ON WALD’S COMPLETE CLASS THEOREMS!

By J. KiErFER
Cornell University

1. Summary. The purpose of this paper is to prove certain results concerning
complete classes of strategies, some of which were announced in an abstract in
Bull. Am. Math. Soc., Vol. 57 (1951), p. 372.

2. Introduction. Except where explicitly stated to the contrary, we shall use
the nomenclature and notation of Chapter 2 of [1] concerning zero-sum two-
person games. Our considerations here do not require, however, that the payoff
function K (a, b) be bounded (or finite), but merely that it be bounded (by zero,
without loss of generality) from below (because if unbounded in both directions,
expectation relative to a mixed strategy might be undefined). This generaliza-
tion is of use in some games and statistical work, as will be seen below. We
remark without proof that such results as weakened forms of Theorems 1 and 4
of [2] may be proved under this set up. For example, we shall later use the
following:

TaeorEM 1. Suppose that E and H are convex spaces of allowable strategies for
players 1 and 2, respectively, that 0 < K(a, b) < «, that H ts weakly compact
relative to = tn the sense of Wald (i.e., for any sequence {n;} in H there is a subse-
quence {ni;} and an no tn H such that lim inf; ., K(§ 7:;) = K(& n) for all ¢
in E), and that there exists a sequence {£;} in E such that for any £ in E and n in
H there is a subsequence {£;;} (all of whose elements may be the same) which may
depend on & and n and is such that lim;,, K(¢:;, 1) = K(&, 1). Then the game s
determined.

The weak compactness assumption is enough to assure the existence of a
minimax strategy for player 2. The above conditions may be weakened as in
Theorem 4 of [2] or even further, and a generalization of Theorem 5 of [2] (which
should be corrected there by assuming g, to be independent of €¢) may similarly
be proved.

3. Admissible strategies and complete classes. Wald considered two types of
complete class theorems: those which give conditions under which the class of
admissible strategies (e.g., of player 2) is complete, and those which give condi-
tions under which the class of minimal strategies in the strict or wide sense is
complete. The latter will occupy most of this paper. We remark, regarding the
former, that the proof used by Wald in Theorem 2.22 of [1] actually suffices to
prove the following:

THEOREM 2. Let E and H be arbitrary spaces of mized strategies with the property
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that there exists a denumerable subset Z* of E such that, if ' and v’ are any mem-
bers of H for which K(¢, ') = K(§, n") for all & with strict inequality for some £,
then there is a & in E* with K(¢, n') < K(¥, 7). Suppose also that H is weakly
compact relative to E in the sense of Wald. Then the class of all admissible strategies
of player 2 is minimal complete.

Note that K (£, n) is not assumed bounded. An application of this theorem
which indicates the usefulness of the hypothesis as stated herein over the stronger
condition stated in Theorem 2.22 of [1], will be given in the next paragraph. We
remark here that the condition of Theorem 2 is not necessary; for example,
let A as well as B consist of all integers, & and H consist of all probability meas-
ures on A and B, and K(a, b) = 0if a = b > 0 and K(a, b) = 27! otherwise;
the class of all admissible strategies (those giving probability 1"to a single ele-
ment b > 0) is then minimal complete, but H is not even weakly compact for
every sequence of strategies for which each strategy is better than its predecessor
(as is evidenced by the sequence of pure strategiesb = 0, —1, —2, - - ). On the
other hand, the theorem does not remain valid if only weak compactness (but
not the condition on 5*) is assumed. For example, let A as well as B consist of
all ordinals less than the first uncountable ordinal, let = and H consist ofall
discrete probability measures on 4 and B, and let K(a, b) = —1 or 1 according
to whether @ < b or @ = b, respectively. Then the condition of weak compact-
ness is satisfied, but no strategy is admissible. (This example also illustrates
why weak compactness alone is not enough to insure the determinateness of the
game.) The above theorem may be generalized in an obvious manner by replacing
the condition of weak compactness by a similar one on all well-ordered subsets
of H whose power does not exceed that of some infinite =* with the stated prop-
erty. (It is enough to consider only subsets of H whose members become ‘‘better”
with increasing index.) It follows that the bicompactness condition used in
Theorem 3 of [2], which implies such a condition for every subset of H, also im-
plies the conclusion of Theorem 2 above.

