A DISTRIBUTION-FREE TEST FOR REGRESSION PARAMETERS

By H. E. DanieLs
Cambridge University, England, and University of Chicago*

1. Introduction and Summary. Brown and Mood [1], [4] have recently given
convenient distribution-free methods of testing and setting up confidence
regions for the parameters of a linear regression model. Their technique, which
is based on the use of medians, allows the parameters to be considered singly
or simultaneously as required. Theil [5] gives two methods of constructing
confidence intervals for single parameters, a ‘‘complete’”’ method using rank
correlation which is valid under the conditions assumed by Brown and Mood,
and an ‘“‘incomplete” method valid under wider conditions but not making
full use of the data. For several parameters simultaneously, he obtains con-
fidence regions in the weak sense of covering the true parameter point with
probability not less than an assigned value.

In the present paper we give a new distribution-free test for the hypothesis
that all regression parameters have specified values, assuming only that the
residuals are independent and have probability 1 of being positive or negative.
It can be used to set up exact confidence regions for the true parameter point.
The new test avoids a defect which is shown to appear in the corresponding
Brown and Mood test when the sample is not large. The distribution of the test
statistic is found explicitly only for the case of two parameters, though in prin-
ciple the idea extends to any number of parameters. The presence of repeated
values of the independent variable necessitates certain modifications in the test,
and a method of computing the appropriate distributions in such cases is de-
scribed.

2. The m test. Suppose we have n pairs of observations (z;, ¥:), ¢ = 1, 2,
-, n, from a bivariate population such that

(2.1) yi=a+ Bz + &

where «, 8 are unknown parameters and the e;’s are independently distributed
errors such that Pr(e; > 0) = Pr(e, < 0) = 3 for all 7. The z,’s are assumed to
have assigned values, supposed for the present all to be different and arranged
in increasing order. By the usual argument the test we obtain will still be valid
if the z’s have any joint distribution provided that for every set of z;’s the
conditional distribution of the e’s satisfies the above conditions. We wish to
test the hypothesis that « = ag, and 8 = S, .
Rewrite (2.1) in the form

(2.2) a=(—z)8+yi— €.
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500 H. E. DANIELS

In the (8, @) plane (2.2) defines n straight lines with successively decreasing
gradients —z;, —2s, +++, —Z,. On the null hypothesis all these lines must
pass through the point (8y, as). The ¢;’s are, however, not known and we con-
sider instead the n lines

(2.3) a= (—z)B + y:

which are parallel to the corresponding lines of (2.2). In general they are not
concurrent but partition the plane into %(n’ + n 4 2) polygonal regions of which
2n are open regions extending to infinity and the remaining 3(n — 1)(n — 2)
form a set of contiguous closed regions (see Sec. 7). Each line passes above or
below the point (8, ag) according as the corresponding e; is positive or negative;
under the null hypothesis either event is equally likely.

So, speaking crudely, one expects that for typical samples the point (8o, ao)
will be situated somewhere near the middle of the set of closed regions rather
than in or near one of the open regions. This idea motivates the following test
procedure. Assign a score to each region equal to the minimum number m of
lines which have to be crossed to escape from it into one of the open regions.
Reject the hypothesis @ = oy, 8 = B if the score m for the region containing
(8o , ap) is significantly low. We shall refer to this test as the m test.

3. Characterization of regions. Let s; = sgn ¢, = sgn (y; — a — Bz;). We call the

ordered array of signs s;, S, -+, S, the signature of the sample under the hy-
(%4 5 ]
3
) B

Fia. 1
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pothesis (8, a). Each of the polygonal regions in the plane is characterized by
the signature which the sample would have if the point (8, ) lay within it. We
call this the signature of the region.

