SEQUENTIAL PROCEDURES IN CERTAIN COMPONENT OF
VARIANCE PROBLEMS!

By N. L. Jounson
University of North Carolina and University College London

1. Introduction and Summary. The primary purpose of this paper is to
discuss certain sequential procedures for discriminating between two values for
the ratio of variance components in a simple one-way classification. In order to
clarify the presentation of the three procedures discussed, they will first be
applied (in Section 2) to the problem of discrimination between two values for
the ratio of variances in two distinct normal populations. The arguments in
Section 3 closely parallel those in Section 2, and the form of the two sections has
been made as similar as possible, to emphasize this parallelism. Section 4 contains
some formulae used in calculating approximate average sampling numbers
presented in the earlier sections.

2. Comparison of two variances. Let II; , II, be two normal populations with
variances o1, o5 respectively. It is desired to discriminate between the hy-
potheses H'(¢1/c3 = ¢') and H”(s1/os = 6”). It has been shown [1] that the
following sequential procedure (I) will give approximate probabilities o’(a”) of
choice of H”(H') when H'(H”) is valid.

Procepures (I). “Start by taking samples of two (21 , %12 ; a1 , Z22) from II; , II,
respectively. At each subsequent stage (if required) one further individual is
taken from each population.

“At the (n — 1)st stage calculate

(1) gn = é (21 — &)’ ; (9; — E2)%
Accept H' if p(gn | 0”)/p(g | 6) < A.
Accept H” if p(g. | 6")/p(g. | 6') > B.

Otherwise proceed to the nth stage.”
In the above statement A = /(1 — &), B = (1 — &”)/a’; and

e SO
@) P19 = g =D I =) @+

so that
P(gn | 07)/D(gn | 0) = (07/0) 28" + gu)/(8” + gu))"

The validity of procedure (I) can be demonstrated by showing that it is
equivalent to a sequential likelihood ratio test based on the sequence {g.}.
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358 N. L. JOHNSON

These variables, however, are not independent and do not have a common dis-
tribution so that the approximate formulae for the ASN (average sample num-
ber) given by Wald [2] cannot be applied. Two alternative procedures, (II) and
(I1T), will now be described. It is poss1ble t0 use the approximate ASN formulae
for these procedures.

Procepure (II). “At each stage take a sample of r individuals from each of
II; and II, . Calculate g. by (1) for these 2r values and call it g,,, if based on the
sample available at the nth stage.

Accept H' if I_I [p(g-.; 18" /p(g... | 6)] < 4
Accept H” if JI;I1 p(g.,;|0”)/p(g..;|6)] > B.

Otherwise proceed to the (n + 1)st stage.”
In the above statement p(g,,; | 6) is given by (2) with ¢, replaced by g.,, and
n by r. Hence

ﬂ p(gr j [ 0,,)/p(gr J l 0,) = (0”/0,)%1”("—1) ﬁ ((0, + gr, j)/o,/ + gr, j))’_l

PROCEDURE (IIT). Here we use the same samphng scheme as in (I), but a
different decision rule.

“Start by taking samples of two (211 , %12 ; T2 , 22) from II; , II, respectively.
At each subsequent stage (if required) one further individual is taken from
each population.

“At the (n — 1)st stage calculate

(3) gln = (9611 + 22 + -0+ Tien — (n — l)xxn)'z/
(le + X + - + T2, (n—1) — (n - 1)$2n)2-

Accept H' if [1 (p(g310")/p(i107] < 4. -
=

Accept H” if II tp(a316") /2 16)] < B.
7=

Otherwise proceed to the nth stage.”

In the above statement
€Y : p(gi | 6) = p(g2 | Dars; for all j
where p(gz | 0) is defined as in (2), so that

n n\3i(n—1) _n
It 109/ 1001 = (5) 7 T + /0" + 6.

In Procedure (II) the g, s are evidently mutually independent and have a
common distribution. In Procedure (III) the quantities

Yoi= @n+ e+ - + 2egn — G — D)/ V5iG = 1)
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are mutually independent normal variables [3] each with expected value zero
and variance o}(t = 1, 2). Hence the ¢7’s are mutually independent and have the
common distribution (4).

In both (II) and (III) therefore we can use Wald’s approximate formulae
for the ASN. The results of applying this formulae are given below in (6) to
(9). In these formulae

a=alogB+ (1—a')logA; b==a"logd + (1 — &”)log B

and
E(1, v2;0) (
(12 © -1 7\ 2 ’ 3 (r1trg)

Y cmw et [) ) e

For Procedure (II), the approximate ASN are
(6) 2ra/E(r — 1,r — 1; ¢), when H’ is true,
) 2rb/E(r - 1,r — 1;0"), when H” is true.

