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4. Numerical results. Numerical values of the coefficient in (3.4) are tabulated
in Table 1, together with the corresponding values n~#(2r) ™ for normal and
(24/3)™ for rectangular population. All these values approach 1 when n — 1,
as might be expected from the fact that for any distribution £, = 1. It is to be
noted that the curve for the lower bound would be fairly parallel in logarithmic
scale to the curve for rectangular population. In fact it is easily shown that when
n becomes large the former is given by

e E RERIORECI (O)

- o (o) - 222 (1 + 0 (2)

where ¥(z) denotes the digamma function I'V(z + 1)/T'(z + 1). The first term
happens to be close to the true value even for small n as we see in Table 1.

(41)
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UNIFORMITY FIELD TRIALS WHEN DIFFERENCES IN FERTILITY
LEVELS OF SUBPLOTS ARE NOT INCLUDED IN
EXPERIMENTAL ERROR

By G. A. BAKER
Unaversity of California, Davis

1. Introduction. The present note is confined to the consideration of two
randomized blocks with two subplots each. The usual mathematical model for
the analysis of variance of such an experiment assumes that

(11) v,,=g+b,+t,+e,,, 1=1,2,]=1,2,

where v;; is the yield of the jth variety in the 7th block, and the block effect b;
is the average for the subplots of the 7th block. Any difference between b; and
the yield of subplots due to differences in fertility is one component of the random
parts, e;; . The random parts, ¢;’s, are then assumed to be normally and in-
dependently distributed with zero means and uniform variance. That these as-
sumptions may break down in many cases because of the magnitude and non-
randomness of the differences between subplots has been indicated in a recent
paper [1]. It should be understood that it is practically impossible with our present
knowledge to determine the relative or absolute fertility levels of any set of plots,
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so that the present discussion will add only to the background knowledge and
general understanding of the behavior of field trials. It is possible to discuss
the present simple case in some detail while the situation becomes more complex
with more degrees of freedom. (See [1], pages 64 and 65.) The effect of randomiza-
tion is considered, and it is found to have a “beneficial”’ effect in some cases, and
no effect in others.

2. Theoretical development. The following development follows closely sug-
gestions made by a referee, especially with respect to randomization. Let us
consider the following setup:

Block 1 Block 2
V11 Vi1
V12 Va2

The v;;’s refer to observed yields of a uniformity trial. The subscript ¢ refers
to the block number and j to a dummy variety. Since this is a uniformity trial
the ¢,’s of equation (1.1) are zero. The plots we shall consider as being assigned
at random to the dummy varieties.

Let o2 be the assumed uniform error variance and £x(7 = 1,2; h = 1, 2) be
the “true” unknown fertility level in the hth subplot of the 7th block. Let

(2.1) vij =z + £

Then it is assumed that the z.;’s are distributed as N (0, o). The jth ‘“variety”
has equal chance of being assigned either to the first or to the second plot within
the block. Thus £;; itself is a stochastic variate, with probability 1/2 of taking
the values £;1, &2 . Put

_bnt b b — e .
(2.2) b; = 3 , d; 5 (¢ 1, 2).

Since if variety 1 is assigned to a given plot in the 7th block then variety 2 must
be assigned to the second plot we have

1)11=b1+x11+(11, vy = by + 221 + a2,

(2.3)
012=b1+2712—¢11, 022=b2+x22‘*az,
where q; is a stochastic variate which takes the values =d; with equal probabili-
ties 1/2. .
If we apply the conventional analysis of variance we obtain
(2.4) S; = Yon + v — v — v22)%,
(2.5) 8% = Loy — var — viz + ),

where S? is the variety sum of squares and S’ is the error sum of squares, each
with one degree of freedom. These expressions (2.4) and (2.5) in terms of z;;’s
and a;’s are
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(2.6) S; = (u + T — Tz — Tn + 201 + 2a5)°,
(2.7) Sf = i‘(xu — T91 — X112 + Loz + 201 - 2(12)2.
Put

v =2y -+ Tay — T — Tn,

U =Ty — T — T2 + Ta,
(2.8) )

me = 2a; + 2a,,
my; = 2a; — 2a,,
and we get
N2
(2.9) | F, = (Z _|+_ Zfl)
where u and v are independent variates distributed N (0, 403). Pur
my = fn — b2 — &a + b,
me =tu — b2 + fn — &2,

and then the pair (m;, m;) has the four possible values (ms, my), (my, ms),
(—my, —my), (—my, —my), each with probability 1/4.

If we used a systematic arrangement with the variety number the same as
subplot number instead of a randomized arrangement we would have

_ v + me 2
(2.11) F= (m>

instead of (2.9). If we apply the result given in [2], especially equation (17) page
5, and transform to a new variable, we obtain the distribution of F as

F(F,ma, my) = a7} (1 4 F)7 Flgdmiiimadiet

(2.10)

(2.12) T 9@+ BTF exp (=3l — ma)'/(3(1 + F))] fo " N(z) dz

b
021+ ) F exp (= 30y + mFYY(*0 + F))] jo N(z) dx,

0 < F £ «, where
a = (mF* + m)/(e(1 + F)}),
b = (m — mF)/(a(1 + F)}),
N@) = 2r)~% ",

We note that if both m; and m, are zero (2.12) reduces to the tabled F distribu-
tion which is used almost universally in testing the significance of ‘“variety”
difference with 1 and 1 degrees of freedom.
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TABLE 1
Distributions (2.12) and (2.13) for seven pairs of values of the parameters

