DISTANCE FUNCTIONS AND REGULAR BEST ASYMPTOTICALLY
NORMAL ESTIMATES

By WirLiam F. TayLor!
School of Aviation Medicine, Randolph Field, Texas

Summary. Among the methods of obtaining satisfactory parameter estimates
are maximum likelihood, minimum chi-square, minimum “reduced” chi-square,
etc. This paper presents a generalization of the minimum chi-square method
which yields regular best asymptotically normal (RBAN) estimates and which
is often very simple to apply. It is shown that the least squares expressions asso-
ciated with the logit and probit transformations are a type which lead to RBAN
estimates.

1. Introduction. In 1945, J. Neyman [1] presented at the Berkeley Symposium
on Mathematical Statistics and Probability his work on ‘“best asymptotically
normal” estimates (now called “regular best asymptotically normal”’ or RBAN.)
He gave for multinomial situations several methods of estimation which yield
estimates having desirable asymptotic properties. The estimation techniques
developed by Neyman were all based on the minimization of a special kind of
distance function, namely, the x2 goodness-of-fit expression or a similar one called
the “reduced” x2.

Certain work by J. Berkson [2] brought the author’s attention to functions
which were a generalization of the x* distance function and which yielded esti-
mates upon minimization. In this paper there is presented a class of distance
functions which lead to RBAN estimates and which includes minimum »x’,
logit, and probit estimates. The theorem of Section 3 is proved via a lemma from
results given in [1]. It has been pointed out to the author that this theorem may
also be obtained readily from the work of Barankin and Gurland [4].

The author wishes to thank Professor Neyman and Dr. Berkson for their
assistance in this work.

2. Distance functions leading to RBAN estimates. Suppose the situation
is the one described in [1], page 239. There are s sequences of independent trials,
each sequence consisting of n; trials. A trial of the ith sequence can produce
v; exclusive results with probabilities
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Let N = > %,n;and Q; = n;/N. By 6 is meant the set of m unknown param-
eters (61, 6;, -+ -, 0,). The p;; are assumed equal to f:i(6), where the f;; are
continuous functions having continuous partial derivatives up to the second
order. It is assumed that f:;(6) > 0 and

(1) zl;fij(o) " i=1, s

b1, ---, 0 are assumed functionally independent in that for some m functions»
fij, the determinant
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DeFinITION 1. §(p, q) will be called a distance function of p = (pu, -+ - , Dsv,)
and ¢ = (qu, *- -, Qu,) if it 18 such that

(i) o(p, p) = 0,

(i) 8(p, @) > O for p # g,

(iii) 8(p, q) 7s continuous with continuous partial derivatives up to the second
order.

Letting pi; = fi;(6), the problem is to estimate the @’s. Let #.(g), ¢ = 1, - - -
m, be functions of ¢ which are estimates of 6,, ---, 6,., respectively. Let |

38(p, 9)/36x = ¥x(8, q).

The following lemma is due to Werner Leimbacher, formerly of the Statistical
Laboratory at the University of California.

LemMma 1. Those values, 3.(q), functions of ¢;;, ¢ = 1, -+ ,8,j =1, --- , Vi,
which minimize §(p, q) are RBAN estimates of 6,,t = 1, -+, m, if 8(p, q) 1s
such that

3°5(p, q) | 2 Sz
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where C 1s a constant. _

Proor. It is shown in [1], (Theorem 2, page 248), that for a statistic, 9,(q),
function of g, -+, g, , to be a RBAN estimate of 6, , it is sufficient that it
satisfy the conditions

(a) that ¢:(¢) have continuous partial derivatives with respect tc all the

independent variables, g¢;; ,
(b) that the result of substituting g:; = fij(61, -+, 6m), 5 = 1, s;
J=1,---, v;, in 41(q) leads to the identity

(5) H(f) = 6,
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and Ay is the cofactor of Gy .

That A # 0 follows from the initial assumptions on the f;;’s.
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The proof of the lemma consists mainly in showing that condition (c¢) is
satisfied when § satisfies equations (3) and (4). Suppose the equations ¥ = 0,
k = 1,---, m, have been solved for the #’s. (These solutions are the J.(g),
t =1, .-, m, which minimize §(pq).) In order to find 39.:/9g;; one substitutes
the &'s into the ¥,’s and differentiates with respect to ¢;; . This results in equa-

tions of the form

9)

Solving for (84:/d¢;;), one gets
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Conditions (a) and (b) are satisfied since 8(p, q) is assumed to be a distance
function with continuous partial derivatives up to the second order.
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3. A particular class of distance functions.