For Procedure (III), the approximate ASN are
8) 2 + 2a/E(1, 1; 6), when H' is true,
9) 2 + 2b/E(1, 1;07), when H” is true.

Table I shows the ASN calculated by these formulae and also the sample
sizes required by the fixed sample tests having the same values of o’ and o«”.
In the cases shown in the table o’ = ” and in the present instance this implies
that the ASN will be the same when either H’ or H” is true; this common value
is shown in the table.

Comparing (6) with (8), or (7) with (9), we see that the ASN for (II) with
r = 2 will be almost double that for (IIT). This is to be expected since (IT) with

TABLE 1
o' =a” =005 o' =a” =001
Procedure
07/ =2| 25 3 o7/ =2 25 3

(I r =2 355.0 | 203.8 | 142.3 | 602.8 | 346.0 | 241.6
(II);r =3 ©200.2 | 115.2 80.6 | 339.9 | 195.6 | 136.9
) r = 4 158.4 91.3 64.0 | 269.1 | 155.1 | 108.7
I)r =6 128.7 | 74.3 52.2 | 218.6 | 126.3 88.6
I r = 12 106.7 61.7 | 43.4 | 181.3 | 104.9 | 73.8
(II)r = o 90.0 | 52.2 | 36.8 | 152.8 | 88.7 62.6
(I1II) 179.5 | 103.9 73.1 | 303.4 | 175.0 | 122.8
Fixed sample 184 108 76 328 212 150
Girshick 89.3 51.6 | 36.2 | 150.5 | 86.3 60.2
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= 2 neglects all comparisons between successive groups of 2 observations from
each population. As r increases, the proportion of neglected comparisons di-
minishes and the approximate ASN also diminishes. When the ASN is not large
compared with 2r, the number of additional observations obtained at each
stage, the values have of course odly a formal significance. It is however of
interest to note that as r tends to infinity, the approximate ASN tend respec-
tively to limiting values of

’ ”y2 ’ ”y2
e AN :(;,;,) ; 4b/ log @+ o) 4;:03 L,
These values are shown in Table I on the line »r = . It may be conjectured
that these values might, in fact, be related to the approximate ASN for Pro-
cedure (I). It will be noted that they are considerably lower than the figures
for (II) with r equal to 2 or 3, or for (III). These latter are in fact only slightly
lower than the fixed sample sizes, and it is likely that when 6 lies between 6’
and 6” the ASN for these schemes would substantially exceed the fixed sample
sizes.

Girshick [3] has constructed a test discriminating between the hypotheses

H(o1 = 03, 02 = 03) and H” (61 = 03 , 02 = o3).

(10) —4a/ log

This test is based on the inequalities
log 4 < %[(a({)'2 — (ag)_z] 22 (Wi — y2) < log B.
=

The application of this test requires a knowledge of the actual values of ¢} and
o2 , not only the ratio 6° = (¢}/0%)’. However the formula for the approximate
ASN depends only on this ratio. It is

2 — 4a/[(6°)* + (6% — 2]if H’ is true,

and —b replaces a if A” is true.
The ratio

<f’ﬁ ) _ (01/09)® when f” is true
o (01/02)? when H’ is true

is equal to (6°)”. Hence if we take 6° = +/§”/§’ we can compare the approximate
ASN for Girshick’s test with those for the various procedures described above.
Such ASN values are shown in the last line of Table I. It is to be expected that
they will be .smaller than corresponding ASN for the other procedures, since
(i) o} and o3 ‘must be known to apply Girshick’s test, and (ii) the test is a se-
quential probability ratio test based on the independent pairs of random vari-
ables (y1; , y2;). The closeness of the ASN’s for Girshick’s test and for Procedure
(IT) with r = « is noteworthy.

3. Comparison of variance components. We will consider a one-way class1ﬁca-
tlon by groups and denote the mtemal (within-group) variance by o and the
external (between-group) variance by o . This means that if ;; is the sth ob-
servation from the ¢th group then z,; = A + u, + 2, where the w’s and 2’s are
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mutually independent normal variables each with expected value zero and
variances og , o respectively; 4 is a constant. It is desired to discriminate be-
tween the hypotheses H'(0s/¢° = &) and H”(s3/s" =" 6”) with risks of error
o', o” as defined in Section 2.

