NONPARAMETRIC TOLERANCE REGIONS
By D. A. S. Fraser

University of Toronto

1. Summary. Nonparametric tolerance regions can be constructed from statis-
tically equivalent blocks using published graphs by Murphy [8]. In this paper
the procedure for obtaining the statistically equivalent blocks is generalized.
The n ‘cuts’ used to form the n + 1 blocks need not cut off one block at a time,
but at each stage may cut off a group of blocks, the group to be further divided
at a later stage by a different type of cut in general. An example is given which
indicates possible applications.

The results are also interpreted for discontinuous distributions by indicating
the necessary modifications to the corresponding theorem in [7].

2. Introduction. The generality with which nonparametric tolerance regions
can be formed has been successively treated by Wilks, Wald, Scheffé, Tukey,
and others in a series of papers [1], [2], [3], [4], [5], [6], [7]. In each case the sample
space for n observations from a continuous distribution is divided by these ob-
servations into n + 1 regions or blocks. Subject to mild restrictions on the pro-
cedure used to divide the sample space, the proportions of the population con-
tained in these regions have an elementary distribution, a uniform distribution
over a set prescribed by simple inequalities. Furthermore the marginal distribu-
tion of the proportion of the population which lies in a group of these regions
has the Beta distribution. This enables the statistician to choose enough regions
to make a probability statement such as the following: “In repeated sampling
the probability is 8 that the region T contains at least « of the population.”
Graphs for obtaining the probabilities and the number of original regions to
compound are given in a paper by Murphy [8].

In the previous papers the sample space was partitioned by forming a single
block at a time; this restriction, however, is not necessary. The whole region
corresponding to n + 1 blocks may be divided into » blocks and n + 1 — r
blocks; then each of these sets of blocks may be divided by a procedure de-
pending on where and how the first division was made. The exact statement
of the possible procedures is given by Theorem 6.1 in Section 6.

Advantages of this procedure are perhaps illustrated by the following ex-
ample. A sample of 59 observations is made from a continuous bivariate dis-
tribution known to have two modes; a 509, tolerance region in two parts center-
ing on the two modes is desired. From Murphy’s graphs [8] a region formed
from 36 blocks' is seen to have a 909, probability of containing at least 509,
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! It is worth noticing that only 60% of the equivalent blocks yields 90% confidence in
at least 509, of the population.
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of the population, that is, 90% confidence that the region contains at least 509,
of the population. The following procedure is proposed as a solution to obtaining
the required region.

The 59 points are plotted in Fig. 1. The function y is used to remove two blocks
by the cut ¢, ; two further blocks using the function —y are removed by the
cut ¢s . Similarly  and —z are used to form cuts ¢; and ¢z . The rectangle so
formed now corresponds to 52 blocks.

The rectangle is tentatively cut into eight sections formed by the two diagonals
and the two lines through the center parallel to the x and y axis. For convenience,
number these sections from one to eight clockwise starting at top center. In the
first section cut off one block from the outside using a line making an angle of
—221° to the z axis, that is, we use the function y + z tan 221° to form the cut

C2
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C10

° Caz
Cs
Cu
Ci3
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¢ . For the second section use the function y + z tan 671° to remove one block
by the cut ¢y . Apply a similar procedure to each of the 6 remaining sections,
thus forming cuts ¢i1 , ¢12, €13, €14, €15, and ¢i . The region now remaining corre-
sponds to 44 blocks.

The eight sections originally were of equal area. Each section has had a block
removed thus reducing the areas to the values a;, - - - , as, say. Further cutting
will depend on these areas, they being an indication of the relative positions of
the two modes. Consider the total area of an adjacent pair of reduced sections
and of the opposite pair; for example, total area equals a; + a2 + a5 + as . Do
this for each of the four possible selections. From the diagram it is easily seen
that the group with minimum total area corresponds to Sections 3, 4, 7, 8. These
are the sections which presumably tend to separate the two modes; hence we
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divide the remaining region by a line with slope —1. If the blocks had been
2, 3, 6, 7 we would have used a line with slope 0. The rough reasoning behind this
cutthroat procedure should be apparent.

Using the function y + z, divide the 44 block region into parts corresponding
to 22 blocks and 22 blocks, that is, we choose the point giving the 22nd largest
value to the function y 4 x and make the cut ¢ . The two regions formed by
this cut are further reduced with the objective being to form two circular regions
each corresponding to 18 blocks.