All 2" possible combinations of signs are equally likely, though only
1(n® + n + 2) of these appear as signatures of regions for a particular sample.
But the 2n open regions must each bear a characteristic signature whatever
the sample chosen, since a point (8, &) can always be found sufficiently far out
in an open region for the signs of the corresponding e¢;’s to be unaffected by any
given parallel displacements of the lines. In particular there is one open region
lying between lines 1 and » for which the ¢;’s are all positive, and a conjugate
open region on the other side of the figure lying between the same two lines
for which the ¢/s are all negative. Starting from each of these regions we can
perform a clockwise tour of the open regions, changing the appropriate sign
whenever a line is crossed. In this way we obtain the following n pairs of con-
jugate signatures characterizing the open regions, numbered according to the
last line crossed:

1 =4+ +++ +—— == :
2 |- =4ttt At —— - :
3 | —— =ttt - —

3.1) T
n—2—— = - +4 -
n—1|—— == +i o e+
noJ—— = — =

The signatures of the closed regions can be filled in similarly. Fig. 1 shows a
particular set of signatures for n = 5. As each successive line is crossed in es-
caping to an open region from the point (8, ao), the signature of the region
traversed changes by one sign at a time. The score m for the given sample must
therefore be the minimum number of sign disagreements between the sample
signature under (8, ap) and any of the 2n signatures (3.1).

4, Distribution of m. We now derive the distribution of sample scores. Let
t;, ¢ be the numbers of sign disagreements with the sth pair of conjugate signa-
tures in (3.1). Obviously ti = n — ¢; and the sample score is m =
min; min (¢;, » — ¢;). This cannot exceed 3n, and in fact is proved later not to
exceed [3(n — 1)]. We require P,(my) = Pr(m =< my) where

4.1) 1 — P.(mo) = Pr(m > mp) = Pr(my < t; < n — my, all 7).

The method of arriving at the distribution is most easily understood from an
example. Suppose n = 11 and the sample signatureis + + — + — — 4+ + + —
+. Comparing it in turn with the signatures (3.1) we get the values of ¢;, ¢;
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shown in the following table
i1 23 4567891011
s | ++ -+ -—-+++ -+
|5 6 5 6 5 4 5 6 7 6 7

t:16 5 6 5 6 7 6 5 4 5 4
121012 3 2 3.

The score is m = 4. The last row of the table gives the values of the cumulative
sum w; = 8§ + 8 4 -+ 4 s;, where s; is interpreted as 4-1.

In the general case it is evident that if ¢( =t,) is the total number of negative
signs in the sample signature, {; = ¢ + w; . In particular, t, = n — ¢ = ¢ + w,.
Since mo < t, < n — mg is equivalent to my < ¢ < n — my, (4.1) may be re-
written in the form

n—mo—1

Pr(m > me) = 2, palt, mo)

t=mp+1

(42) Primy <t4+w, <n—my, ¢

Il
-
N

3

|
=

pn (ty mo)

Now pa(t, mo) is just the probability that, starting at the point ¢ and proceeding
by independent equally likely random steps of =1, one arrives after n steps
at the point n — ¢, having avoided absorption on boundaries at the points
mo, n — myp. Solving the random walk problem in the usual manner [3] we
find

(43)  palt, mo) = 21,, :é, {(t + j(: - 2m0)> h (mo + j(z - 2’m0)>}

Hence, after some reduction,

2m0) w >
4.4 » = . )
(t4) P (o) 2""]l :z>:o <(n = mo) + j(n — 2my)
the series terminating at j = [mo/(n — 2my)].
Confidence regions for (8, «) with confidence coefficients 1 — P,(m) are

provided by the polygons made up of all regions for which m > mq. In par-
ticular P,(0) = n/2"" is the chance that (8, &) lies in an open region, as is
otherwise evident from the fact that the open regions account for 2n signatures
out of the 2" equally likely possibilities. So the largest closed polygon formed
by the lines is a confidence region for (8, a) with coefficient’ 1 — n/2""

The maximum possible value® of m is [{(n — 1)]. For when n is odd, say

2 This result was given in [2] for a particular case of the model (7.1) below.
3 L. J. Savage points out that this is an immediate consequence of the fact that any
transversal parallel to one of the lines crosses the n — 1 remaining lines.
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n = 2k + 1, we have

_ 1 2+ 1) _ 1 R/(2k+1)_
pasr(k) = 527,@0(10 +5+ 1> T eH gﬁ J -b

so that m = k. On the other hand when » is even, say n = 2k,
1 \ 2k 1 2k — 1 2k — 1
pulk =1 = g 2 (k +2 + 1) B FZ{(k + 2j>+<k + 2+ 1)}

1 2k—1>_ 1 25 2k—1)_1
2% £=) k43 B poer j -5

sothatm < k — 1. Hence m £ [§(n — 1)] in all cases. Equality is, however, not
necessarily attained in every sample. In the example of Fig. 1,7 = 5 but m = 0
or 1 only. By moving line 4 parallel to itself until it passes beyond the in-
tersection of lines 3 and 5, a region is formed for which m = 2. .