Procedures analogous to (I) and (II) above have been discussed in [4]. There
are two simple alternative ways of constructing sequential procedures in this
problem: (a) taking a fixed number, k, of groups and, at each stage taking one
further additional observation from each group; (b) at each stage selecting
(at random) a further group (or set of r groups) and taking a fixed number,
m, of observations from each group. It was found in [4] that Procedure (I) used
in conjunction with (a) will not terminate with probability one unless &’ (or §”)
is equal to zero. Procedures (II) and (III) are not applicable in conjunction with
(a) as the successive sets of observations are not independent of each other.
~ This section will be concerned exclusively with sequential procedures constructed
according to system (b).

Procepure (I). “Start by taking two groups and m observations in each
group. At each subsequent stage (if required) one further group is chosen and
m observations taken in it.

“At the (n — 1)st stage calculate

(11) Gn=m ,Za; @ — 2/ ; ; (e — &)™
Accept H' if p(G. | 6")/p(G. | 0') < A.
Accept H” if p(G. | 07)/p(G. | &) > B.

Otherwise proceed to the next stage.”
In the above statement ¢ = 1 + md’, 6” = 1 + md”"

and
0%» (m—1) G;}n—S)

(12) p(Gnla) = BG(n — 1), In(m — 1)) : (6 + Gy)¥wm—D
so that
p(Gn | 0)/pGn | 8) = 16"/67"" (¢ + G/ (8" + G ™.

The validity of Procedure (I) can be demonstrated by showing that it is
equivalent to a sequential likelihood ratio test based on the sequence {G.}.
As in Section 1, Wald’s approximate formulae cannot be applied in this case.

Procepure (II). “At each stage take a sample of r groups and take m ob-

servations in each group. Calculate G, by (11) for these mr values and call it
G, if based on the observations taken at the nth stage.

Accept H' if I |l [p(G..;16")/p(G,,;]0)] < A.
o

Accept H” if | I1 [p(G..;16")/p(G, ;| 6] > B.
=

Otherwise proceed to the (n 4 1)st stage.”
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In the above statement p(G;,; | 6) is given by (12) with G, replaoed by G..;
and n by r. Hence

LII [p(G..;16")/p(@G..;16)] = (0" /6" " I=I1 (@ + G..)/0" + G, )™,

Procepure (III). “Start by taking two groups and m observations in each
group. At each subsequent stage (if required) one further group is chosen and
m observations taken in it. )

“At the (n — 1)st stage calculate

Grn=m@E + T+ -+ Ty — 0~ 1)F)/nln — 1) gl (Tns — &)

Accept H' if II2 p(@G; | 8”)/p(G; o] < A
e

Accept H” if I |2 [p(G;|6”)/p(G;]6)] > B. )
e

Otherwise proceed to the nth stage.”
In the above statement

(13) p(@; 1) =

i (m—1) ’—}
t97 3

BG,im—1)) @+ )

A o">] _ (0_”)*‘""”'"“’ : [w' + G')Tm
{5 %] - @ I +a)
(Note that the equation analogous to (4) does not hold.)

In Procedure (II) the G, ;s are evidently mutually independent and have a
common distribution. In Procedure (III) the quantities

=Vm@+ &+ 0+ T~ (G = DE)/VIGFTD)
are mutually independent normal variables each with expected value zero and
vagance o° + mo, . Hence the G3’s are mutually independent and have the
common distribution (13). In both (II) and (III) therefore we can use Wald’s
approximate formulae for the ASN. The results of applying these formulae

are given below.
For Procedure (II), the approximate ASN are

so that

(14) : mra/E(r — 1, r(m — 1); ¢"), when H’ is true,

(15) mrb/E(r — 1, r(m — 1); 6”), when H” is true.
For Procedure (III), the approximate ASN are

(16) m + ma/E(l,m — 1;6), when H’ is true,

17) m 4+ mb/E(1, m — 1;6"), when H” is true.

Table II shows the ASN calculated by these formulae and also the sample
sizes required by the fixed sample tests having the same values of o’ and «”.
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As r increases the ASN of (II) decreases. As r tends to infinity the values given
by (14) and (15) for the approximate ASN tend respectively to