Use the function (y — )’ + (x — £)° to remove four blocks from the right-
hand region. As center of the circle (£, ) a reasonable choice would be the center,
marked ‘z’; of the largest circle which can be inscribed in that region. Cuts
C39, C10 , Ca1 , and cqe are made by this function. We apply a similar procedure to
the left-hand region.

The resultant two circles form a region 7' composed of 36 blocks and hence
in repeated sampling have 909, confidence of being at least a 509, tolerance
region. It should be noted that the two parts of T will not always be circular;
they will be circular with perhaps indentations. (See, for example, cut cs;.)

3. Notation. Let W symbolize a probability distribution over a general space
8 and let w be an arbitrary point of this space. By the coverage of a set S C §
we mean the probability measure of S with respect to the distribution W, that
is, P,(8) = P(S8) is the coverage of the set S. If the set S is random, then the
coverage will be random. '

4. Conditional probabilities when a sample is ordered by a real function. For
the proofs in Section 5 we shall need to know the form of certain conditional
distributions. In 7] these conditional distributions were assumed without proof,
here they are more complicated and a proof of their structure is given in this
section.

Let ¢(w) be a real-valued measurable function over the space S. For a sample
of n elements from this distribution of W over 8, we wish to determine the con-
ditional distribution of the sample given that the jth largest value of y(w) is
equal to ¢. If several values of w; have y(w;) = ¢, the procedure in ordering these
sample elements is to make each permutation equally likely and select a permuta-
tion at random. That the conditional distribution exists is easily seen from the
fact that in a product space with a product measure the conditional distribution
of n — 1 coordinates obtained by conditioning the remaining coordinate is just
the marginal distribution of those n — 1 coordinates.

Consider (w;, -+ , w,) as a point in the product space [ ] 7.18; , where each 8;
is identical to 8. The probability measure over this space will be the power
measure of the given measure of W over 8. We partition the space 8 into disjoint
sets as follows:

where



TOLERANCE REGIONS 47

{w]|¢w) > ¢},
{fw|¥(w) = ¢},
{w|y(w) < t}.

The conditional distribution we wish to obtain will be a distribution over a
subset of the following region in the product space:

X = "{Hs,x:s x 11 s}

j=1 i=j+1

en G e
Il

The components of this union are not disjoint. Consider the following decom-
position into disjoint sets:

X=X3uXpu---uX,,

where

n

X, = Gle= U{H(s,—s)xs, H (s,--—si)},

=1 =1 i=j+1

n

X2=Gij=U{U[5 X 3 X II (s,—s)]},

=1 je=1 kel teli—(k

X = U Xopj = U { U [sj X H Br, X II (8 — 3,-)]},
. k1< a=1 ky)

Je=1 o Zkrel; iel,‘-—(kl'...' r
: n n
X, = U Xo=U (5, x I 53
je=1 Jm=1 telj
n
= H 3iy
[Z51

andI; = (1,---,5— 1,7+ 1,---,n). Thesets X;, --- , X, are disjoint but
the components of each X; (i = 1 excepted) are not disjoint.

The advantage of this decomposition is in the symmetry possessed by the
sets X; . X; is symmetric in the n — 1 coordinates other than w; ; also X, is
identical to X,; if we consider only the n — 1 coordinates remaining after de-
leting respectively w; or w;.. Therefore consider the following decomposition:

X=XvuXu--uX"

where
Xj=UX;j, i=1 - ,n
(7
The sets X', X*, ---, X» are symmetric in the n — 1 coordinates obtained
by omitting w; , ws, - - - , w, , respectively; also as far as these n — 1 coordinates

are concerned the sets are identical. However, the sets are not disjoint, but
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overlap in a simple manner indicated by the assignment of probability measure
below.

Since X is composed of n identical components as far as the “n — 1 coordinates”
are concerned, we can treat any one of them, say X'. Assign a probability measure
to X' as follows: Let P be the measure such that the measure over Xy is the
original power measure over 8", the measure over Xy, is the original power meas-
ure over 8" reduced by the factor 1, the measure over X;; is the original power
measure over 8" reduced by the factor 1/7, and the measure over X, is the
original power measureover 8" reduced by the factor 1/n. When the n identical
cases X', -+, X" are compounded the original measure over X is reproduced;
the sets overlap in such a manner that for points with measure reduced by the
factor 1/, 7 sets overlap reproducing the original measure. If the probability
measure of J is equal to zero, we need only consider the first set Xy;. Its measure
is zero, but if we consider the n — 1 coordinates, w deleted, the marginal measure
gives us the conditional measure of those n — 1 elements of the sample. This
particular case is covered again after the following simplification of the gen-
eral case.

