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A NOTE ON INCOMPLETE BLOCK DESIGNS WITH ROW BALANCE*

By H. O. HarTLEY, S. S. SHRIKHANDE, AND W. B. TaYLOR
Unaversity College, London, University of Kansas, and University College, London

1. Introduction and summary. With the balanced incomplete block designs
[1] r replicates of each of v treatments are arranged in b ‘blocks’, and the number
of ‘plots’, k, in each block is smaller than ». In order to eliminate systematic
block differences from the comparison of treatment means and to obtain treat-
ment comparisons of equal precision the well known conditions of balance
specify

(a) that no treatment should occur more than once in any block,

(b) that the number of blocks in which any two particular treatments are both
applied should be a constant number of blocks (A blocks) for all possi-
ble treatment pairs.

When these designs are used in this form, the position of treatments within
each block is not specified and can normally be regarded as unimportant. Ac-
cordingly the treatments in each block are randomised. Situations, however,
arise in which the ‘plots’ occupy certain characteristic positions in each block.
Thus, if in a field experiment the blocks are vertical columns the plots would
fall into k horizontal rows which may also have systematic effects on the yields.
In this case it will often be advantageous to balance the design with regard to
rows (as well as with regard to columns) in a manner similar to the Latin square.
Such an arrangement was first developed by Youden [2] who used the particular
incomplete block designs with b = v and in these rearranged the treatments in
each block in such a way that every treatment occurred precisely once in each
row. More recently one of us (S. S. 8.) has carried out similar rearrangements for
the other incomplete block designs with b > v, v < 10, r = 10 (i.e., for those
tabulated in standard tables and books), and has used a definition of balance re-
sulting in at most two different precisions for treatment comparisons. In this
note we show that

(1) balancing with regard to rows resulting in an equal precision of all treat-
ment comparisons is possible if' b = mv (m integral),

(i) in all incomplete block designs with r = mk == 1 a row balance is possible
resulting in treatment comparisons of two different precisions.

One of us (W. B. T.) has prepared complete tables of double balanced designs
suitable for practical use which it is hoped to publish together with the analysis
of variance procedure with recovery of interblock information.

2. Notations and preliminaries. We start from a balanced incomplete block
design with parameters v, b, r, k and \. It follows from (a) and (b) that each treat-

* Received 2/19/52.
1 A theorem bearing on the necessity of this condition is given in Section 4.
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ment occurs in just 7 blocks and that the integers v, b, r, k£ and A must satisfy the
following conditions.

2.1) vr = bk, Ao —1) =rk — 1), b=
The last inequality, which is not so obvious, is due to Fisher [4]. Let the design

be. written in row column form where the columns correspond to blocks and the
rows to the positions of treatments in the blocks. Let n;; be the number of times

treatment ¢ occurs in row j in the b columns (z = 1,2, ---»;j = 1,2, --- k).
It is shown in [3] that if
(2-2) an:i:"; 'I:=1,2,"',1),
7
(2.3) Zn,;n,,j=u, 1#Fu=12---,0
I

then all treatment comparisons are made with equal accuracy. If, however, the
design satisfies (2.2) and the condition

(2.4) 2 MiMuj = pe, e=1,2,
7

where treatments 7 and u are e-associates as defined by Bose and Nair [5], then
it has been shown there that there are two accuracies, that is, some pairs of
treatments are compared with one accuracy while other pairs are compared with
a different accuracy. The row balancing of all the designs obtained in the above
paper [3] satisfies the conditions of partially balanced incomplete block designs
as defined by Bose and Nair as well as that of a particular class of group divisible
designs given by Nair and Rao [6]. In this particular class of incomplete designs
the v treatments can be divided into ¢ groups of size d each so that (2.2) holds
and further

(2.5) 2 MijMuj = 1 OF py

J

according as treatments 7 and u belong to the same group or to different groups.
It is easy to verify that such a group divisible design is always a partially balanced
incomplete block design.

In the rest of the paper it is proved that if m is a positive integer then a bal-
anced incomplete block design with b = mv can be converted into a design
satisfying (2.2) and (2.3) while a design with r = mk =4 1 can be converted into
a design with (2.2) and (2.5). These results follow from a general lemma due to
Smith and Hartley [7] and which may be stated as follows:

LeMMA. If we are given any set of bk elements made up of b “treatments’ each
replicated k times, the set being arranged in a two-way classification of k rows and
b columns, then it vs always possible to rearrange the elements in each column so that
each row will contain every treatment once and only once.