As an important statistical application of Theorem 2, which also illustrates
the advantage of using the condition on E* stated therein rather than that of
the separability of Z* in the sense of intrinsic metric (2.4) of 1], we shall now
prove the following:

TueoreM 3. Under Assumptions 3.1 to 3.6 of [1], the class of all admaissible deci-
sion functions is minimal complete.

This theorem extends the result of Theorem 2.22 of [1] to the setup of Chap-
ter 3 of [1]. To prove it we let =* = U%, E,, where Z; is a denumerable set of
a priori distributions which is dense in Z in the sense, of the metric pi(£:, &) =
sup | 7(& , 8) — r(%2, 8) |, the supremum being taken over all decision functions
§ requiring at most ¢ stages of experimentation. The existence of such Z; follows
from Theorems 3.3 and 2.16 of [1]. We shall show that =* satisfies the assumption
of Theorem 2. Let §; and 8 be two decision functions and e a positive number
such that r(£) = 0 and sup; r(¢) > 2¢, where (using the notation of [1]) r(§) =
r(¢, &) — r(£ &) (with the definition @ — o« = 0). We need only show that
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r(¢’) > 0 for some ¢ in E*. Let ry,.(£) = sup r(&, 8™), the supremum being over
all 8™ requiring not more than m stages of observation and such that r(¢, §™) <
r(¢, 81) + ¢ if no such ™ exists, we define r;, (£) = 0. Similarly, let r,, .(§) =
inf r(¢, 8™), the infimum being over all 8™ requiring not more than m stages of
observation and such that r(§ 6™) = r(¢, 8;); if no such 6™ exist, we define
T2,m(§) = -+ . Clearly, for each £, r,»(£) is nondecreasing with m (we assume
without loss of generality that the weight function W is nonnegative) and
r2,m(£) is nonincreasing with m. Moreover, noting Lemma 3.3 of [1], and de-
fining rm(§) = r1,m(E) — 72.m(£), we see that 7(¢§) < limp., rm(£)for every & for
which 7(%, 6,) is finite. Moreover, r,(¢§) < r(¢¥) + € is nondecreasing in m,
so that

e+sup r(§) = sup lim 7,,(§) = sup sup (%)

ezt €= m—o0 Pichd
4

= sup sup r.(§) = sup Esup rm(E) = iup sup rm(£)
Eez* m &= €= m
= sup r(§) > 2,
tez

completing the proof. (It is essential here that r,(£) is increasing in m, so that
the operations “lim” and “sup’ may be interchanged.)

4. Minimal strategies and complete classes. We now turn to our main theorem,
which generalizes Theorem 2.25 of [1]. The proof of the theorem is followed by
two applications. The first of these is an essential strengthening of Theorems
3.17 and 3.20 of [1] regarding statistical decision functions. The second weakens
the conditions of Theorem 2.25 of [1], even when K(a, b) is bounded.

The idea of forming a new game with payoff function K*(a, b) is Wald’s, and
the proof of the first part of the conclusion of the theorem below is that of The-
orem 2.25 of [1] if K(a, b) is bounded. (The last part of the conclusion was proved
under the stronger conditions that K(a, b) is bounded and A and B are compact,
so that minimality in the wide and strict senses are equivalent, in Theorem 3.10
of [4].) In the bounded case, any condition entailing the determinateness of
the game and existence of a minimax strategy for player 2 and whose validity
relative to K implies its validity relative to K* (e.g., the condition of Theorem
2.25 of [1] or of Theorem 3 of [2]), also obviously entails the conclusion of the
theorem below. When K(a, b) is unbounded, one must be careful touse K*(¢, )
only where K (£, n) and K (&, 7o) are not,both infinite. Otherwise, K* may not be
properly defined. At the same time, it is useful to state the theorem in terms of
the Zy of the theorem rather than only in terms of A*, since in many applica-
tions the Zy may be chosen so that K* is bounded from below on each Zy (but
not necessarily on 4*), so that in verifying condition (b) in applications one
may use such results as that italicized in the first paragraph of this paper.