Values of P,(mg) for n ranging from 3 to 30 are given in Table I. When » is

It

TABLE I
P,(mo) = Pr(m £ my), Cf. Equation (4.1)

\\mo 0 1 2 3 4 5 6 7 8 9 10 11 12 13
n
3 750 1.0
4 .500 1.0
5 322 .938 1.0
6 188 .750 1.0
7 .109  .547 .984 1.0
8 .063 .375 .875 1.0
9 .035 .246 .703 .996 | 1.0
10 .020 .156 527 .938 | 1.0
11 .011  .097 .376 .806 999 1.0
12 .006 .059 .258 .645 | .969 1.0
13 .003 .035 .171 .489 | .873 1.0 1.0
14 .002  .021 111 .356 | .733 .984 1.0
15 001 .012 .071 .250 583 .917  .999 1.0
16 0 067  .044 171 444 800 .992 1.0
17 0 004 .027 .114 327 .661 .944 1.0 1.0
18 .002 .016 .07 233  .523 .850 .996 | 1.0
19 .001  .010 .048 163 .399 .725 .964 | 1.0 1.0
20 .001  .006 .030 L1100 .296 L5911 .887 .998 1.0
21 0 .003  .019 074 .214 .658 .776 977 1.0 1.0
22 0 .002  .012 049 .151 .356 .651 916 .999 1.0
23 .001  .007 032 .104 .265 .526 .818 .985 1.0 1.0
24 .001  .004 .020  .071 .193 .413 L7010 .937 1.0 1.0
25 0 003 013 .048 .137 .315 580 .853 .990 1.0 1.0
26 0 002 .008 .031 .096 .235 .466  .745 .952 1.0 1.0
27 .001 .005 .021 .066 .172 .364 .629 .880 .993 | 1.0 1.0
28 .001 .003  .032 .045 .124 278 515 .782 .964 | 1.0 1.0
29 0 .002  .008 .030 .087 .208 .410 .672 .903 .996 1.0
30 0 001 .005 .020 .061 153 .320 .560 .814 973 1.0
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large (4.4) approximates to

= 1
4. (me) ~ —= exp[—3(2j ’
(4.5) Palmo) 42074:.:,)\/-2;9)(13[ 32 + 1%
where 2z, = (n — 2mo)/A/n. The 5 per cent and 1 per cent values of z are
3.023 and 3.562, respectively.

6. Comparison with the Brown and Mood test. It is of interest to compare
the m test with the corresponding Brown and Mood test ([1], p. 407) which is
valid under the same assumptions. For convenience we suppose n to be even.
Brown and Mood separate the observations into two groups of 3n according
as the z;’s lie below or above the median. Putting @« = a, and 8 = S, they
count the numbers 7, , 7. of positive e;’s in the first and second groups, respec-
tively, and reject the hypothesis when

(5.1) 4 = 8/n){(r — n/4)" + (r2 — n/4)")

is significantly large. For moderately large n, A is approximately a x° variable
with 2 degrees of freedom.

The greatest possible value of A is n, which it attains only if r, and r; are
each either 0 or in. From the viewpoint of the present paper A can therefore
be regarded as measuring the closeness of agreement of the sample signature
with any of the four signatures,

1 1 1 1
N 10 N . 2N

(B2) +4++ o A+ At o bt —mm e —m e

r

Since the minimum number of sign discrepancies is 3n — |rn — n/4| —
| 2 — n/4 | an alternative statistic more in the spirit of the m test is

B = 2/v/n)(|r — n/4| + [ — n/4]).
which for moderately large n is such that
Pr(B z Bo) ~ 42(Bo)(1 — ®(By))

where ®(x) is the cumulative normal distribution function. The 5 per cent and
1 per cent values of By are 2.237 and 2.806, respectively.

