SPACING OF INFORMATION IN POLYNOMIAL REGRESSION!
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1. Summary and Introductiort. The purpose of this paper is to investigate a
problem in the spacing of information in certain applications of polynomial
regression. It is shown that for a polynomial of degree m, the variance-cova-
riance matrix of the estimated polynomial coefficients given by a spacing of
information at more than m -+ 1 values of the sure variate can always be
attained by spacing the same information at only m + 1 values of the sure
variate, these spacing values being bounded by the first spacing values. The
presented results are of use in experimental design involving polynomial re-
gression when a choice of sure variate values is possible but restricted to a
specified range. )

Let the polynomial under consideration be

(11) P(x) =oa+ ax + - + a,,,+1:c'”, m = 1,
and let
P() = y(@) + 8, e = 1(1)N, N = (m + 1).

The y(xz.) are observed uncorrelated variates with random error §. having
mean zero and finite variance o2 > 0. The 2. are observed variates without
error, there being at least (m + 1) distinet 2. .

The following notation is introduced. Let Z = (1, z, 2°, --- , z™), X = (%),
e = 1(1)N, and let W be the N X N diagonal matrix with entry w. = 1/¢% in
the (e, €) position. w, will henceforth be referred to as the ‘“‘information” of
y(z.), and Q = D w., e = 1(1)N, will be referred to as the “total information.”
The matrix X’WX will be called the “information matrix.”

The problem is to show that given a spacing of total information @ at loca-
tions 2., e = 1(1)N, N = (m + 1), there being at least (m -+ 1) distinct 2. , it
is always possible to re-space @ at (m -+ 1) distinct locations r;,j = 1(1)(m + 1),
in such a manner that min z < r; < max z., ¢ = 1(1)N, 7 = 1(1)(m + 1),
and X’WX = R'UR, with R’UR being the information matrix of the re-spacing.
The problem is solved by prescribing a method for finding the required U and R
which determine the spacing of the total information.

The motivation for the problem is as follows. In experimentation in the chem-
ical engineering industry, we most often have control over our sure variates. The
sure variate = could be the pressure level of our process equipment, and we would
be permitted to choose any operating pressure z in the pressure range min x to
max 2, tolerated by our equipment. Quite often, and in particular with isotopic
measurements, laboratory analytical determinations are required for our y-
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variates with the laboratory being the major source of error. With each labora-
tory determination having variance ¢°, we can request 7, determinations on the
material sample taken at sure variate x. Using the average of the laboratory de-
terminations, the corresponding y variate has variance ¢°/n. . Specifying Q then
amounts to specifying total laboratory effort expended on the experiment. It
might be set by such usual factors as the dollar allowance on the experiment; if
the material is highly radioactive, it might be set by such unusual factors as
exposure time allowed the laboratory analysts. Furthermore, in experimenta-
tion with fairly large equipment, it is important to minimize the distinct levels
of operation, that is, the distinct number of sure z’s. The time required to make
the change and to reach sufficient equilibrium representing steady-state opera-
tion of the process is often long. In any case we lose time, and with production
line equipment, we also lose production. These are the reasons for minimizing
the distinet number of sure a’s in the experiment. The equivalence X'WX =
R'UR gives the required minimization. If the functional relationship between
y and z is adequately represented by a polynomial of degree m, the equivalence
assures that only (m 4 1) distinct sure 2’s are required to maintain the same
efficiency of statistical evaluation of the experimental results, since most statis-
tical evaluation will require (X’WX)™, which can now be replaced by (R'UR)™.

It may be seen that such experiments, common in physico-chemical industry,
present a formulation and require a mathematical model not found in ordinary
regression theory, where usually it is not possible to assign various values to the
corresponding y variances.

With the indicated background in mind, the results of this paper find applica-
tion in experimental design. The determination of a spacing which optimizes
some criteria involving the information matrix is made simpler. A familiar
example arising in point estimation is minimizing (X’WX)™p’ for a specified
row vector . An example from interpolation is minimizing the maximum of
E(X’WX)"IE’ with § = (1,£ & -+ £™ and min 2. < ¢ < max 7. ; the extrapola-
tion problem is similar. '

The advantage of applying the above result to such problems is that the spac-
ing of information is at once reduced to (m 4 1) distinct locations, any larger
number being unnecessary. The matrix X then is the matrix of a Vandermonde
determinant. The properties of these matrices are well known and attractive.
These uses will be illustrated by an example given in Section 4.

2. Some useful relations. Prior to investigating the problem as outlined above,
several relations needed later will be developed. First, a convention in sub-
scripts: subsequently, small italic letters will run from 1 to (m + 1), and small
Greek letters will run from 1 to N Capital italic letters will run as indicated.