Since we are interested only in the n — 1 coordinates and since the distribu-
tion is homogeneous with respect to the nth coordinate, we now work in the
product space of those n — 1 coordinates. The measures P} will be altered by a
factor if P(3) s 0; otherwise we have the particular case mentioned above and
the conditional distribution is identical to the marginal. Therefore, letting
I=(2---,n), wehave '

X, H (8 — 34,

iel

X=U@bx II 6 —-3),

ker 1el— (k)

X,. = H 5,‘;
tel

and P* is the measure such that the measure over X; is the original measure
over §"7', the measure over X is the original measure over $"! reduced by the
factor 1, the measure over X, is the original measure over 8" reduced by the
factor 1/n.

The conditional distribution for which we are looking is obtained from the
distribution over the space ¥ < U X, where

j=1

Y = L}{{IJI (8:iu3) X nﬂ (&u&)},

1=22 t=mj

and the union is over all combinations P of 7 — 1 integers chosen from tht_e n— 1.
These j — 1 integers index the coordinates for which the projection is § u 3.
But since we are interested only in the distribution of the j — 1 coordinates
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“above” and n — j coordinates “below’’ with respect to the ranking introduced
by ¢(w), we introduce the following decomposition of ¥:

j=1 n—j
Y=UU v,,

r=0 s=0

where

Yo = lﬁ{ﬁ 8i X In]. §z} = yy(l’or

1=2 t=j+1
r+1 i jts n
{ plﬂstsi]x[U_‘Hs,x 11 §:|}
Py " =2 =r+2 P i=jt1 i=j+s+l
Y

T8y

J—l n—j = {112 3«} = gY}—lm—j,
and P:™ indicates that the union is taken over all combinations of r integers
chosen from j — 1 integers (the set corresponding to a particular combination is
placed after U).

Using this decomposition, the distribution P* can be broken into (J : i)

identical cases as far as the j — 1 coordlnates “above’” and n — j coordinates
“below” are concerned. A typical one of these cases is:

j=1 n—j

yvi=U U v,

r=0 3=0

with measure P** defined so that the measure over Y3, is the original measure
- - 1 . . .
over 8" (the P* measure), the measure over Y3, is the original measure over

$"! reduced by the factor 1 / r+s+1) (r + s) <the P* measure reduced

by the factor 1 / (r + s)) the measure over Y;_; ._; is the original measure

-1
1

the factor 1 / (j _ 1>> . This measure when compounded with the other simi-

over 8" reduced by the factor 1 / < > <the P* measure reduced by

lar permutations is easily seen to reproduce the measure of P*.

Thus the conditional distribution of the sample given that the jth largest
value of y(w) = ¢ (ties broken by equally likely random choice) is that of 7 — 1
coordinates W, , Ws, +-+, W;, n — j coordinates wj1, -+, wn, and one co-
ordinate w* with distribution as follows:( w*, W, - -+ , W;, wj41, - - , Ww,) takes
its values in 3 X Y with probability measure obtained by normalizing the
product measure of the original W measure truncated to 3 and the measure
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P** over Y. The distribution is symmetric with respect to @, , - - - , @; and with
respect to wjy, -, Wn.

This conditional distribution is not that of samples of j — 1 and n — j from
truncated portions of the original distribution except in the particular case in
which 3 has measure 0. However, we can express it in terms of samples of j — 1
and n — j (with the accompanying simplicity of structure) by the procedure
described below.

We replace the original distribution W by the combination (W, U) where U
is a uniformly distributed random variable [0, 1] and is independent of W. For
any value of ¢ for which Py (Y (W) = t) # 0, record along with the function ¢(w)
the observed value of U. For a sample of n from the distribution (W, U), we
order the elements according to y(w) and if there are ties we order them accord-
ing to the corresponding values of w.