But whether A or B is used, the fact that the remaining signatures of (3.1)
are not considered makes the test inadequate in the following respect. Suppose
the z/s have assigned values. Let 3n be even and consider the power of the
test with respect to alternatives (8, ) such that either

(5.3) Tose < (@0 — @)/ (Bo = B) < Zpjas1,
(5.4) Tnpe < (0 — @)/(Bo — B) < Tznasa -
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The vector (8) — B8, a — «) is directed towards one of the four open regions

r—in————\ r—%n——n ,_._._i-ﬂ 1 %1’! 1
(5.5) ++ +
~ %Jr) 1T i_n 1 r %n 1T %n 1
T P P

If the true parameter point (8, «) is sufficiently distant from (8o , a), the value
A = In will be practically certain to occur every time. So, when the significance
level is less than Pr(A = in), the power of the test against such alternatives
actually tends to zero as (8, &) recedes indefinitely from (8o, o). While for large

o 0.04 0.08 O.12 016 020 O.24 0.28 0.32 036 0-40
B-B,
Fia. 2

samples Pr(4 = In) is too small to matter, the effect may be important for
moderate values of n. For example, when n = 16 we find, using the exact dis-
tribution of r, and r, , that the first significance level satisfying the above con-
dition is Pr(4 = 8.5) = 0.0152, which is not unduly small. The phenomenon
is illustrated in Fig. 2, which shows contours of the power function of the 4
test in this particular case, when the residuals are assumed normal with unit
variance.

6. Power of the m test. The power of the m test is now discussed. Under the
alternative (8, @), e; = y; — @ — fz; has probability  of being positive or nega-
tive and
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(6.1) Yi — ag — Bot; = € — (o0 — @) — (Bo — B)z; .
Let
(6.2) pi=Prie,> (00— a) + B — Bz}, q=1—p;.

The probability P,(mq| e, 8) of rejection on the alternative hypothesis is still
given by (4.2), but the random walk defining p, (¢, mo) is now such that the sth
step takes values 41 or —1 with probabilities p; and g¢;, respectively. A con-
venient solution of the random walk problem with general p;, ¢; is not known,
though in particular cases p.(, mo) and hence P.(m,|a, 8) can be computed
by the direct step by step procedure which is not too arduous for moderate
values of n.

The problem can be solved simply when p; = p for all 7. This is the case if
the alternatives are (8y, «) and all the e’s have the same distribution. Then
for all 4,

(6.3) pi = Pr(e; > a0 —a) = p
and by standard methods we find

Palt, mo) = p qn—tl_é‘o {(t + j(:bz - 2mo)> B (mo + jgb - 27"0))}

n—mo—1

P.(mg|a, Bo) =1 — tE Da(t, mo).

=mo+1

(6.4)

When 7 is large write 2z = (n — 2mo)/\/n as before, and put
pi =31 — w/vVn), ¢ =30+ p/Vn)
The limiting form of the power function turns out to be

Pulmo |, 8 = 1 — 30 e (0(@) + Ve + ) — $(2 — Dzo + )]

j=—o0

(6.5)

[enzo - e~#:o] Ld e—(2i+1)2z3/2
= /2
which reduces to (4.5) when u = 0. If the ¢’s have a common density function

10,0 = [ @ de~} — (@ - ) f(0), and

ag—a

+ 26_"2/2

6.6) = 2(a0 — a) f0) V/n.

It is easy to find the limiting form for large n of the power function of the
corresponding Brown and Mood test against the same alternatives, using either
the A or B statistic. The A distribution has the noncentral x’ form with 2 degrees
of freedom and parameter u*, while

(6.7) Pr(B 2 Bu|a, Bo) ~1 — {28(Bo) — 1}{®(Bo + u) + ®(Bo — ) — 1}.
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TABLE II