With the notation of Section 1 and with & = (a3 oz ** * @n41)’, the polynomial
(1.1) under consideration is

2.1) P(z) = Za.
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Choose (m + 1) distinct numbers z; . From Lagrange interpolation it follows
that
(= 2)(x — 29)+ (& — Zmy1) (@ —2)(@ — 23) (& — Zmp1)
P z) = Cm: P m+
S T | S EERY it R Py e Feg gy

Pla) 4 oo g Em W@ @ =) p

(2mr1 — 21) (Zmi1 — 2)** (Zmp1 — 2m)

With an obvious notation,

(22) P(z) = 205 F(x, 2,)P(z,).

Consider now that from (2.1) P(2) = Za, where P(z) = (P(21) P(25) * - P(2mp1))’,
2=1z---2"),and Z = (%;). Thematrix Z is nonsingular, sinceits determinant

is a Vandermonde determinant not equal to zero due to the z; being distinct.
Thus, Z"'P(2) = &, and for any z,

(2.3) 3Z27'P(2) = Za.
Since from (2.2)
(2.4) P(z) = F(z, 2)P(2),

with F(z, 2) = (F(x, 21) F(x, 2:) - -+ F(%, 2ms1)), it follows from (2.1), (2.3), and
(2.4) that :

" (2.5) ZZ7'P(2) = F(z, 2)P(2).
Equality of (2.5) for any z implies
(2.6) 27" = Pz, 2).

3. Investigation of the problem. The problem as stated in Section 1 is now
investigated. From the results of Section 2, it may be shown that without loss
in generality the range of the variable  may be limited to min z. = —1 and
max 2. = 1. Another simplification follows. Suppose that some of the x. are not
distinct. Say that 2y = 2, = -+ = xx with corresponding information w;,
Wy - -+, Wk . It may be verified directly that the information matrix for w;,
Wy *+*, Wg, Wg1, *** Wy ab &1, &2 -+ Tk, Txy1 - - - Ty is the same as the
information matrix for (wy + we + --- + wxg), Wrs1, * -+ Wy at Tx, Tk,
-+« zy . Such a grouping can be made for all z. not distinet, thereby reducing
the problem to considering only distinet «. . Finally, for N = (m -+ 1), there is
no problem since the information already is at (m + 1) locations.

The problem may now be re-stated as follows. It must be shown that given a
spacing of total information @ at N distinct locations z., ¢ = 1(1)N, N >
(m 4+ 1), with min 2, = —1, and max z. = 1, it is always possible to re-space
Q at (m + 1) distinct locations r;, j = 1(1)(m + 1), in such a manner that
—1=r; =<1,and XWX = R'UR.

Suppose that R exists. Then,

3.1) (XR™YW(XR™) = U.
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Reference to (2.6) shows that the off-diagonal elements of (XR™")'W(XR™) are
proportional to
(3.2) Con = Ze WePe Hp (T — 75), g=hp#=g,p#h,

with ¢ = II; (. — ;). Since in (3.1), U is diagonal, it is required that c,» be
zero for g 5 h. This requirement is $atisfied if the r; are determined such that

3.3) Swepe =0, Dwepxe =0, -+, > wepas = 0.
For reasons that will be discussed later, further constrain the r; by
(3.4) > wepas = 0.

By direct expansion,

(3.5) b = b1+ Boe + -+ + Bmisat + 2T
Hence, the r; are the (m + 1) roots of the polynomial

(3.6) @) = B+ Bor + -+ A+ Brr™ + 1"

Substituting (3.5) in (3.3) and (3.4), there results

-

( fo fl "'fm—l fm ( Bl ) /fm+1 )
fi J2 o Im Jmi1 B2 Fmi2
3.7 . . . . . + . =0,
fmt fm ot fomez Som—m Bm fom
\ fm fm+1 b 'f2m—1 f2m ) \ 6m+1 f2m+l )

with

fo= Dewar, L =01)2m+ 1).
(3.7) is a linear system of (m + 1) equations in (m + 1) unknowns. The square
matrix is X’WX, which is nonsingular, and hence (3.7) has a unique solution,
B; . This solution is not trivial, since it is readily seen that some f;, (m + 1) =
L £ (2m + 1), is not zero. The corresponding r; are then given by (3.6).

Thus, a method of determining the r; that satisfy (3.3) and (3.4) has been
prescribed. Accordingly, these r; make cg, zero in (3.2) as required. It will now be
shown that they are real and distinct.