We recall (putting © — o« = 0 in our case) that a strategy 5’ is minimal in
the wide sense if

) inf [K(, v) — inf K )] = 0.
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THEOREM 4. Suppose 0 < K(a, b) £ «, Z D A, H D B, and that for any n
for which inf, K(a, 7o) < « and which is not a member of the class C'w of all mini-
mal strategies in the wide sense, there exists a sequence {Z;}( = 1,2, --- , ad inf)
of subsets of = such that

(a) lim infy.e Zv D A* = {a|K(a, n0) < «}; for every N, K(§ n) <
for all £ in Ex ; if sups K(a, n0) < ©, Ey D A4;

(b) the game relative to Ey , H, and K*(¢, 1) = K (¢, n) — K (£, ) is determined
and player 2 has a minimaz strategy for this game.

If supas K(a, b) = + o, suppose also that H is weakly compact relative to A *
for each no ¢ Cw for which inf, K(a, n0) < supa K(a, no) = + . (If H is weakly
compact relative to A, this is automatically satisfied.)

Then Cw s complete. Moreover, for any no not in C'w there is an m1 in C'w and
an € > 0 such that K(¢, m) < K(§ n) — eforall £in E.

Proor. We suppose Cw # H, or the theorem is trivial; in particular, inf,,
K(a, b) < «, since otherwise C» = H. We now show that C'w is not empty. If
there is an no ¢ C'w with sups K(a, n9) < R < o, it follows from (b) that there
is a minimax strategy »’ relative to E~, H, and K*. Since this game is deter-
mined and & D Ex D A in this case, it is easy to verify that the game relative
to =, H, and K* is determined, that »’ is minimax for it, and hence that 5’ is
minimal in the wide sense relative to =, H, and K* (since 0 = K*(a, 9") = —R,
the proof of Theorem 2.17 of [1] applies), and hence relative to =, H, and K.
On the other hand, if no such 7 exists, the first sentence of the proof shows that
there must exist an 7, with non-empty A* and (by the assumption following
(b)) such that there exists a minimal strategy relative to any member of A*.
At any rate, C'w is not empty.

Let 7o be any member of H which is not in Cw . If K(a, n0) = + « for all g,
any 7’ in C'w (which is non-empty by the previous paragraph) is uniformly better
than 7o and is such that K (¢, ') < K(¢, no) — 1 for all £&. Hence, we may assume
in what follows that inf, K(a, 7) < «, and that the Zy corresponding to this
no are non-empty for all N not less than some N, . We now let 2 = Uso Ex,
and define

(2 €= en}:f [K(& n) — ir.lf K, n)l.

(It is clear that inf, K(£, ) < o for all ¢£. Otherwise, every n in H would be
minimal and we would have Cw = H.) Clearly, ¢ > 0, or by (1) (with »’ = no)no
would be minimal in the wide sense. Moreover, ¢ < o, since Zx, is non-empty.

For any N = N, let ny be a minimax strategy for the game described in (b),
so that
®3) sup inf K*(¢,n) = inf sup K*(,n) = sup K*(§, nw).

EEN 1 n EeEN EeEN

The common value of (3) is less than or equal to —¢; for if, to the contrary, it
were —e + 2p for some p > 0, there would by (3) exist a £ in Ex for which

(4) —e+ p < inf K*(&,7) = inf K(¢,n) — K, m0),
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which would contradict (2). Hence, we must have
(5) K(E; nN) é K(E} '00) - € fOI' all Ein EN .

Let the subsequence {N;}(j = 1,2, ---, ad inf) of the positive integers and the

strategy n* ¢H be (as guaranteed by weak compactness relative to A* if sup,

K(a, m) = + «, and putting n* = g if sup, K(a, 70) < o and assuming

without loss of generality that Zx = Ex. for N > N’ in this case) such that

(6) lim inf K(a, nv;) = K(a, n*) for all @ in A*.
j—o0

It follox;vs from (5) that
@) K(a, n*) < K(a, m0) — € for all @ in A%*;

that is, K(a, 7*) = K(a, m) — e for all a for which K(a, 7)) < . Since the
latter set is nonempty, #* is uniformly better than 5, and in fact

® K n*) = K(§, n0) — ¢ for all £in =.