DESIGNATING NUMBER OF PARAMETRIC PAIR

F 1° 28 3@ 32+ 3P 4° 58 68 15+ 6)P 7¢
0.0001 31.828 19.307 46.529 32.918 28.229 4,309 80.439 42.374 10.893
0.005 4.479 2.724 6.524 4.624 3.992 0.618 11.185 5.902 1.620
0.010 3.152 1.948 4.572 3.260 2,822 0.444 7.774 4.109 1.187
0.025 1.964 1.221 2.817 2.019 1.783 0.293 4.674 2.483 0.862
0.05 1.356 0.862 1.909 1.385 1.257 0.221 3.045 1.633 0.712
0.10 0.915 0.607 1.244 0.926 0.879 0.175 1.844 1.010 0.650
0.20 0.593 0.423 0.758 0.591 0.613 0.147 0.987 0.567 0.604
0.40 0.360 0.286 0.417 0.352 0.388 0.131 0.440 0.285 0.518
0.60 0.267 0.238 0.276 0.257 0.282 0.126 0.249 0.188 0.427
0.80 0.198 0.183 0.200 0.192 0.220 0.116 0.158 0.137 0.348
1.00 0.159 0.154 0.154 0.154 0.177 0.109 0.109 0.109 0.284
1.20 0.132 0.132 0.123 0.127 0.147 0.103 0.080 0.091 0.233
1.40 0.112 0.116 0.101 0.108 0.124 0.097 0.060 0.078 0.194
1.60 0.096 0.103 0.084 0.094 0.107 0.091 0.048 0.069 0.162
1.80 0.085 0.092 0.072 20.082 0.093 0.086 0.038 0.062 0.138
2.00 0.075 0.084 0.062 0.073 0.082 0.081 0.032 0.056 0.118
2.20 0.067 0.076 0.055 0.065 0.073 0.076 0.027 0.052 0.102
2.40 0.060 0.070 0.049 0.059 0.065 0.072 0.023 0.048 0.089
2.60 0.055 0.064 0.043 0.054 0.059 0.068 0.020 0.044 0.078
2.80 0.050 0.059 0.039 0.049 0.053 0.065 0.017 0.041 0.068
3.00 0.046 0.055 0.035 0.045 0.048 0.062 0.015 0.038 0.061
3.20 0.042 0.051 0.032 0.042 0.043 0.059 0.013 0.036 0.054
3.40 0.039 0.048 0.030 0.039 0.041 0.056 0.012 0.034 0.049
3.60 0.036 0.045 0.027 0.036 0.038 0.053 0.011 0.032 0.044
3.80 0.034 0.042 0.025 0.034 0.035 0.051 0.010 0.030 0.040
4.00 0.032 0.040 0.024 0.032 0.033 0.049 0.009 0.029 0.036
4.20 0.030 0.037 0.022 0.030 0.031 0.046 0.008 0.027 0.033
4.40 0.028 0.035 0.020 0.028 0.029 0.045 0.007 0.026 0.031
4.60 0.026 0.034 0.019 0.026 0.027 0.043 0.007 0.025 0.028
4.80 0.025 0.032 0.018 0.025 0.025 0.041 0.006 0.024 0.026
5.00 0.024 0.030 0.017 0.024 0.024 0.040 0.006 0.023 0.024
100 0.(2)03¢  0.(2)05  0.(3)19  0.(3)34  0.(3)14 0.(3)77  0.(3)04  0.(2)04  0.(3)11
10,000 0. (6)32 0.(6)46  0.(6)19  0.(6)33  0.(6)28 0.(6)8¢  0.(7)43  0.(6)44  0.(6)11
Limiting

ratio® 1. 1.462 0.606 1.034 0.887 1.332 0.135 0.733 0.180

3 Distributions headed 2, 3, 5, and 6 are not randomized (2.12).

b Distributions (2 + 3)/2, (5 + 6)/2 are randomized (2.13).

¢ Distributions 1, 4, and 7 are identical under randomization and nonrandomization.

d Number in parenthesis indicates the number of omitted zeros, thus 0.(2)03 means 0.0003.

e Limiting ratio of the ordinates of the indicated distributions to the ordinates of the conventional F distribution
(1) as F approaches zero and as F approaches infinity.

The distribution of F when randomization is allowed is
(2.13) HIE, my, mi) + fF, ma, ma)],
since f(F, may, m1) = f(F, —my, —my).
3. Discussion. To show how (2.12) and (2.13) may differ from the usually

assumed distribution we have considered the following seven pairs of values of
my/o and my/o:
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DESIGNATING mi ms
NUMBER o 4

1 0 0

2 0 1

3 1 0

4 1 1

5 0 2

6 2 0

7 2 2

Selected ordinates for systematic and randomized procedures for these 7 pairs
of values are presented and compared in Table 1. It is seen that the tails of some
of the curves are much heavier than for case 1 (m; = m, = 0), indicating that
much larger values of F are required for significance. On the other hand, some
of the tails are lighter than for case 1 so that smaller F-values are indicative of
significance at the usual levels. Randomization is effective in some cases in giving
a distribution that is closer to the conventional F distribution than is the F
distribution for a systematic procedure.

It is easy to find the limiting values of the ratios of the ordinates of (2.12)
and (2.13) to the ordinates of the conventional F distribution as F approaches
0 and « (same). These limiting values are also indicated in Table 1.

When (2.13) is a greatly curtailed distribution making errors of the first kind
less probable than expected then the probability of errors of the second kind may
be greatly enhanced.
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A GENERALIZATION OF A THEOREM DUE TO MacNEISH!

By K. A. BusH

Champlain College, State University of New York, and University of North Carolina

1. Summary and introduction. In 1922 MacNeish [1] considered the problem
of orthogonal Latin squares and showed that if the number s is written in stand-
ard form:

n

n n
s =po'pr’ Pk

1 This note is a revision of one section of the author’s doctoral dissertation submitted to
the University of North Carolina at Chapel Hill.



