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employing the symbolic notation of Section 3. By Theorem 2, the last member
of the above equation is seen to reduce to a Qi-variate with parameters
t(n — p — 1), 3p, so that (S/S’) follows the Beta distribution of the first kind
with parameters $(n — p — 1) and #p. This result has been obtained by Wilks
[4], by deriving expressions for the moments of thLe distribution of (S/8’).
The above is a simple and direct method of establishing the distribution of the
statistic (S/8').

From (5.6) it readily follows that (S/8’) is equal to 1/(1 4+ CD?%), so that
the latter is distributed as a @;-variate with parameters 1(n — p — 1) and 3p,
whence CD? is a By-variate with parameters 1p and (n — p — 1), leading to the
distribution as shown in (5.8).
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ON SOME FUNCTIONS INVOLVING MILL’S RATIO!

By D. F. Barrow anp A. C. Couen, Jr.
Unaversity of Georgia

1. Introduction and Summary. In this note, we prove that, for all (finite)
values of A,

s 1 —h(Z —h)

¢y v == Gz -
is monotonic increasing’, that

(2) 2mi — my > 0,

and that

@) 1 <y(k) <2,
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where Z is the reciprocal of Mill’s ratio,

@) Z() = e / f U g
h

and where m; and m, are respectively the first and second moments of a singly
truncated normal distribution about the point of truncation.

The function ¢(h) arises in connection with maximum likelihood estimation of
population parameters from singly truncated normal samples (cf. for example
[1] and references cited therein). The inequality (2) arises in connection with
three-moment estimates based on samples of the same type (cf. [2] and [3]).

2. Some preliminary results. To prove that (k) is monotonic increasing, it
is sufficient to establish that ¢/(h) > 0. Differentiating (4) gives

(5) Z' = Z(Z — h).

Using this result and differentiating (1), we obtain

(6) ¢ (h) = [RZ(Z — h)* — 3Z(Z — k) + 21/ (Z — h)*.
For subsequent use, it can be shown (cf. for example Sampford [4]) that
M 0<72 <1, ]hl—rvIz);o 7' =1, hEmw Z'=0,

® (Z—-h>0  lLm (Z—h =0 lLm (Z—h = w,
h—w

h——o0

© nZ-hn <1, lim h(Z — h) =1, lim h(Z —h) = —c.
h—o

h—>—c0

3. Proof that y’(h) > 0. Since from (8), (Z — h) > 0, a sufficient condition
that ¥/(h) > 0 is that

0(h) = [hZ(Z — )’ — 3Z(Z — k) + 2] > 0.
To prove this latter inequality, we first write 6(h) in the form
(10) o) = —Z(Z — h)* + ZXZ — h) — 3Z(Z — h) + 2.

Using (7), (8), and (9), it can be shown that lim,—.8(h) = 0. Therefore to prove
6(h) > 0, it would be sufficient though not necessary to show that ’(h) < 0.
Using (5), we find

(A1) 0'(h) = —Z(Z — h)* — ZX(Z — h)* + 2Z*(Z — h)* — 5Z°(Z — h) + 3Z.

Proof that 6'(h) < 0 does not follow readily, so we introduce the auxil-
iary function

(12) g(h) = ¢“o(h),
where .
(13) o) = — 4 2@ dz,
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and thus
(14) w'(h) = —Z(h).

Since ¢“® > 0, a necessary and sufficient condition that 6(k) > 01is that g(h) > 0.
It can be shown that lim;-«g(h) = 0, and consequently to prove 8(h) > 0, it is
sufficient to show that ¢’(h) < 0.

On differentiating (12), we obtain

(15) g(h) = e*P1'(h) — Zo(h)).
Again using the fact that ¢® > 0, it follows that ¢’(k) < 0 if and only if
(16) o'(h) — Zo(h) < 0.

From (10) and (11), we have
O(h) — Z0(h) = —Z(Z — h)* + ZXZ — h)* — 2Z*(Z — h) + Z
=Z{1ZZ —h) = 11— (Z - )"}
17) =Z{Z(Z—h) = 1= (Z =W }Z(Z - k) =1+ (Z = )"},
= Z{hZ — h) — 1}{(2Z — h)(Z — h) — 1}.
Sampford (loc. cit.) proved®
(18) 2Z — h)(Z —h) —1>0, for all finite A.

From (4), Z > 0, and from (9), h(Z — h) — 1 < 0. Therefore ¢'(h) — Zo(h) < 0,
and accordingly ¢'(h) > 0 for all finite h. With this result, the proof that ¢(h)
is monotonic increasing, for all finite &, is complete.

4. Proof that 2m; — m, > 0. As shown in [1], m; and m, may be expressed as

(19) my = olZ —hl, my =l —h(Z — h)],
and it follows that
(20) 2m; — my = o’[2(Z — ) + h(Z — h) — 1].

Since ¢® > 0, it is sufficient to demonstrate that the expression within brackets
on the right side, above, is positive. After certain simplifications, we obtain

2(Z =)'+ hZ —h) — 1] = [(Z — h)(2Z — 2h + h) — 1]
? =[(2Z — h)(Z — h) — 1] > 0,
which is Sampford’s inequality (18), and the proof is complete.
6. Proof that 1 < ¢(h) < 2. From (19), (5), and (7), it follows that
my — mi = o’[l — Z(Z — h)] = *(1 — Z') > 0.

(k)

s This inequality can also be established by employing the multiplier ¢’ in a role

similar to that in which it appears above.



408 ABSTRACTS

Using this result and inequality (2), which was established in Section 4, we have
m; < my < 2m] , and the required result follows immediately on dividing by m; .
We also note that limy—_o(h) = 1, and lims~o(h) = 2. Thus no narrower
limits can be found. To obtain these limits, we use the result, limy~_«Z/k = 0,

0 —1
which follows from limy,_wZé"*/? = [ [ e dt] = (V/27)"". Thereby we have

oo

. . o R —Z/h+1_0—-0+1_
i y(h) = lm Z/h -1 (0 -1y =1

and
M — h(Z — h)]
eu(h)(Z —_— h)z

which is indeterminate of the form 0/0 as given. Using L’Hospital’s rule and
making certain obvious simplifications, we obtain

lim (k) = lim
h—~o h~c

-2 -2

iy Sl we Sl

lim y(h) =
h—0
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1. Confidence, Region Procedures Based on the Logarithm of the Likelihood.
Carn R. OumaN, Princeton University.

Let f(z, 8;) be a probability function where 6, is one of a set of permissible parameter
points 8 = (6, --- , 6) contained in some subspace of R . A sample (21 , --- , a) of size n
is observed and a set of k functions, ¢; = (1/4/%) iy kiLs j=1, .-+, h <mn,computed,
where L; = 9dlogf/d6;, f = Ilii f(z:, 6), and the ki; are chosen so that E(p;) =
0, E(pip;) = &:; . For a given sample, the ¢; are functions of 6, and (¢1(8), -+ , ¢x(8)) is a
point in the pivotal space ® C R; . If a region W can be constructed in & so that
Pr#{(e;1, - -+ ,¢n) € W} = « independently of 8, , the corresponding region in the parameter



