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The function K(z, y) is an increasing function of z and an increasing function
of y, provided z 4+ y < 1. Conditions (1) and (2) imply that 1 — L(f) S «,
L(6,) < B. Hence if « + 8 < 1, we have

Inequality (4) now follows from relations (12) to (15).
Concerning the conditions for equality, it suffices to observe that in (10) the
sign of equality holds if and only if there exist constants C, and C; such that

e f (XJ ) 0) —_ (. A .
Po{,l.]l:f(X,-, 7= C; | S accepts H;} = 1, i=0,1,
where the usual notation for conditional probabilities is used. This can be veri-
fied from Wald’s proof. The conditions for equality in (12), (13), (15) are obvious.
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SOME INEQUALITIES ON MILL’S RATIO AND RELATED
FUNCTIONS

By M. R. SAMPFORD
Unaversity of Oxford

1. Introduction. Mill’s ratio is defined as
(1) R, = / e du.

Gordon [1] and Birnbaum [2] have given, respectively, upper and lower limits
for R, as

2) V4 + 22 — 2} < R < 1/, x> 0.

Murty [3] has shown how limits to B, of any required degree of accuracy can
be derived for z > 0 by the use of successive convergents of Laplace’s expres-
sion for the normal integral as a continued fraction. No limits have, as yet, been
published for z < 0.

If the functions »(z) and A(z) are defined by »(z) = 1/R,, Az) = V' (z) =
v(v — z), the inequalities

3) 0<A<1,
4) N=pp—2)@v—2)—1} >0
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are of importance in the theory of the analysis of response-times and of trun-
cated normal data generally. The result (4) was conjectured as true for positive
z by Birnbaum [4] and was proved for sufficiently large positive z by Murty [3].
In this paper it is proved for all finite z, and is used to provide an upper limit
for R, valid over the range > — 1. The result (3) is also proved for all finite
z. The upper limit is equivalent to the lower limit in (2), which is thus valid
for x < 0 as well as for positive z.

2. Proof of the inequality on A. The function

_ju2 / j‘" —ju?
e e du
z

is a p.d.f. over the range z < u < o, and its variance is easily shown to be
1 — »(v — z). Since this must be positive for finite z, the upper limit in (3)
follows. Also » > 0 by definition. Hence (» — z) > 0 for z =< 0 and, by (2),
for x > 0, and the lower limit follows.

3. Proof of the inequality on A’. The result (4) is equivalent to
5) oe=w—2)(2v—12x)>1
An expansion by parts for £ > 0 gives

® —}u? 1 6_&:2
f € du=q1——+Rp—y,
x x

where R = 0(1/2); whence

1 20(1 /22
(6) ¢=-—+x10( /x)2—>1 as T — o,
]
x

Also,asx — — o, vy — 0 and

(M) p— 2 — .
Now suppose there exists a finite z; such that
®) elz) = 1.

Then, since ¢ is continuous and differentiable, (6), (7), and (8) imply the ex-
istence of a finite point z, for which

ga(il)z) =1,
9) .

¢'(z2) = 0.
Bute’ =A—1D2v—2)+ (@ —2)@A—1) =2l —1)+2(r —2)(A — 1),
whence, for finite x, ¢’ < v(¢ — 1), so that conditions (9) cannot be satisfied
simultaneously, and the result (4) follows.
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The quadratic ¢ = 1 has solutions

(10) y =S EVIE

— .

As v is known to be greater than z, only the positive sign in (10) need be con-
sidered. The result so obtained is everywhere greater than z, and positive for
all z > —1, giving the result

R. < 4/{3z + /8 + z}, z > —1.

4. A corollary on the weight function in probit analysis. The function

Y(z) = e"z/f e duf e du

is well known as the weight function in probit analysis. From tables it is obvious
that ¢ is a decreasing function of 2’. Hammersley [5] has given a rather com-
plicated proof of this result, and has remarked on the apparent lack of a simple
proof. In fact

V(@) = ¥(@){r() — v(—2) — 22}
= 20y(x){(\@) — 1}, where — |z| =2’ S [z],

by the Mean Value Theorem, and, since y is positive by definition, the result
follows immediately from (3) above.
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ON A DOUBLE INEQUALITY OF THE NORMAL DISTRIBUTION!

By RoBerT F. TATE
Unaversity of California

In this note we shall extend certain results of R. D. Gordon and Z. W. Birn-
baum concerning bounds for the normal distribution function.
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