2ma
0// /
(m— ].) log +7n10g(——17———‘0”_|_0,,
(18)
2mb
” 14
0 (m — 1)¢ + 6
(m = 1) log % + mlog = DAL
These values are shown in Table II on the lines r = .
TABLE II
True o' =a' =005 o' =a' =0 .01
8’ 8'" [Hypoth-| Procedure _
esis m =2 3 4 5 6 7 m=2 3 4 | 5 6 7
0 1 H D r=2 | 93.0, 69.00 64.0/ 63.6| 64.8] — 1580 ur.2 1087 107.9; 110.1} —
=3 | 5.4 40.6 46.7 46.8 — | — |111.0 84.2 79.3 70.4 — | —
(I)r = o | 36.8] 30.4 20.6| 30.1] 31.1 32.4 62.6] 51.6] 50.2] 51.1] 52.9| 55.0
(I1I) 73.1) 48.2 42.5| 41.5| 42.0| 43.4] 122.70 79.8| 69.5| 66.9| 67.2| 68.7
H” D r=2 | 84.7 512/ 40.1 34.6f — | — |143.8 86.9| 68.0, 58.8] — | —
@)r=3 | 60.8 36.9| 28.6 2.1 — | — |103.3 62.6 48.6] 42.6) — | —
(I)r = | 36.8] 22.9] 18.2] 15.8 14.4] 13.4] 62.6] 30.0; 31.0, 26.9| 24.4] 22.7
(III) 73.1| 42.8] 33.8| 29.9| 28.1 27.2, 122.7] 70.5| 54.5| 47.3| 43.5 41.3
Any | Fixed 76 | 57 | 52 | 55 | 54 | 56 {150 | 111 | 100 | 95 | 96 | 105
0 2 | H anr=2 | 45.5 37.91 38.0| 30.7] — | — | 77.3] 64.4| 64.5 67.4 — | —
D) r = | 18.00 17.0] 17.8] 19.0{ 20.4| 21.7; 30.6| 28.8| 30.2| 32.3| 34.6] 36.9
(III) 35.6| 27.1 26.2| 27.2| — | — | 59.0 43.9] 41.8| 42.8) — | —
H" anr=2 | 30.3 25.2| 2.6 18.2] — | — | 66.7] 42.9| 35.0 31.0 — | —
)r = | 18.0] 11.8] 9.6| 8.6 7.9| 7.4/ 30.6 20.0{ 16.4 14.5| 13.4| 12.6
(III) 35.6) 23.2| 19.8 18.6 — | 9.0/ 37.2] 30.8) 28.2| — | —
Any | Fixed 38 | 33 | 32 | 35 | 36 | 42 | 72 | 57 | 56 | 55 | 60 | 63
1 2 | H () r =2 | 417.6| 379.7| 404.0| 443.6] — | — | 709.1 644.8| 686.0, 753.3] — | —
) r =3 | 201.4] 271.5| 202.7| 323.9] — | — | 494.9] 461.1| 497.1| 550.0 — | —
() r =4 | 248.9] 235.8| 255.6| 284.1] — | — | 423.0[ 400.6| 434.4 482.7| — | —
(1) r = o | 164.3] 163.7| 181.7| 204.5| 229.2| 254.7| 278.9| 277.9| 308.6| 347.2| 389.1| 432.5
() 327.9| 264.8| 263.0| 276.3| 295.7| — | 555.3) 447.5| 443.8| 465.7| 497.9] —
H” ()1 =2 |397.7| 335.4] 338.4| 357.3| — | — | 675.4 569.6| 574.7| 606.8) — | —
(D) r = 3 | 280.3| 240.0| 244.2] 250.2) — | — | 476.1) 407.5! 414.7) 440.1| — | —
() r =4 | 241.4] 208.2| 212.7) 226.5) — | — | 410.2] 353.8| 361.4| 384.8| — | —
(I1) r = o | 164.3| 159.3| 149.8 161.0| 174.6| 189.4| 278.9] 270.5| 254.5| 274.3| 296.5| 321.6
(I1I) 327.9| 251.2| 238.9! 242.2| — | — | 555.3| 424.5| 402.9| 407.9] — | —
Any | Tixed 332 | 312 [336 |30 | — | — |664 j624 |672 [740 | — | —
1 3 | B (T r =2 | 155.1| 148.3! 162.5| 181.9] — | — | 263.4 251.8| 275.9| 308.8| — | —
(Iyr = o | 60.8] 64.4 73.8 84.6| 96.0| 107.7] 103.2) 109.4! 125.3) 143.7| 163.1] 182.9
() 121.0| 103.0| 105.8' 113.8] — | — | 204.1] 172.7| 176.8| 189.7] — | —
H” anr=2 | 143.2 121.2 122.1! 128.6] — | — |243.1! 205.9] 207.3] 218.3) — | —
(D r = | 60.8 527 54.3 57.9| 62.4] 67.4 103.2| 0.0, 92.2 98.3) 106.0} 114.5
. (1) 121.0 94.7, 90.9] 92.7] — | — | 204.1' 158.8{ 151.6, 153.9| — | —
* |
t
Any | Tixed 124 | 120 |132 | 180 | — | — | 246 1234 256 285 | — | —
, ,
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It may be conjectured that these values might, in fact, be related to the ap-
proximate ASN for procedure (I).

