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Summary. A class of statistics, large enough to comprise those used in all
the known distribution-free tests of fit for continuous distribution functions, is
characterized by a structure called “structure (d).” A number of statistics of
this class may be constructed and used for tests of fit. To make a reasonable
choice among all these statistics, it appears desirable to introduce in the space
of continuous distribution functions a distance which would reflect the type of
discrepancy the proposed test is intended to detect. By studying the power of
various statistics with regard to this distance one may then be able to choose
those with optimal properties.

1. Introduction. The main object of this paper is to discuss techniques for
deciding whether a sample X;, X;, -+, X, of a one-dimensional random
variable X was obtained from a population which has a completely specified
continuous cumulative distribution function H(z). More specifically, we shall
limit ourselves to the following problem.

Given a continuous cumulative probability function H(z) = Prob {X =< z}
and a class @ of continuous cumulative probability functions different from
H (x); required is a procedure which, for every sample X, ---, X, , will enable
us to decide whether to accept the “hypothesis” H(z) or the “alternative” Q.
This procedure should be distribution-free for every sample-size n, in a sense
which will be described in Section 3. Procedures of this kind are referred to as
“distribution-free tests of fit.” In the course of our presentation it will appear
necessary to formulate the concept of distribution-free statistics and to discuss
some of its propetties.

2. Some known tests. The following is a concise description of some distribu-
tion-free tests of fit and the statistics on which they are based. The tests men-
tioned here are chosen mainly for illustrative purposes and no attempt at com-
pleteness has been made. ,

2.1. The chi square test’. This test compares the empirical histogram deter-
mined by a sample with the “expected’ histogram determined by the hypothesis
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H(z), by means of the x* statistic. The limiting distribution of this statistic is
known and extensively tabulated, but little is known about the manner in which
its exact distribution for finite sample size approaches the limiting distribution
when the hypothesis is true, and even less when the alternative is true. The chi-
square test is not distribution-free in the strict sense, since for finite sample
size x* is not a distribution-free statistic. It is being mentioned here mainly for
historical reasons, as the procedure to which the term ‘‘test of goodness of fit”
was originally applied.

2.2 Smirnov’s w’-test. Let F,(z) be the “empirical distribution function” de-
fined by

F.(x) = k/n if k sample values are < z, k = 0,1, ---, n.

Modifying statistics proposed earlier by Cramér and v. Mises, Smirnov [2]
compares F,(z) with the hypothesis H(z) by means of the statistic

+00
221) d=n[ [F@) - H@I dH()
which, after some algebra, may also be written
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(2.22) w?

Smirnov showed that, if H(z) is true, the probability distribution of «’ is inde-
pendent of H(z) for any n, and he obtained an asymptotic expression for this
probability distribution for n — .

2.3. The W-tests. In [3] T. W. Anderson and D. A. Darling consider a general-
ization of «°, given by

(2.31) Wi=n jjw [F.(x) — H@)Y[H(z)] dH (z),

where (&) = 0, for 0 < ¢ < 1, is a given weight function. This statistic can be
rewritten

(2.32) W = 2 Z"‘,{%[H(Xm ¥ - 1«1>1[H<X,~>]} F ko,

j=1 n

where ®(t), $:(¢) are functions determined by ¢(¢) only. It is easily shown that
for any ¢(t) and n the probability distribution of W%, if H(z) is true, is inde-
pendent of H(x). For ¢(f) = 1, (2.31) reduces to (2.21) and thus Smirnov’s
’ is obtained as a special case. Anderson and Darling present a general method
for obtaining the asymptotic distribution of W? for n — . For o’ their method
yields an expression different from that given by Smirnov, better adapted for
computation. A table obtained by using this expression is published in [3].
2.4. The W-test with ¥(t) = 1/t(1 — t). Since for x small the empirical dis-
tribution function F,(x) and the hypothetical H(z) are both close to 0, and for
xz large both are close to 1, the ” test is likely not to detect a discrepancy in the
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tails of ‘the distribution. For cases where such discrepancies are of importance,
Anderson and Darling [3] consider the weight function ¢(¢f) = 1/t(1 — ¢). They
derive an asymptotic expression for the distribution of the resulting W? statis-
tic, but a tabulation of this distribution is not available.