That the r; are real is shown as follows. Since they are the roots of the poly-
nomial (3.6), complex r;, if any, must occur in conjugate pairs. Say that r =
by 4 bg and 7 = by — byt , with b; 3 0, the nature of the remaining roots being
unspecified. Since in (3.2), 1 is then zero, it follows that
(B8  Ycwd@e — b)’ + bil(ze — 75’ -+ @ — ) (@ — Tmir)” = 0.
Note that all factors in each term of (3.8) are nonnegative, and therefore,
equality to zero implies that all terms must be zero. But [(z. — by)* + b3] with
by ¥ 0 never vanishes, and (z. — r3)° + -+ (Te — Pm) (T — Tmy1)® can vanish for
at,most (m — 1) distinet x. . Since there are at least (m 4+ 2) distinct z. , it fol-
lows that (3.8) cannot be zero, and hence r; and . are not complex. The argument
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is the same for any other pair of roots, and hence, all the r; are real. That they
are distinct is shown similarly. Suppose 71 = r2 = b1, and again form ¢; , which
is now given by (3.8) with b, = 0. The arguments are as before. The terms can
now vanish for at most m distinct Ze, but since there are at least (m + 2) dis-
tinct z. , (3.8) with b, = 0 cannot be zero. Hence, all the r; are distinct.

Since the r; are distinct, it follows that the matrix R is nonsingular, and that
¢o being zero in (3.2) implies that (XR™)'W(XR™) = U is a diagonal matrix.
Since both XWX and R are nonsingular, it follows that no diagonal element
of U is zero. Further reference to (2.6) shows that the diagonal elements of U are

(xe — 7':)
(3.9) Z we II L=

and hence, all u;, are positive.

Thus, with U given by (38.9), XWX = R'UR. Smce the (1,1) element of
X'WX is the total information @ = D w., and since the (1,1) element of
R'UR is X_u;, it follows that @ = > u;. Inasmuch as it has been shown that
u; > 0, the u; may be considered a re-spacing of the total information @ at loca-
tions 7; .

To complete the solution of the problem, it remains to show that —1 < r; = 1.
Suppose that the r; are such that two or more of the r; are not in the closed
interval [—1, 1]. Say that r; and 7, are not in this interval. Since ¢z in (3.2) must
be zero, it follows that

(3.10) Ze We(Te — 1) (@ — 12)(Te — 7'3)2 v (@ — rm)z(xe - 7'm+l)2 = 0.
Consider that (r. — r1)(x. — 72) never equals zero and always must have the
same algebraic sign. Furthermore
(3.11) (xe — 7'8)2 s (@ — rM)z(xe - 7'm+l)2 =
Hence equality to zero in (3.10) implies that all terms must be zero. But

(e — )@ — 12)

can never vanish, and (3.11) can vanish for at most (m — 1) distinct «. . Since
there are at least (m + 2) distinct x., all terms in (3.10) cannot vanish. Thus,
two or more of the r; cannot be excluded from the closed interval [—1, 1], and
hence, it has been shown that m of the r; are in the closed interval [—1, 1].

Consider now the polynomial in (3.6) whose roots are the r; . In determinant
form this polynomial may be shown to be

1 7 e g™
e fi et fen
(3.12) o = SV S,

fm fm+1 M f2m f‘2m+l
where A = | X’'WX |.
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Evaluate ®(r) at » = —1 and r = 1. It will be seen that, for J = —1, 1,

fO - Jfl fl - Jf2 ce fm - me-l-l.
g fi — Jfz fo—Jfs <ot fotr = Jfmse

(3.13) (P(J) = -—A— . . . .
Fmn = Jfmtr Jotr — Ifmiz = Jom — Jfomn

Remembering the definition of f;, the elements of the indicated determinant
| H; | in (3.13) are of the form Yew(l — Jz)ze , L = O(1)2m, which shows
that

(3.14) H;, = X'W,X,
where W is the N X N diagonal matrix with diagonal elements w.(1 — Jz.).
Since min z. = —1 and max z. = 1, it follows that W, always has one diagonal

element equal to zero, all others being positive. Hence, from (3.14) it follows
that H; = X,V ,X,, where V,is the N — 1) X (N — 1) diagonal matrix
formed from W, by striking out the row and column corresponding to min .
for J = —1 and max z. for J = 1;and X, is the (N — 1) X (m + 1) matrix
formed from X by striking out the row corresponding to min z. for J = —1
and max x. for J = 1. Since there are at least (m + 2) distinct z., X has rank
(m 4 1). Also, since V; is diagonal with nonzero diagonal elements, Vs is non-
singular. It follows that the characteristic numbers of H; are all positive and
hence, | H; | > 0. Then, since A > 0, the following conclusions can now be made
concerning ®(J) in (3.13):

®(1) > 0, and ®() > 0,
(3.15) ®(—1) > 0 and ®(—«) > 0 for odd m,
®(—1) < 0 and ®(—») < 0 for even m.