Asymptotic power functions of four tests, at .05 level, for alternatives
a # Qap , ﬂ = ﬂo. Hereu = '\/’n{l -2 Pl‘(éi > Ot—ao)}

m A B m Normal
0 0.05 0.05 0.05 0.05
0.790 0.10 0.10 0.09 0.13
1.316 0.20 0.20 0.16 0.29
1.666 0.30 0.30 0.25 0.45
1.958 0.40 0.41 0.33 0.59
2.226 0.50 0.51 0.42 0.71
2.493 0.60 0.61 0.52 0.81
2.775 0.70 0.71 0.62 0.89
3.104 0.80 0.81 0.73 0.95
3.557 0.90 0.91 0.85 0.99

Columns 1 and 4 were computed from Table of Noncentral x?, by Evelyn Fix,
University of California Press, 1949, and ‘“Charts of the power function for
analysis of variance tests, derived from the noncentral F distribution,” by
E. S. Pearson and H. O. Hartley, Biometrika, Vol. 38, Parts I and II (June,
1951).

In Table II the large sample power functions of the m, A and B tests are
compared for such alternatives. The m test turns out to be somewhat less power-
ful than the A or B tests against these alternatives, as might be expected from
the way the latter were constructed. The corresponding limiting power function
of the standard F test under the normality assumption is also tabulated. For
large n the distribution of F approximates to that of noncentral x* with 2 de-
grees of freedom and parameter imu’.

7. Some generalizations. The m test can also be used for the parameters of
the model

7.1) Y. = By + BoTei + €

under similar assumptions about the 2’s and the ¢’s. The lines in the (8, 8;)
plane are

(7.2) Bt = (—xi/21)B2 + yi/21:

If they are numbered in order of increasing xs;/71; , the argument goes through
exactly as before. _

In principle the m test can be extended to the case of k parameters, though
the distribution of m is not easily obtainable for k& > 2. The model is then

(7-3) Y = Pix1i + Bo¥as + - + Bixii + €.
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The n hyperplanes

(7.4) P11 + Bexa: + -+ -+ Br%ki = Y5

partition the k-dimensional parameter space into 1 + (1) + () + -+ + ()
regions of which 2{1 4+ ("7%) 4+ ("z%) 4+ + - 4+ (&)} are open and (";") are closed.
This is proved as follows.

Let T, be the number of regions into which a k dimensional Euclidean space
is partitioned in general by » hyperplanes (i.e. [k — 1] flats). Let O, of these
be open.and the remaining C, ; closed.

Consider the effect of adding one more hyperplane. It adds a new region for
every existing region it intersects. The number of new regions added is there-
fore T', -1 since the new hyperplane is itself partitioned into T', -1 regions by
the n existing hyperplanes. Hence Thy1x = Top + Top -

Clearly Ty = 1 for all k. Also T,1 = n + 1, so that we can take T, = 1.
Let

G.(2) = g{: T 2.
Then G,a(z) = (1 4+ 2)G.(2). Since Go(z) = 1/(1 — 2), we get G.(2) =
(1 + 2)"/(1 — 2). Hence
Toip =14+ )+ G+ -+ &)

The number of new closed regions added by the extra hyperplane is the same
as the number of closed regions formed in itself by intersections with the n
existing hyperplanes. Hence C,p10 = Cu + Crp1. Since C,p = n — 1 we
can take C,, = 1. Let

H,(2) = ;} Coi 2.

Then H,1(z) = (1 + 2)H,(2). We have C;o = 1 and C;; = Ofork = 1 so0
that Hy(z) = land H,(2) = (1 + 2)" ™, and C,., = ("¢"). It follows easily that
the number of open regions can be written as

O = 2{1 + ("1 + ("2 + -+ + (=D}

As before the sample signature is compared with the signatures of the open
regions to find m. Note that the largest cloqed polyhedron is a confidence region
with coefficient

L= {14+ Y+ ) 4+ o+ DY =51+ 7D + - 4+ G2}

27:, 1 2n—1

8. Repeated values of z. So far the possibility of repeated or “tied” values of
x has been cxcluded. The presence of such tied «’s introduces a difficulty similar
to that found with the Brown and Mood test. We return to model (2.1) and
consider the example for n = 6, illustrated in Fig. 3, where x; = 24 = 5.
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++++++

Fia. 3

The lines corresponding to the three tied x;’s are parallel, and the numbers
3, 4, 5 can be assigned at random to the three lines. With the ordering shown,
the open regions of signature — — — + + +, — — — — + + have dis-
appeared while the regions — — 4+ — — 4+, — — 4+ 4 — 4 previously
regarded as closed are now open. With the ordering 543 replacing 345, the con-
jugate regions are the ones affected, while with any other ordering such as 435
one open region on either side is replaced by a region previously considered
closed.