DErINITION 2. The symbol & denotes a class of distance functions satisfying the
conditions of the previous lemma; i.e. 8(p, q) 1s said to belong to § if it is a distance
function and if it satisfies the conditions (i) and (i7) as given by equations (3) and
(4) above.

TrEOREM. If h(z) is a strictly monotonic function of x for 0 < x < 1 possessing
continuous dertvatives up to the third order and if the function g(u, v) is positive for
0<u<1,0<v <1, has continuous partial derivatives up to the second order,
and satisfies the condition

_ 1 [dn) B
(12) 9(fii» fii) ‘j,-“,.[ dz Az-fs‘i]

for all 1, j, then the function
(13) a(p, @) = ;Z{ n, };‘; 9(fiis gid[h(gss) — h(f:)T

belongs to class &.
In other words, this theorem asserts that the functions ¢#:(¢), ¢ =1, -+, m,
which minimize &(p, ¢) are RBAN estimates.
Proor. §,(pq) is a distance function. This is apparent by inspection since h(z)
is strictly monotonic and continuous and possesses continuous derivatives. Also
% o S5 [0 09 (=2 0a) = WD B i
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Thus 6:(pg) is a member of class 5.
CoROLLARY 1. If the number of exclusive results which can be produced by the
ith trial 18 2,7 = 1, - - - , s, then one can put

fa=fi, fae=1-—fi, @a=¢, ga=1-—gq.

If in addition h(z) = —h(1 — ), 0 < z < 1, then 8&(p, q) reduces to the form
81 (p, q) given by the equation

4N g = z_: nilg(fy, @) — (1 — fi, 1 — g)llhlg) — RGP
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The implications of the theorem are that another class of estimates has been
shown to consist of RBAN estimates. If computation is clumsy using other
methods, perhaps the one which involves minimizing functions like &,(p, ¢) is
easy. Berkson’s short cut logit technique is onecase of this. It, together with an
example using probits, is given in the following paragraphs.

4. Logit estimates. Assume that a sequence of s independent experiments is
performed. The jth experiment consists in giving dose z; of some drug to n;
individuals. Each individual responds or fails to respond to the drug and the
proportion responding, ¢;, is observed. Let the doses be z,, 23, -+ -, z,, the
number of individuals tested ny , ny, - -+ , n, with D_jq n; = N, the proportions
responding (independent random variables) ¢1, ¢z, - - - , ¢; , and the probabilities
of responding p1, P2, :*, Vs

It is assumed that forj =1, -+, s

(18) 1> p;=fia,8)>0.

The f;(«, 8) are assumed to be continuous and to have continuous partial deriva-
tives up to the second order. Also the parameters a and 8 are assumed inde-
pendent in the sense that for at least two values of j, say, 7 and k,

ft'a ftﬁ

Jra frs
where fi« = 9fi/dc, fis = 0fi/3B.

The short cut logit technique of estimation as described by Berkson, [2], be
gins with the assumption that the f;(e, 8) are given by the logistic function,

1
(20) file B) = [ @ j=1,-,8

(19) # 0,

Noting that log [f;/(1 — f;)] equals the linear expression, « 4+ pBz;, Berkson
suggests for estimates of a and 8 the functions a(g) and b(q), respectively, which
minimize
(1 225 = 1oe 27)

(21) Zn]q](l ¢) (log 7= — log 77—
These estimates are very simple to find and techniques have been developed to
facilitate computation, (see [2]). The question has been raised, however, as to
whether a(q) and b(g) are RBAN estimates of a and 8. Corollary 2 answers this.

CoROLLARY 2. Let p; be assumed equal to f; (o, B), 2 = 1, -+, s, where the f;
are any functions of a and 8 which are continuous with continuous partial deriva-
tives up to the second order and which satisfy the conditions (18) and (19). Then
the function

PN — o 9 fi ¥
Xa—;n:%(l q.)(logl__q1 IOgl—-f.-)

is a member of class F.
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It follows immediately from this corollary that if fi(a, 8) = 1/[1 + ¢ 9]
the values, a(g) and b(g), which minimize x5 are RBAN estimates of a and g.
Proor. Corollary 1 will be applied. Let k(z) = log[zr/(1 — z)]. This has all
the properties of h(z) in the theorem and in addition h(z) = —h(1 — z). Also

dh| 1
dx z=f f.(l _ f.‘).