2.5. Kolmogorov’s test. Kolmogorov [4] introduced the statistic
(2.51)) D,= sup |F.(x) — H(z)]|,

—o<z<+0

showed that its probability distribution, if H(z) is true, is independent of H(x),
and derived the asymptotic probability distribution of D, for n — . A tabula-
tion of this asymptotic distribution was given by Smirnov [5]. In [4] Kolmogorov
also obtained recursion formulae which make it possible to compute the probabil-
ity distribution of D, for finite n. This distribution has been tabulated by Mas-
sey [6], [7], and Birnbaum [8]. Wald and Wolfowitz [9] considered a more general
class of distribution-free statistics and showed how their probability-distribu-
tions can be computed for finite n.

2.6. The K ,-tests. In generalization of Kolmogorov’s D, , Anderson and Dar-
ling [3] consider the statistic
(2.61) K,= sup V1| Fa(z) — H@) | VY[H®E)],
where ¢(¢) = 01is a given weight function. This statistic may also be written in
the form

(262) K,= ;/l_ﬁ i_l‘\lfl‘a:).(n (VYIH(X,)]Max [nH(X;) — (j — 1), — nH(X))]}.

The probability distribution of K, , if H(z) is true, does not depend on H(x),
and a method for obtaining the asymptotic distribution of K, for n — o is
developed in [3]. Kolmogorov’s D, is equivalent with the special case obtained
from (2.61) by setting ¢(f) = 1. Anderson and Darling consider also the im-
portant special case ¢(f) = 1/t(1 — t) which yields a statistic suitable for de-
tecting discrepancies in the tails of the distribution. They have not succeeded,
however, in obtaining an expression for the asymptotic distribution which would
lend itself for practical use.

2.7. Tests related to spacing of sample values. If X; £ X, £ --- = X, is an
ordered sample of a random variable with probability distribution H(x), then
the expectation of H(X ;) — H(X;) is 1/(:n 4+ 1)fori = 0,1, ---, n, with the
notations H(X,) = 0, H(X.;1) = 1. Any statistic which evaluates the dis-
crepancy between this expected and the actual spacing of the values H(X ;) may
be used to test the hypothesis H(z). Thus Kimball [10] considers the statistic

n+1 1 2
(2.71) ;1 [H(Xi) — HX.,) — m]

without deriving its asymptotic distribution. Moran [11] uses the statistic
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‘n+1
(2.72) 2 HX) - HX )l
which differs from (2.71) by a constant, and shows that it is asymptotically
normally distributed. Sherman [12] recently proposed the statistic
n+l

(2.73) ; |H(X:) — H(X:-) |,

_1_
2
derived expressions for its distribution for finite n, and showed that it is asymp-
totically normal.

2.8. One-sided tests of fit. Wald and Wolfowitz [9] studied the statistic

(2.81) Dt = sup [F.(z) — H(@x)] = Max I:J - H(Xj)]

—w<zr<t0 j=1,c0n LT
which, if H(x) is true, has a probability distribution independent of H(x), and
obtained expressions for this distribution for finite n. Birnbaum and Tingey
[13] obtained an alternative expression for the distribution of DY for finite n
and tabulated it. Smirnov [14] obtained the asymptotic distribution in form of
an elementary funection.

3. On the concept of a distribution-free statistic.

3.1. Statistics of structure (d). The tests described in the preceding sections are
all based on statistics which can be written in the form ®[H(X;), - -+, H(X.)],
where ®(U;, ---, U,) is a measurable symmetric functicn of Uy, -+, U.,.
We will refer to such statistics as statistics of structure (d) and investigate how
this particular structure of a statistic is related to its distribution-free character.