By assigning a random order to the tied z,;’s the m test for (8o, ap) may still
be applied as before, even when such ties are present. However, there will
exist significance levels such that, for alternatives (8, ) lying in the direction of
the tied lines, the power of the test never attains unity no matter how distant
the point (8, ) is from (By , o), since some previously closed regions must extend
to infinity. To avoid this difficulty the test has to be modified by relabelling
the open regions.

Suppose the z;’s to occur in [ tied groups with n; in the jth group and Zf ;=
n. Thus

Ty = Xe =+ = Ty < Tpg41 = Ty = **° Tnggng <
e <xn—~n1+1= v = Tn.

Fig. 4 illustrates the case l = 3, n; = 3, ny = 4, ng = 2. The 9 lines produce
only 36 regions in the plane instead of the full 46, and in general i{n;(n; — 1)
regions disappear for each tied group of n; lines. Of course, some of the values
of y in a tied group may also coincide, but in such cases we regard the corre-
sponding regions as being present but of zero width. The test statistic is again
the minimum number m of lines to be crossed in escaping to infinity from the
point (8o, a).
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Fic. 4

The open regions are of two types, (i) those lying between two successive
bands of tied lines and (ii) those formed between tied lines of the same group.
The signatures of type (i) regions are invariant under sampling (for fixed z,’s)
while those of type (ii) are not. In particular there is one type (i) region for
which every e; is positive. We shall write its signature in the contracted form

(8.1) (+) ) ) -+ ()

where the jth bracket (+) stands for the n; plus signs corresponding to the jth
tied group. The open regions may then be characterized in the following way.
Starting at the region just mentioned, we describe a clockwise circuit of the
open regions. As we move through the first group of type (ii) regions the first
(+) changes successively into n; — 1 different sets of +’s and —’s, not all —,
but the remaining brackets are unchanged. The particular combinations of
signs for the n; — 1 regions will depend on the given sample, but in random
sampling all 2" — 2 combinations of signs which are not all 4+ or all — are
possible for these regions. On passing beyond them into the next type (i) region

every ¢ fort = 1,2, - | n; becomes negative and the signature of this region
may be written in contracted notation as
(82) CORCONCORERNC D)

We introduce the symbol (~) to denote any set of signs whatever for the
¢;’s of a particular tied group of lines. Then the signature of any of the regions
so far considered is included in the formula

8.3) (~) () () -+ (4)



REGRESSION PARAMTTERS 511

Therefore, this may be called the signature of the whole region lying between
the last line of the Ith tied group and the first line of the second tied group.
Similarly

(84) (=) () () () -+ ()

characterizes the region extending from the last line of the first tied group to
the first line of the third tied group. The two regions (8.3) and (8.4) are of course
not disjoint, since both contain (8.2). Proceeding in this way we can cover all
open regions by the following overlapping set of regions arranged in I conjugate
pairs:

1L () B (=)= (=) (2) (=)
2 I E) B H) ) ™) =) () ()
3 (™) BH) (B H) ™) e (2) ()
=1 (=) (=) (=) o (=) () () () () - () (=)
T ) E) () F) ) () ()

9. The modified m distribution. Suppose the sample signature under (8o, ao)
consists successively of r; +’s out of ny, r, +’s out of ny, -+ 7, +’s out of n; .
No ordering of the. signs within tied groups is necessary. The numbers of dis-
agreements of sign with the jth pair of conjugate signatures in (8.5) are d,, d;,
where d; + d; = n — n,, and

di=rn+nrnt - +rat @ —ria)
+ Mg — 1i52) + -0+ ( — 7).