Obviously
(1 — ¢’ n (1 — g%}
¢ 1 —q

¢:(1 — ¢)) =

Also, g(f:, ¢:) = ¢:(1 — ¢:)*/q: satisfies the conditions imposed by the theorem;
that is, g(u, v) is positive for 0 < u, v < 1, it has continuous partial derivatives
up to the second order and it satisfies the condition

dh| 7 _fi = £
(22) g(fi, f) = f;( L—f.-) = ——f:— .

Substituting in x% one gets
= 21 ni(g(fi, ¢) — g1 — fi, 1 — ) (h(gs) — R(f))%,

which is the form of 81 (p, ). Hence x% is a member of class §. Note that in the
above it is not necessary to write g(f; , ¢:) as a function of two variables when one
argument does not appear. It is done merely to be consistent with the notation
of the theorem.

b. Probit estimates. Next a probit method will be taken up as another ex-
ample of this distance function notion. Suppose there exists a situation which is
the same as that in the preceding example, only instead of the logistic function
for p; it is assumed that p; is given by the cumulative normal distribution func-
tion

z .—n

= 1. —i((r—u)la)’
pi = filu, 0) = \/—— ./;” \/Q; .

()

say. A probit method of estimating u and ¢ is outlined below. Define x% as
in (24), where @' is the inverse function of ®, that is, " is a function such
that ®'(@(z)) = z. Let :

e dr
(23)

(24) & = z nG(f:, 3) @ () — ™ (p))"
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> 0,

@) 2 2ZnG(fn o) (706 = 2 )("” - )

=1

G(fs, ¢:) will be defined below by (29). Also

(25) ‘9"” =2 Z n.G(f:, q:) ( 37 Y(g;

Let these last two equations be simplified and written as

@ o3 000, 057w) + (3060, ) - 5066, 02z = 0,

o <Z Q:G(f:, ¢)®™ (qi)x,)

=

(28)

G(fi, Qi) =

+ u(EQ: 6, g)zs) — Z Q:G(f:, gzt = 0,
(29)
1 _1___ e—i(@“(n)}z]z.

and let G(f:, ¢.) be defined by the equation
—2
z=®=1(g i)jl
T —a) [‘V 27

1 (d@“‘(p.-) )’2 _ 1 1
g(1 — i) dp; Pi=g¢ - (1 — @) I:th(k}
dx
Since the coefficients of x and o in (27) and (28) are easily found, the solutions
fi(q) and 8(q) of (27) and (28) can be obtained. & and & minimize x5 .
CoROLLARY 3. Let x5 be given by

: i 1 -1 2 -1 = 2
(24) X = o [\/—27 ~HeTHed) ] @' (g) — ®7f))?,

i=1 q;‘(l - q,-)
and let it be assumed that
e T — u
(23) fz(l", 0') \/27‘_0_ f dr =& <——0'—> .

Then x% is a member of class § and it fellows that {i(q) and &(q) which minimize
x5 are RBAN estimates of u and o.

ProoF. Again apply Corollary 1. & '(z) is seen to possess the properties
h(z) of the theorem and is such that ®'(z) = —® (1 — z). As is seen imme-
diately G(f:, ¢:) can be written as

1 (7,1_, e—%w—l(q.-))z)z + 1 [_1 e—m—lu-qmz:r
(30) ¢ \V2r 1 — ¢ V2r
=9(fi,q) +9(0 — fi, 1 — ¢,

where g(u, v) satisfies the conditions of the theorem. It follows that x% can be
put in the same form as 87 (p, ¢) and hence x% is a member of class .
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A practice in bio-assay has been to get maximum likelihood estimates of u
and ¢ and by a somewhat lengthy iterative process. Corollary 3 shows, however,
that if the limiting situation in which N — « with @; = n;/N held constant for
all 7 is considered and if the asymptotic properties of the estimates are the
criteria for the goodness of an estimate, then there is nothing to favor the maxi-
mum likelihood estimates over the simpler ones derived above.
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