3.2. Distribution-free and strongly distribution-free statistics. Let Q@ be a family
of cumulative probability functions. We shall say that S [X;, --- , X,.,Glisa
distribution-free statistic in Q@ if

(i) for every G € it is a measurable function of X;, ---, X, , and

(ii) whenever X; , - -- , X, is a sample of a random variable X with the cumu-
lative probability function G, the probability distribution of S[X; , - -+, X, , G]
is independent of G, that is,

Prob {S[X;, -+, X.,G] = S;G} = o(s)

where ¢(s) depends only on s.

It is easily verified that if a statistic has structure (d) then it is distribution-
free in the family Q; of all continuous cumulative distribution functions. It
can, however, be shown by counter-example [15] that not every distribution-
free symmetric statistic in Q; is of structure (d).

For every continuous cumulative probability function G(x) an inverse func-
tion G~*(u) may be uniquely defined in 0 < u < 1 by setting

G0) = — 4
G '(u) = greatest lower bound of z such that G(z) = u, for0 < u < 1.
If G(z) < 1 for all real z, this definition shall mean G7'(1) = + .
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Let F(z) and G(z) be two continuous cumulative probability functions. The
function 7(u) = F G'(u), 0 £ u £ 1, constitutes a monotone mapping of the
unit-interval into itself. If that mapping is the identity, i.e. if r(u) = u, then
and only then F(x) = G(x), and therefore the function 7(u) — % may be inter-
preted as a very detailed description of the discrepancy between G(x) and F(x).

Let @ and Q' be two families of continuous cumulative probability functions.
We shall say that S[X,, ---, X, , @] is strongly distribution-free in Q with respect
to Q' if

(i) for every G €Q it is a measurable function of X, , ---, X,, and

(ii) the probability distribution of S[X,, ---, Xa., @], where X;, ---, X,
are a sample of a random variable X with a cumulative probability function
F ¢ and G is any element of ©, depends only on F G, that is,

Prob {S[X:, -+, Xa., G] < s; F} = y(s, FG7).

It is obvious that if S[X,, ---, X,, G] is strongly distribution-free in Q
with respect to @’ and if @ C @/, then S[X,, :--, X., G] is distribution-free
in Q.

The following theorem can be proven [15]. If @ is the class of all strictly
monotone continuous cumulative probability functions, @ = €, and
S[X;, ---, X., G] is symmetric in X;, -- -, X, and strongly distribution-free,
then it has structure (d).

4. On choosing a distribution-free test of fit.

4.1. Need and criteria for making a choice. A number of distribution-free tests
of fit have been described in Section 2, a number of other such tests have been
proposed in literature, and still more can be constructed by selecting additional
statistics of structure (d) and adapting them for the use in tests of fit. For any
such statistic S[X;, ---, X,., H] the probability distribution, if H(z) is true,
does not depend on H(x). It may therefore be assumed that H(x) is the uni-
form probability distribution, and under this assumption it is usually possible
to write the cumulative probability function of the statistic in form of a mul-
tiple integral of a constant integrand over a polyhedral region. This integral
can sometimes be evaluated explicitly, sometimes it can be reduced to a system
of recursion formulae, or it may be possible to tabulate it numerically with the
aid of modern computing equipment.

The statistician is, therefore, faced with the problem of deciding in concrete
situations on using one of the already known tests for which the necessary
tables are available; or, on a more theoretical level, he may have to decide which
of the many more possible tests deserve to be studied and developed.

Besides obvious reasons of expediency, such as availability of tables, ease of
computation, simplicity in use by untrained personnel, the statistician will have
to consider various properties which make some of the tests theoretically more
or less advantageous. For example, having to choose between the chi square and
the Kolmogorov test, he will have to consider that the former can be adjusted
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to parametric families where the parameters are to be estimated from the sam-
ple, while the latter has the advantage that it requires no arbitrary grouping of
observations and that the exact probability distribution for finite sample sizes
has been extensively tabulated.

It would appear, however, that the most essential preliminary consideration
should be to determine what kind of discrepancy between hypothesis and al-
ternative is materially important in a concrete situation. Then one may attempt
to select a test best capable of detecting this kind of discrepancy. For example
the chi square test is sensitive for discrepancies in the histograms, while the
Kolmogorov test appears more likely to detect vertical discrepancies between
the cumulative probability functions.