There are no disagreements of sign with the jth group, by definition of (~).
We require the distribution of

(8.5)

9.1)

(9.2) m = min min (d;, n — n; — d;).
i

It is perhaps unfortunate, when there are no tied z’s, that d; does not reduce
to the previous ¢; since the characterization of the open regions is different,
but the present method seems most expeditious in the tied situation. On writing
$; = 2r; — n;, (9.1) becomes

93) di=3n—n) + i+ et o s — S — Sipe— 0 — )

and
Prim > mg) = Pr(me < d; <n —n; —mo,j=1,2,---,1)
(9.4) = PI‘{J St s+ o S — Sip — S — -8

<n-—mn;j—2my,j =12 ---1}.
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The special case where I = 2 and the tied z’s are respectively —1 and +1 is
of interest. The model is

o {2 =12,
’ {a+ﬁ+€j, J=m+Lm+2-,m+n.

We are simultaneously testing whether the medians of two independently
sampled populations are respectively ay — B and ap + B . Then (9.4) reduces to

Pr(m > mo) = Pr{|si| < mi — 2mo, | 82| < n2 — 2mo}

and we arrive at a particular kind of simultaneous sign test.

TABLE III
Values of P,i(mo) for modified m test with [ groups of » tied z’s
AN
|0 1 2 3 4 5 6 7 8 9 10 1 12 13
N
v =2
2 750 1.0
3 281 .844 1.0
4 094 469 .937 1.0
5 L0290 .205 .615 .967 | 1.0
6 .009 .079 .316 .721 .984 1.0
7 003 .028 .141 .406 797 992 1.0
8 .001  .010 .057 .300 405 .853 .996 1.0
9 0 .003  .022 .093 .321 .573 .893 .998 | 1.0
10 0 001 .008 .039 .134 .400 .639 922 1.0
r=3
2 438 1.0
3 082 .355 .891 1.0
4 014 113 .406 .824 | 1.0
5 002 .024 .123 .374 736 .985 1.0
6 0 .005  .030 .125 .340  .671 .948 1.0
7 .001  .007 .033 117 .305 .598 .885 .998 1.0
8 0 .001 .008 03¢ .100 .273 .534 819 .984 1.0
9 0 .003 .009 033 .102 .240 469 745 .950 1.0 1.0
10 0 .022  .009 .031 .082 214 414 675 .01 | .995 1.0

In general it is not possible to derive a convenient formula for (9.4), but
particular cases can be evaluated by reformulating (9.4) in terms of a random
walk with rather unusual boundary conditions and proceeding step by step.
Write w; = & + 82 + --+ + s; and let d be the total number of negative signs
in the sample signature. Then if wy = 0,

9.5) di =d — jn; + §(wa + wj).

Also w; = n — 2d, and for m > my, d can range from mo + 1 ton — mo — L.
Hence (9.4) becomes

n—mo—1

Prim > mo) = 2, Prime+ n; < d + 3wy + w;) <n—my— In;;
(96) d=mg+1

i=12 -, d+w=n-—d}.
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We therefore consider the following random walk. Start at the point d and
proceed in steps of s; which can take values 2r; — n; with probabilities 27"/(;7).
Absorption on boundary points at my + 3n;, n — my — In; occurs when the
midpoint of the step falls on or beyond these points. Thus it is possible for the
path to overshoot the boundaries to some extent but not to stay outside for
more than one step. The probability of arriving at the point n — d after steps
is computed by enumerating the appropriate paths using a typical “binomial
triangle” technique. Summation over d then gives Pr(m > mg) = 1 — P,(my).
The distributions for equal groups of 2 and 3 given in Table III were computed
in this way.

The case mq = 0 can be handled directly by observing that the open regions
of type (i) account for 2 signatures while those of type (ii) can have
2 > °1(2" — 2) possible signatures; the largest closed polygon is therefore a
confidence region with confidence coefficient

!
P.0) =1 — -1 <Z)2"f — z).
2‘n 1 =1

We finally remark that even when some values of x are not completely coin-
cident, the corresponding lines in the (8, a) plane may be so nearly parallel that
one would intuitively prefer to use the test which treats them as tied (though
they would be kept distinct in calculating the €’s). But a rule for deciding between
the two tests in such cases would have to depend on a comprehensive comparison
of their power functions.

10. Acknowledgments. I am much indebted to W. H. Kruskal for many
useful comments, and to W. Goldfarb and G. Chow for computational as-
sistance.
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