We now find the conditional distribution of the sample given that the jth
largest value of (y(W), U) is (¢, u). The theory at the beginning of this section
immediately extends itself even though the combination (¢ (w), %) is not real-
valued. Since P(y(W) = t, U = u) = 0, the distribution of the n — 1 elements
is that of (1) a sample of j — 1 from the distribution having relative measure
P{ which over § is the measure of W, and over 3 is the measure of W reduced by
the factor (1 — u), and (2) a sample of » — j from the distribution having rela-
tive measure P; which over § is the measure of W, and over 3 is the measure of
W reduced by the factor u.

We now show that the previous conditional distribution is obtained from
this distribution of samples of j — 1 and n — j. The conditional distribution
given that the jth value has y(w) = ¢ is obtained by taking the marginal dis-
tribution over U it is easily seen to be a distribution over the space Y* defined
above. We now evaluate the measure for this distribution.

The marginal distribution of the u coordinate for the jth largest value is
needed. For continuous distributions the jth largest value has a mapping of the
Beta distribution with parameters n — j + 1 and j. However, the mapping is
linear for the portion in which we are interested and therefore has as density
function

K-[P(8) + 1 — w)P®)"[P(S) + uP@)]*™.

The relative probability measure over Y is obtained by considering the different
subsets Y}, . The measure over Y7, given the u value for the jth largest element
is the original product measure over 8" reduced by the factor

(1 — wrw
[P(S) + (1 — wP@I'P(S) + uP@]™"
The factor in the denominator obtains from the normalization of the distribu-

tions of samples of j — 1 and n — j from Pj and P;. Taking the marginal dis-
tribution with respect to u, the factor becomes
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(1 — WWKIPG) + (1 — wP@IPE) + uP@®)]"

° [P(3) + (1 — WP@I'[P(8) + wP@)]"’ du
T'(r + UI(s + 1) - K
R () (r+8+1)(rjs)

The constant K is present to normalize the distribution over Y*. Thus the model
in terms of samples of j — 1 and n — j reproduces the conditional distribution,
since the marginal distribution over U of the samples of j — 1 and n — j repro-
duces the distribution P**,

6. Definition of the Blocks for the continuous case. In order to form blocks
with the generality described in the introduction, we not only need a sequence
of functions which describe how the cuts are made but also a sequence of in-
tegers to indicate through which point each cut is to be made. The procedure
no longer produces n + 1 blocks one at a time, but rather n divisions or cuts are
made which successively divide the space into sets, each set being equivalent
to the union of a number of blocks.

Consider n points w; , ws , - -+ , w, in the space 8. To define the » + 1 blocks
the following two sequences are needed; the first,

o1(w), x(w | 1), -+, en(w |1, <+, @),

is a sequence of real-valued functions over §; the second,

D, p2(¢l)y P3(¢l ) W): Tty Pﬂ(‘Pl ’» " ‘Pn—l)7

is a permutation of the integers (1, 2, - - - , n). In each case the elements of the
sequences depend as indicated on values of previous elements in the first sequence.
The value of ¢ to be inserted in the functions at any stage is described in the
definition 5.1 below.

For a set of real numbers (z;, - - - , ;) we define max] z; to be the rth largest
value in the set, and 7(max} z;) to be the integer ¢ for which z; = max} z; . If
1(max; z;) is not uniquely determined, the context in which the symbol is used
will indicate which of the available integers is to be chosen.

DEerINITION 5.1. The set (w,, wz, -+, w,) of points in 8 and the functions
{eiwler, -+, vic)} and {pi(er, -+ , viz1)} define a partition of 8 into disjoint
blocks S1, +++, Snt1 and cuts Ty, -+, T, as follows:

(i) For the first stage,

Tpi = {w]er(w) = o'},
U S,u U T, = {w|aw) > o'},
PpsSP1 p<P1
U Su U T, = {w|lea(w) < e,

P> P P> P
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where ¢! = max sex(w,), and i(max™ ¢1(w;)) = i(pf') is any one of the in-

tegers avazlable /31(3 D), B1(T; p) are used to designate for the S’s, T's respectively
the index sets which contain p and over which the set union operator is applied. Corre-
sponding to each B,(T; p) there is a set of integers v1(p) which index the points w;
to be used for the cuts indicated by B:1(T; p); if p > 11, < p1then vi(p) consists of
n — p1, p1 — 1 integers j for which pr(w;) = of', 2 ol