It was previously shown that m of the roots r; are in the closed interval
[—1, 1]. (3.15) shows that —1 and 1 cannot be roots, and hence, it may be stated
that m of the roots are in the open interval (—1, 1). Furthermore, knowing the
sign of ®@(r) for r = —1, 1 and for sufficiently large values of | r |, it may be
reasoned that all r; are in the open interval (—1, 1) for one exterior root would
imply another..

In conclusion, it has been shown that for N > (m + 1), —1 < r; < 1. As
indicated in the preliminary discussion, for N = (m + 1), —1 = r; < 1. Hence,
—1 = r; £ 1 holds for all cases, and the solution of the problem is complete.

In summary, the r; are the roots of the polynomial (3.6); the polynomial
coefficients B; satisfy the linear system (3.7). The information located at each r;
is given by (3.9).

Two closing remarks are in order. Returning to (3.2), it may be noticed that
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the constraints (3.3) are sufficient to make U a diagonal matrix. The added
constraint (3.4) is sufficient to locate all r; in the closed interval [—1, 1]. To see
this, suppose (3.4) is not imposed. This is equivalent to striking out the last
row of X'WX in (3.7), leaving a linear system of m equations in (m + 1) un-
knowns. The rank of this system+s m, and hence, Bn+1 can be chosen at will.
Now, U being diagonal, that is, (8.2) vanishing, demands that m of the r; be
in the closed interval [—1, 1]. Accordingly, since Bm41 = — 2_r;, by choosing
| Bm41 | sufficiently large, a root can always be made exterior to [—1, 1].

It is of further interest to note that the results of this paper suggest an op-
timum spacing characteristic; namely: max r; — min r; £ max z. — min 2.,
the equality being necessary only for the trivial case N = (m + 1). Thus, with-
out triviality, the same information matrix can be attained by a lesser number of
locations in a shorter interval.

4. An application. The application of the results of this paper to the problems
listed in Section 1 will be indicated by considering an interval interpolation
problem for the quadratic.

Let m = 2, and permit N independent observations y(z.), ¢ = 1(1)N, of equal
variance o° to be taken in the specified interval 2, < 2. < zx . Let Y (£) be the
least squares estimator of P(£). The problem is to find the spacing of the N
observations that will minimize the maximum variance of Y (¢) forz, < £ < zx .

The variance of Y (¢) is *Y(§) = §(X’WX)™'¥. Whatever the optimum spac-
ing be, it will give rise to some matrix X'WX; let this be (X’WX), . From the
given results, it follows that there exists a matrix R'UR = (X'WX),. Since
m = 2,

1 rn nm 0 O
R=|(1 r ri] andU= [0 n, O ?‘1—2,
1 rs 73 0 0 mns

implying n; observations at r; satisfying ;, < r; < 2z, and > n; = N,j =
1(1)3. Hence, three locations suffice to establish the desired optimum spacing.

Let 7, be the average of the n; observations at r; ; let 7 be the column vector
(F1273)"; and let @ be the column satisfying the normal equations R'URa =
R'Ux. Since R and U are nonsingular, Ra = 7. Since Ra is the column vector
(Y (r1) Y(r2) Y(r3))', Y (%) passes through 7; at £ = r; . Hence, Y (¢) may be written
in the Lagrange form of Section 2,

(8 = r)(E — 1) _

e g+ (& —r)(E —m) _

(rs — r)(rs — 12) ’

(8 — r)(E — 19)

(re = 1) (rs — 13)

(4.1) Y =

J2 +

It follows that a*Y (r;) = ¢°/n;. For any such spacing, let omax be the maximum
variance of Y (£) in the interval. Then,

2 2
U'/nj = Omax )
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and thus,

0_2 3 1 9
4.2 + 20— = Omax-
“2) 3 ; n; 7

The minimum value of > 3 1/n; constrained by D.in; = N is found to be
9/N with n; = N/3. Hence, from (4.2),

4.3) 3¢’/N < min o2,x .

Note from (4.1) that ¢’Y (¢) increases as £ departs from the smallest and the
largest r; in direction of leaving the interval x; , zz . Hence, locate N/3 observa-
tions at z; and zx . Note that ¢’Y(£) has one differentiable maximum oceurring
in the interior of the interval. Locate N /3 observations at (x; + 2x)/2. From
symmetry, the differentiable maximum then occurs at (z; + zxz)/2. Hence, the
maximum ¢’ Y (¢) for 2, < £ < zg for the spacing r, =, r = (v + za)/2,
rs = &, n; = N/3 is 3¢°/N. The inequality (4.3) assures that this particular
spacing gives the desired minimum maximum variance, and that this variance
is 3¢°/N, for the equality has been produced.

This conclusion is directly applicable for N divisible by 3. For small N not
divisible by 3, a fine structure study, using 3¢°/N as basis for comparison, will
indicate an acceptable spacing with little increase in variance.