For any given value of m, comparisons between Procedures (II) and (III)
and the fixed sample procedure are mostly similar to the comparisons in Section
2, where variances in two different populations were being compared. However
there is, in the present case, the pessibility of choosing a most suitable value
for m. Except for Procedure (II) when H’ specifies 8 = 0 and the counter-
hypothesis H” is true, the figures shown in Table II indicate the existence of a
minimum ASN corresponding to a fairly small value of m. In the exceptional
cases just described, the approximate ASN formulae give results which decrease
as m increases. Since the minimum possible sample number 7 is in fact mr there
will be, however, a value of m for which the ASN is actually minimized in these
cases also, though it may be expected to be rather higher than in the other
cases of Table II.

Usually the cost of choosing a further group and the cost of taking an ob-
servation within a group will both enter the calculations so that the minimiza-
tion of the ASN may not be a primary objective. If, for example, the second of
these two costs is much smaller than the first, then values of m rather larger
than those minimizing the ASN would be preferable.

4. Formulae used in calculation of approximate ASN. The evaluation of for-
mulae (6) to (9) and (14) to (17) (leading to Tables I and II respectively) in-
volved the calculation of the quantities E(v; , v2; 6). The formulae used in these
calculations are recorded in this Section. From (5)

n + v g2
2 B@n, i)
@ g%vl—l 1 0; + g
“h 0 F gt
Expanding the logarithm in the integrand in various ways, the following
expressions for E(v; , vy; 6) are obtained:

v+ v S 1 Vz(V2+2) (V2+2j—2)
2 =1 it (mFre+2/—-2)

V4
‘ EQ, ve;0) = gloggT +
(19

14

0//
2
5 g +

(20) 0,, j 0, j 0” 0[
.[(1__0_) —-(1—0—)] for0<~(—)-§2; 0<0—§2-
y_llg(l_'_m-i—rlzwl_ npr+2) - 2 —2)
@ 0" 2 =17 (iAo (v 25 —2)

j J
[(1—501) —(1—2_,)] for0 < 8/6” <2; 0<0/0 <2

With 6 = ¢, (20) gives an expression for E(v,, ve; ¢) valid for
0 < 07/¢’ < 2; (21) gives an expression valid for 0 < ¢'/¢” < 2. Thus one or
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the other will always be valid, sometimes both. When both are valid, one of the
two is usually much more rapidly convergent than the other. In some cases it
is advantageous to expand log (6”/6’) in powers of (1 — 6”7/6') or (1 — 6'/6")
and to combine the two infinite series into one. For example, one formula ob-
tained from (20) in this way is *

E(Vl,llz;o,)
. w1 (v2+2)<u2+4)---(m+2j—2)]( )
22) = —1p 3 21—
@2) ”]L;j[l h+mt2 - mFnt2 -2
(for0 < 6”/6 < 2

6. Comments. The following remarks are intended to elucidate certain points
of detail which have been omitted in Sections 2 and 3, where the development
was more or less formal.

In the successive stages of each of the procedures described it would usually
be more convenient to take logarithms in the inequalities which are used. Thus,
for example, in Procedure (IIT) of Section 2 the function

]_Z;z llog (&’ + g7) — log (6" + g2)]
can be compared with the critical limits

logA — 3(n — 1) log (6”/6¢'), log B — %(n — 1) log (8”/9').

In Section 3, Procedure (III) could be modified by using D jm1 2 =1 (@ —
%,)* in the denominator of Gz in place of Y w1 (z2; — %)° and altering p(G; | 6)
accordingly.' The approximate ASN formulae (16) and (17) would not apply,
of course, but the ASN of the modified test presumably would be less than that
of the original test.

It is likely that Procedure (I) will be preferable to either (II) or (III) even if
the ASN are not as small as the values given by the conjectural formulae (10)
and (18). Procedures (II) and (III) are not here proposed as serious alterna-
tives to (I) but rather to provide a background to help in assessing (I).

In the case & = 0 of Section 3 there is the further alternative of using a sam-
pling scheme based on a fixed number of groups and an increasing number of
observations in each group, following a sequential procedure analogous to (I).
While often this will be preferable, for practical reasons, it appears intuitively
that the ASN of such a procedure will exceed that of procedure (I) of Section
3 based on increasing the number of groups.

For higher order hierarchal classifications (e.g. observations ;; of structure
e = A + v; + wi; + 2:) the problems are similar to those studied in this
paper. There will, of course, be more variables in the choice of procedure. Just
as the number of observations per group was an added variable in Section 3
‘as compared with Section 2, so there will now be the added variable of the
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number of second-order (w) groups per first order (v) groups, and similarly for
higher order classifications.
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