(ii) For the second stage,

Toserry = {w]e(w|ef?) = ¢ E(w)}

U = P1 P2
P pa(efl) S,, v P<p2(ell) Tp {w l sox(w l o1 ) > e H(w)}
peB1(8ip2(ef1)) peBI(T: pz(v’,’l))
= P1 Pa
> pa(efl) Sp v P> p2(efl) Tp {w I ¢2(w l #1 ) < e H(w)}
peB1(Sip2(ell)) pep1(T; r:(¢‘l’l))

where ¢g2 = maleén(ﬂz) ¢2(wi I 90{’1), p’; = p2(¢fl) — min Bl(Ty p2(¢lpl)) + 11
and i(3*) is any one of the integers available. B2(S; p), B2(T'; D) are used to designate
for the S’s, T’s respectively the smallest index sets, containing p, over which the set
union operator is applied. E(w) tn each case stands for the condition that the points
of the sets being defined at that stage conform to restrictions imposed on the poinis
of those same sets at the earlier stages. Thus in effect E(w) stands for all the inequali-
ties at the previous stages which apply to poinis of the sets under consideration.
(iii) For the rth stage,

Toiopr,enprrqny = {w]e (w|of!, -+, 027" = ¢f"; E(w)}

Spu
PEPrpll, e 0Pr71) ? p<prlofl,-.- w’;'*,‘) T,,
PeBr—1(8ipr (911,002 07171)) PeBr—1(Tipr(pfl, oo 0P151))

= {w|ew]|ef, -, 071" > of E(w)},

Sy u
P> pr(efl, - 0P071) » P> pr (et h—ll)
peBr—1(8;pr(f1,- - 07L51)) p;ﬂ,-,(r;p,wfx - @RI21))

TP = {w l ﬂof(w l 90‘1’1’ ct 10:' l) < ﬁ":, :(W)}

where 90,:' = ma'x‘;i’/r—l(l’r) ¢’r(w: loft, -+, ef1") and pr = p.lol’, -+, 071")
— min B, (T; pe(eft, - -+, oF3 ‘)) + 1. ﬁ,(S ), B:(T; p are the smallest index sets
for the S’s, T’s respectively which contain the integer p; the index sets considered are
those over which the indices of the unions in stages 1 to r range. Corresponding to each
B:(T'; p) is a set of integers v,(p) which indexes the points w; to be used for the cuts
indicated by B.(T; p)iy.(p) is identical to ~v,1(p) unless B,_(T; p) contains
Pl -+ 72T in which case B,—1(T; p) is partitioned into (p,(ef?, -+ -, €X11))
and two B.(T; p)’s, and correspondmgly Yr—1(p) s partitioned into z(go, ") and two
v-(p)’s according as o.(w;) = oF" of", < of". E(w) s as defined in stage (ii).
The procedure for the rth stage 18 applzed forr =2 .-+ m.
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6. General results for the continuous case.

THEOREM 6.1. If p1(w | of?, - - - , 027") has a continuous conditional distribution
for all values of ¢f*, -+ , 2i* (except for a set of probability measure (W) zero
and for all 7, and if for a sample of n (wy , - - - , w,) from the distribution W, blocks
S, + + -, Sa41 are defined according to Definition 5.1, then

(i) The blocks are random,

(ii) The coverage (¢1, -+ , Cay1), Where ¢; = Pw(8;), are random and have a
uniform distribution over the region in R™** defined by the linear conditions
n+l
De=1 =0 G=1,--,n4+1).
=1

An example of the uniform distribution reverred to in' the theorem is the
distribution of U, Uz — Uy, -+, Up — Upa,1 — U,, where Uy, - -+, U,
are the order statistics of a sample of 7 from the uniform distribution [0, 1].

The proof outlined below does not presuppose the results obtained in the earlier
papers [1] to [7] in the References, but rather it follows directly from the results
of Section 5 and a simple probability mapping.

Proor. For a sample of n from the uniform distribution [0, 1] we define cover-
ages ¢1, -*+, Cuqs a8 follows.

’
C = Ul,

’
Cz =U2— Ty

4
Catl — 1= Uny

where U, , ---, U, are the order statistics of the sample. It is well known that
these coverages have the distribution described in the theorem.