3. The case b = mv. Consider a balanced incomplete block design with param-
eters v, b, , k and A, where b = mv and hence r = mk. Let it be written in row
column form with & rows and b columns. Since r = mk we can split the mk
replications of each treatment into k replications of m pseudo-treatments. We
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then have a two-way classification of k rows and b columns in which each of the
b (= mwv) pseudo-treatments are replicated k times. Applying the lemma above
each of the b pseudo-treatments can be made to occur once and only once in
every row. Hence each of the original v treatments can be made to occur m times
in every row. We then get >oink = Z jniu; = km?® for all ¢ and u. Thus
(2.2) and (2.3) are satisfied and, therefore, the converted design can be used for
two-way elimination with the same accuracy for all treatment comparisons.

4. The case mv < b < (m 4+ 1)v. In this case it is obviously impossible to
specify that each treatment should occur the same number of times in every
row since this would imply that r is a multiple of k¥ and hence b is the same
multiple of ». All one can hope for is that one may rearrange the treatments so
that

ConbprtioN A. Each treatment occurs either m or m —+ 1 times in every row, that
s, n;; = m or m + 1 for all 7 and j. Condition A implies that after rearrange-
ment each treatment will' occur m + 1 times in some r — km rows and m times
in the remaining ones. Hence condition (2.2) is satisfied with v = 2rm 4 r —
km® — km.

One may inquire whether it is possible for a balanced incomplete block design
with mv < b < (m + 1)v to satisfy not only A but also condition (2.3), that is,
> ;nimu; = pfor all 7 and u. If the design could be made to satisfy both these
conditions then it could be used for two-way elimination of heterogeneity with
the same accuracy for all treatment comparisons.

We now show that both these conditions cannot be simultaneously satisfied.

Suppose there actually exists a balanced incomplete block design with my <
b < (m 4+ 1)v satisfying both the conditions. Because of A there are in each row
precisely k¥’ = b — mv treatments occurring m + 1 times and v — &’ treatments
occurring m times in that row. Take one replicate from each of the former only,
leaving out the remaining mv replicates of the v treatments. These form % *re-
duced” rows each of size k¥’ in which each of the v treatments occur ' (= r — mk)
times. From mv < b < (m + 1)v it follows that » = km + 1 or ' = 1. Further
vr' = kk' and v > k imply that &’ > 7’ so that ¥’ = 2. The condition (2.3) then
implies that for these reduced rows

kl
Zlnijnu,-=u'=u—km2—2m(r—km), i#u=12 -0
=

where u’ necessarily integral is not less than 1. Since for these reduced rows
n:; = 0 or 1, it follows that every pair of treatments ¢ and j will occur exactly
in u’ of these reduced rows. Hence the array of & reduced rows would specify a
balanced incomplete block design with parameters v'(= v), b'(= k), ', k¥’ and
u'. But this is impossible from (2.1) since b’ < v'.

We will now show that it is possible to convert balanced incomplete block
designs with 7 = mk = 1 so that after suitable interchanges of treatments in
various columns the » treatments are divided into ¢ groups of d treatments each
satisfying condition (2.2) and (2.5).
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6. The case r = mk + 1. Since r = mk -+ 1 and bk = vr it follows that b =
mv + ¢t where ¢ = v/k is an integer. We now split the r replications of each treat-
ment into m pseudo-treatments with k replications leaving one “odd” replica-
tion. The v “odd” replications can be considered as ¢ further pseudo-treatments
with k replications each. We now apply the lemma to this arrangement of b
pseudo-treatments so that each pseudo-treatment occurs just once in every row.
This implies that the original » treatments are divided into ¢ = k groups of d = ¢
each so that in each row all the treatments of only one group occur m + 1 times
each, while the remaining ones occur m times. Further, treatments of any group
occur m + 1 times each in only one row. It is easily verified that (2.3) and (2.5)
are satisfied with v = u; = m’%k + 2m + 1 and u, = m’k + 2m.

6. The case r=mk — 1, m 2 2. In this case b = mv — ¢ where t = v/k is
an integer. We now split the 7 replication of each treatment into m — 1 (2 1)
pseudo-treatments with k replications each leaving k — 1 “odd” replications.
Now add ¢ dummy blocks of size k containing each of the v treatments precisely
once. The v treatments may be arranged in any way in these dummy blocks.
The £ — 1 “odd” replications of any treatment together with the replication of
the same treatment in the dummy blocks can be considered as one more pseudo-
treatment with k replications. Thus in all we have mv pseudo-treatments occurring
k times in the mv blocks. We now apply the lemma to these mv blocks. After the
lemma’s rearrangement we consider only the b original blocks, and find that each
of the v original treatments occurs either m — 1 or m times in every row. We now
divide the v treatments into k groups of size ¢ by placing those treatments, which
occur m — 1 times in a particular row, in one group It is easily seen that (2.2)
and (2.3) are then satisfied with v = u; = km® — 2m + 1 and y, = ? —2m.

Finally it should be noted that the interchanges discussed in Sectlons 3-6 do
not require that every pair of treatments should occur in the same number of
columns. It is sufficient that every treatment occurs the same number of times
in the b columns.
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