uo , 1 , - - , s 80 that there is at least one cumulative
distribution function on a given interval [a, b] with these moments, conditions are known
under which one can find an infinite number of cumulative distribution functions over the
given interval with these moments. In these cases, further conditions are given so that at
least one of the functions shall have a derivative whose square is integrable, and that func-

b
tion (say F(z)) is sought whose derivative f(z) has the property that f f2(x) dz is as small
a

_as possible. The solution is essentially unique, and f(z) is continuous and is equal to a poly-
nomial of at most the nth degree wherever it is greater than zero. The results can be ex-
tended in various directions.

40. Significance Consistency of the Basic Neyman-Pearson Test. L. M. Courr,
American Power Jet Company, New York.

In a recent note (‘A property of some tests of composite hypotheses,’”’” Annals of Math.
Stat., Vol. 22 (1951), pp. 475-476) C. Stein pointed out that for most of the common tests,
a result that is significant at the 1% level is significant at the 5%, level. Having said this,
he uses the fundamental Neyman-Pearson lemma to construct an example for which this
is not so. (A similar example for Neyman-Pearson Type A regions is given by Chernoff,
“A property of some Type A regions,” Annals of Math. Stat., Vol. 22 (1951), pp. 472-474.)
In Stein’s example, a composite hypothesis (2 elements) is tested against a simple alterna-
tive, all three distributions being entirely discrete. The writer shows that it is essentially
the discreteness that is responsible for this undesirable behaviour. He goes on to show that
when the hypothesis and alternative are both simple and absolutely continuous distribu-
tions (i.e., density functions exist everywhere) and the Neyman-Pearson lemma is used to
determine critical regions, this phenomenon cannot arise. If the hypothesis is composite
but a Bayesian approach (Wald) is possible, i.e, there is a least favorable distribution for
the parameter over the range specified by the hypothesis in the Lehmann-Stein sense, this
conclusion can be extended to it.
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41. On Sets of Parameter Points where It Is Possible to Achieve Superefficiency
of Estimates. LucieN L. Lecam, University of California, Berkeley.

Let X be a random variable with probability density f(z | ) depending on a parameter
0 £ Q; @ being a measurable set of poipts on the real line. Let X = (X, , X;, -+ , X,)
be a sample of n independent observations on X. A sequence {T,(X")} of measurable func-
tions is called a consistent asymptotically normal (c.a.n.) estimate of 6, with asymptotic
variance {o2 (0)},1f forevery 6 € 2, and for every ¢, limpn— o p { (T2[X (W] — 0)/(¢,.(0)) <t|o}=

1/(n/2x) [ e~#+* dz. Assume Cramér’s regularity conditions which imply consistency and
L]

asymptotic normality of the maximum likelihood estimate of 8 (Mathematical Methods of
Statistics, Princeton University Press, 1946, p. 500). Let {«2(6)} be the asymptotic variance
of the M.L. estimate. As n — «, let 8(8) = lim sup [0n(0) /an(0)] and v(8) = lim [a,.(o)/
a,(0)] if this limit exists. An estlmate {Ta[X(™]} is called superefficient on S C Q if it is
c.a.n. and if 8(8) = 1, for 6 ¢ 2and 8(8) < 1 for 6 ¢ 8. This set S is called the set of super-
efficiency. J. L. Hodges produced examples of superefficient estimates. His method of con-
struction will be denoted by (H). THEOREM 1. Whatever ¢,0 S e < 1 and whatever the closed
and reducible set Sy C Q, it is possible to construct superefficient estimates of 0 with 8(8) < e
on S, . The method of construction is (H). THEOREM 2. The set S of superefficiency has Le-
besgue measure zero. THEOREM 3. If v(0) exists for all 0 & S then, whatever be ¢,0 < € < 1,
the subset of S wherev(0) < eis closed and nondense. THEOREM 4. Whatever the denumerable
set 8 C Q, it is possible to construct {T,[X™]} c.an. on @ — 8, with asymplotic variance
{a2(6)} and such that for every 6 & S, the limit law of [Tn — 6]/an(6), as n — ©, is more
concentrated than the corresponding law of the M.L. estimates.

42. Relative Precision of Least Squares and Maximum Likelihood Estimates
of Regression Coefficients. Josera BErkson, Mayo Clinic.

Three “‘estimators’’ of the parameters a and g of the logistic function P; = 1/(1 + e~(=8z0)
as used in bioassay were compared for three equally-spaced values of the dose x., 10 at each
dose: (1) maximum likelihood, (2) minimum (Pearson classic) x2, (3) minimum logit x;, the
first two requiring iterative procedures for evaluation, the last obtainable directly. With
central dose at the L.D. 50, the three estimates are unbiased; the variance is smallest for
the minimum logit x2, next larger for the minimum x2, and largest for the maximum likeli-
hood estimate. For dosage arrangements not symmetrical around the L.D. 50, the three
estimates are biased, the maximum likelihood estimate positively, the x? estimates nega-
tively; the mean square error is smallest for the minimum logit x2, next larger for the
minimum x?, and largest for the maximum likelihood estimate. For all dose arrangements,
the mean square error of the maximum likelihood estimate is larger than 1/I, those of the
x? estimates are less than 1/, in accordance with the Cramér inequality for the mean square
error. Each of the estimators is sufficient.
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