We consider the density of this distribution as a product of conditional and
marginal densities. It can be written as the marginal distribution of D Pici= Cp,
which is a Beta distribution, multiplied by the conditional distribution of
¢1, -+, Cp , and the conditional distribution of Coydly " " 5 Coil - These two
conditional distributions are independent. Thefirst is the distribution of coverages
(each reduced by the factor C,,) obtained from a sample of p; — 1 from the
uniform distribution [0, 1]. The second is that of coverages (reduced by 1 — C},)
obtained from a sample of n — p; from the uniform distribution [0, 1]. Similarly
each of these conditional coverage distributions can be written as a product of a
marginal and two conditionals, and so ‘on. These results are immediate conse-
quences of the geometry of the region in R™.

Consider now a sample of n from the uniform distribution over [0, 1]*, the
unit cube in R™. Order the sample with respect to the first coordinate u; from
the smallest to largest and pick the p;th point. The marginal distribution of
the first coordinate of this point is that of C, in the previous situation. It is easily
seen that the conditional distribution of the remainder of the sample is that of a
sample of p; — 1 from the uniform distribution over [0, 1]", the first coordinate
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(and any derived coverages) being reduced by factor C,, , and of a sample of
n — p; from the uniform distribution over [0, 1] the first coordinate being
reduced by the factor 1 — C,, . Similarly each of these conditional distributions
can be broken into a marginal and two conditionals and so on. The important
thing is that using the conditional approach the coverage distributions are
easily seen to be the same in the two somewhat different situations.

The coverages referred to in the theorem can be obtained by a mapping from
the coverages in the latter case above, and since those coverages have been
shown to have the distribution described in the theorem, the proof follows. The
mapping referred to is the following.

#1(W) has a continuous distribution. Consider a monotone nonincreasing func-
tion g1(u1) such that g,(U) has the same distribution as ¢;(W) when U has the
uniform distribution [0, 1]. Apply this mapping to the second situation above;
the region having u; < C,, maps into the set of points of ¢;(w) which corresponds
to Ur'S; (the T'; have probability measure zero). Thus the marginal distribution
of Cy, is identical to that of _?'c; . The conditional distribution of the remainder
of the sample given that ) 7'C. is fixed (max?'p;(w;) fixed) is by Section 4 that of
samples of p1 — 1, » — p, from the original distribution restricted to points for
which ¢1(w) > max”'g,(w;), e1(w) < max”'ey(w;). Since we are left with the
probability distribution of samples of p, — 1, n — p, for which any derived
coverages are reduced by the factor C,,, 1 — C,, , we can split up these condi-
tional distributions just as we did the original distribution.

At each stage in the formation of the blocks S;, we define a mapping froma
coordinate (taken in the order uy, - - , ua) of [0, 1]* to the range of the ¢ being
considered. The mapping is chosen to reproduce the required conditional dis-
tribution of that ¢. Thus the splitting up by successive cuts of the space $ corre-
sponds to splitting by cuts in [0, 1]". The successive cuts are made parallel to
the coordinate planes u; = 0, u; = 0, - -+ , u, = 0. Thus the distribution of the
¢”’s is reproduced in the ¢’s by using conditional distributions successively,
corresponding to the steps in which the cuts were made. This completes the proof.

7. Main results for the discontinuous case. The results for the discontinuous
case correspond very closely to those given in [7]. However, for the proof of the
main theorem the results of Section 4 in the present paper are needed and can
no longer be assumed to be sufficiently obvious. The mappings from the uni-
form (continuous) distribution to the discontinuous distributions supplies the
necessary randomization at cuts having finite probability. This permits the con-
ditional distributions to be used in the form of samples from a truncated dis-
tribution. The proof as a whole follows the pattern set in Section 8 of [7] with
the sort of modification indicated by the continuous case proof in Section 6 of
this paper.

The definition of the m-system of functions carries over. The dependence of
any ® on other ®’s with smaller subscripts is through the values of those ®’s at
their respective cuts.
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The definition of the blocks, cuts and coverages is as given in Section 5 of this
paper with the following modifications.

(i) The ¢’s are replaced by ®’s.

(ii) When more than one point falls on a cut the point should be chosen at
random, perhaps most conveniently in such a manner that each point has the
same probability of being selected.

(iii) The closed blocks 8, , -+, S,;1 are defined by the expressions for
Si, - -+, Sat1 where throughout < is replaced by < and > by =.

(iv) Definitions (7.4) and (7.5) in [7] are used to define block groups and
coverages.

The main theorem for the discontinuous case reads as Theorem 8.1 in [7]
with the obvious modifications as indicated by the theorem for the continuous
case in the present paper.
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