In order to judge how good a distribution-free test of fit is for a definite prob-
lem, one has therefore first to decide on a way to measure discrepancies between
distributions by introducing in the appropriate space of probability distribu-
tions a distance which may either satisfy the axioms of a Hausdorff metric or
some other set of postulates. Once it is defined, it may be possible to study the
power of various tests with regard to this distance and to select the test which is
optimal with regard to some of the well known properties based on the power.

4.2. Distances based on r(u) = F G~ (u). Since practically all distribution-
free statistics used for tests of fit are strongly distribution-free, it seems desirable
to use a metric which ascribes the same distance 3(F, @) to all pairs F, G for which
r(u) = F G (u) is the same. Examples of such distances are

21) 1/ fo " r) — uf du = 4/ f_ :‘” [F@@) — G d6(x)

1 +oo
(4.22) fo 7@ — uldu = [ " |F@) - 6@)| deG),
(4.23) sup |7(w) —u|= sup |F(z) — G()]|,
o<u<l —0<z<+0
(4.24) sup [r(w) — u] = sup [Flx) — G(x)].
0<u<l —00 <z <+

While (4.23) defines a Hausdorff metric, the other three expressions define
directed distances FG.

On intuitive grounds one would be inclined to use Smirnov’s «” statistic (2.21),
(2.22) if discrepancies described by metric (4.21) are considered important,
Kolmogorov’s statistic (2.51) for the metric (4.23), the statistic DY, in (2.81)
if (4.24) is the discrepancy that matters, etc. A systematic treatment would
possibly require the introduction of a distance which depends on n.

Very few attempts have been made at studies in this direction. Mann and
Wald [16] investigated the power of the chi square test with regard to the dis-
tance (4.23). An elaboration of their results, together with useful numerical
tabulations, was made by Williams [17]. A comparison of the power of the chi
square test with that of Kolmogorov’s test, based on the metric (4.23), was made
by Massey [7] who, as one would expect, found the latter test more powerful.
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4.3. Power of tests using strongly distribution-free statistics. Let S(X;, ---,
X, G) be a strongly distribution-free statistic in @ with respect to @’ and ®[S(X, ,
«++, Xn, H)] a (randomized) test function for the simple hypothesis H(x),
that is, a function such that (1) 0 < ®[S(X,, --- , X,,H)] S lforall X, ---,
X, in the sample space and every H €, and (2) ®[S(X;, ---, X,, H)] is the
probability of rejecting H. Then, the power of the test depends only on r(u) =
FH™ (u), that is we have

E{®[S(Xy, ---, X, H)]; F} = Y[r(0)]

forall HeQ, F Q.

Let 8(F, G) be a distance depending only on r(u), such as the distances de-
scribed in 4.2. For fixed H one may consider the “sphere” consisting of all
F € Q' such that §(F, H) = & , and try to determine the greatest lower bound of
the power for all these F, which will depend only on the distance §,:

inf  E{®[S(Xy, ---, Xa, H)]; F} = u(50).
§(F,H)=by
A problem of this kind has been treated in [18] where a sharp lower (and upper)
bound for the power is obtained for a one-sided test of fit, with regard to the
directed metric (4.24).

4.4. The alternative described in terms of a distance. The problem of testing the
simple hypothesis that the true cumulative probability function is exactly equal
to a completely specified H(z) is, in this formulation, somewhat unrealistic.
In fact, it leads to the known difficulty that if a consistent test is used, for a
sufficiently large sample one will practically always reject the hypothesis. It
is well known that this difficulty can be avoided by stating carefully the hypothe-
sis and the alternative. If a distance 8(F, @) is defined in Q, this can be done by
considering the simple hypothesis H(z) and the composite alternative consisting
of all F €Q such that §(F, H) = 6§, . With this formulation of the problem, the
hypothesis will be rejected only if the test produces empirical evidence that the
true distribution differs from H by a distance of at least §; .
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