The minimality in the wide sense of n* (i.e., the verification of (1) for o' = 7*)
is a direct consequence of (8), the fact that =* is nonempty, and (2). This com-
pletes the proof of the theorem.

AppricaTioN 1. In the terminology of Chapter 3 of [1], let D be the class of
all decision functions and D, the class of all decision functions with bounded
risk functions. Let C, be the class of all Bayes solutions in the strict sense and
Cw the class of all Bayes solutions in the wide sense. Wald showed that, under
Assumptions 3.1 to 3.6 of [1], Cw is complete relative to D, (Theorem 3.17 of
[1]), and that, under Assumptions 3.1 to 3.7 of [1], C, is complete relative to
Dy (Theorem 3.20 of [1]). (These theorems were also proved by Wald under
stronger conditions in [3], (4], and [5], and were stated under stronger conditions
in [6]. In [3] and [4] (by Condition 7 of the latter) the risk function is always
bounded. Theorems 2.6, 2.7, 3.5, and 3.6 of [5] are stated correctly, relative to
D5 . The proofs of Theorems 2.5 and 3.4 of [5] are correct only if the statement
of these theorems is interpreted relative to D, ; otherwise, the statement follow-
ing equation (2.72) of [5] is false, since the W* defined there need not satisfy
Condition 2.2 of [5]). If, using Wald’s notation and in particular putting &
for 7o and »(F, &) for K(a, 1), one defines the Ey of our theorem to consist of
all £ for which ¢§(Ax) = 1, where Ay = {a| K(a, 7o) < N}, it is easy to verify
that Ay, the terminal decision space D¢, and the weight function W*(F, d) =
W(F, d) — r(F, &) (when restricted to Ay) satisfy Assumptions 3.1 to 3.6 (and
3.7) of [1] whenever @, D!, and W(F, d) satisfy the corresponding assump-
tions. Hence, Theorems 3.4, 3.7, and 3.2 of [1] imply (putting r*(F, §) =
r(F, 8) — r(F, &) for our K*) that condition (b) and the condition which follows
it in our theorem are satisfied, so that the conclusion of Theorem 4 holds. Hence,
we have proved the following:

TuaEOREM 5. In the statements of Theorem 3.17 and Theorem 3.20 of [1], D,
may be replaced by .
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The proof for Theorem 3.20 uses Theorem 3.15. The last part of the conclusion
of the Theorem 4, when applied to the present case, yields a result not proved
in [1] but proved under stronger conditions (e.g., all risk functions are bounded)
in Theorem 4.11 of [4].

AppricaTioN II. Suppose 0 < K(a, b) < «, that = and H are convex, that
H is weakly compact relative to =, and that there is a countable subset =* =
{£;} of E such that, given any £ in =, there is a subsequence {£;;} of £* (whose
elements are not necessarily different) such that lim;., K(¢;, 1) = K(§, n)
for all n in H. We define Zv = {£| K(¢, m) < N; £ € £}, and we note that only
{(b) need be verified to assure the applicability of Theorem 4. It is easy to verify
that H is weakly compact relative to Zy and the payoff function K*. Moreover,
for any £ in Ey there is by assumption a subsequence {£;;} of E* with lim,.,
K(&:; , n) = K(¢, n) for all y in H. In particular, this holds for n = no, so that
K(&:; , m) < N for sufficiently large j. We conclude that =* N =y satisfies rela-
tive to Zx, H, K, and hence relative to =y, H, K* the same relationship that
=* did to =, H, K. From Theorem 1 stated in the first paragraph of this paper,
we conclude that (b) is satisfied.

Even when K (a, b) is bounded, the above condition of weak sequential separa-
bility is weaker than the strong separability condition used in Theorem 2.25
of [1].
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