A CONFIDENCE INTERVAL FOR VARIANCE COMPONENTS
By J. R. GReEN
University of Liverpool

1. Introduction.

Summary. In this paper an approximate confidence interval is found for the
expected value of the difference between two quantities which are independently
distributed proportionally to x* variates. Three methods are used. The first is
based on the work of Welch [13], [14] and Aspin [1], [2] on the generalized ‘‘Stu-
dent’s” problem, and involves neglecting successively higher powers of the re-
ciprocal of one of the degrees of freedom. This method is used to check the other
two solutions, both of which involve neglecting successive increasing and de-
creasing powers, respectively, of a nuisance parameter. Finally a solution is
formed using those resulting from the second and third methods, and is more
accurate than those solutions. The order of accuracy, and the use of the final
solution, are discussed. -

The paper does not present a method of computing confidence intervals in a
form suitable for immediate practical application. Series developments of a cer-
tain hypothetical function are given; more remains to be said about the relation
between the series and the function, and the problem of computing tables. A
computational exploration of the solution is at present in.hand.

Applications. In what has sometimes been termed a Model IT multiple classi-
fication, each observation is the sum of a constant and of contributions due to
the different factors which feature in the classification, the interaction effects,
and an error term. These contributions are taken to be normally and independ-
ently distributed with zero means, and variances independent of the particular
levels of the appropriate factors. These variances are called variance components,
since each gives that portion of the total variance of each observation appropriate
to a particular source. In a balanced layout, each of these variance components,
except that due to the error term, can be written as a known constant multiplied
by the difference of the expected values of two mean squares, which are inde-
pendently distributed proportionally to x* variates. Thus the results of this
paper may be applied to these variance components.

In the other main model of multiple classifications, the so-called Model I, the
factors make constant contributions to the observations at the different levels.
Here all the mean squares except the residual are proportional to noncentral x
variates, so that the results of this paper cannot be applied. However, in a
“Mixed Model”, where some factors are as in Model I and some as in Model II,
some mean squares will be suitable.

The general balanced Model II classification will be exemplified by considering
the two-way layout. Let s be the kth observation in the ith row and the jth
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672 J. R. GREEN

column, and take y:x = u + a; + B; + vi; + e, where u is a constant, and
@i, B;, vii, and e are independent normal deviates with variances o% , o , o

and ¢ , respectively. The appropriate table is thus

Source D.F. Mean square & (mean square)
Between rows................... a—1 M, o? + ne¥ + nbod
Between cols. ......... e b—1 Mg o% + no’y + nac}
Interaction..................... (@a—1)®—1) M, o + nol
BIror....coovviieiiiiiiinnnn.. ab(n — 1) M. o2

Consider the variance component o7 , for example. Now
Ta = (nb) &M — M),
and M, and M, are independently distributed as
(@ — 1)7(dt + noy + nbad)x’, (b — 1)7(o% + nod)x,

so that the results of this paper may be applied to obtain confidence limits for o .

It is well-known that a confidence.interval or confidence limit can be used to
provide a test of a hypothesis which postulates a particular value for the param-
eter concerned; for if the hypothesis be accepted when the hypothetical value of
the parameter lies inside the interval or on the appropriate side of a single con-
fidence limit, then the probability of rejecting a true hypothesis is fixed at some
chosen level. This is true for the limits found for K, the variance component for
which an interval estimate is obtained. An examination of the power of this test
may require the tabulation of the function derived in Section 7. However it
seems reasonable to expect that, for a sufficiently large difference between the
true and hypothetical values of K, the power of the test will be a monotonically
increasing function of this difference, since the interval continues to cover the
true value in the fixed proportion of cases.

Crump [5] states three main fields of application of work on variance compo-
nents.

(i) The interpretation of significance tests. Here variance component estimates
are used to locate the sources of undesirable variation, so that this variation can
be partially or completely eliminated. Tippett [12] discusses significance tests in
the analysis of variance in terms of these components, giving a numerical exam-
ple of the quality control of spectacle glass. Daniels [8] gives an example from
the woollen industry.

(ii) The selection of efficient sampling designs. This is the most important use
of variance components. Usually interest is focussed on a partigular function of
the observations, such as the grand mean. The reciprocal of the variance of this
statistic is then regarded as a measure of the efficiency of the sampling design.
Both the cost and the efficiency are functions of the sample sizes and variance
components. The usual procedure for choosing a good design is to estimate the
variance components from a preliminary experiment, and then, using these es-
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VARIANCE COMPONENTS 673

timates instead of the true values, to calculate the sample sizes which either
minimise the cost for fixed efficiency or maximise the efficiency for fixed cost.
Alternatively, Yates [15] suggests the general principle that an experiment
should be so designed that the sum of the cost and the expected losses due to
errors in the results should be minimised. Examples are given by Marcuse [10],
and Nordskog and Crump [6].

(iii) Various problems in genetics. An example is given by Robinson and Com-
stock [4].

In all of these fields, point estimates of variance components are now used.
They seem to be more appropriate than interval estimates for many of the ex-
amples met in practice. However, a confidence interval is useful for assessing
the accuracy of an estimate. If the confidence interval is wide, then little trust
can be placed in a point estimate; if it is narrow, then the estimate can reason-
ably be regarded as trustworthy. Estimates do exist for the variances of the
variance component estimates, but these, being estimates, are less reliable than
confidence intervals for assessing the accuracy of the variance component esti-
mates. Also, they are less informative, since the usual type of variance com-
ponent estimate has a complicated distribution, involving a nuisance parameter
(see K. Pearson [11]).

When variance components are used qualitatively to assess the amount of
variation present, a confidence interval may be a more reliable guide to the
judgement.

Previous work. A full discussion of previous work would require too much
space and anything brief is scarcely illuminating. Attention is directed to papers
by Fisher [9], Bross [3], and a comprehensive survey by Crump [7]. In this paper
we do not follow Fisher’s method of computing fiducial limits.

2. The problem. The previous problems may be subsumed under the following
canonical form. Two statistics M; and M, are given, which are independently
distributed as oix’/r; and o3x*/rs , with r; and r, degrees of freedom, respectively.
Confidence limits are required for 2 — o3 , both o3 and ¢ being unknown. For
the present, it will be assumed that o3 > o3, but this restriction will be with-
drawn later, as discussed in Section 9.

We define
. .
_ 2 2 _ 02 __ 1 __M1 ____M2
K=a-a, r=¢=G/y=1’ "% *" %

Thus a function f is sought such that
(2.1) Py Sf@) =« 0<a<l,

where « is given and f must be independent of the nuisance parameter. Later we
shall require to find K such that M;/K = f(M,/K). The problem was put into
this form originally so that the method of approach due to Welch (later referred
to as Method I) might be exploited.

Now r.z/p and ry/(1 + p) are independently distributed as x* on r; and 7,
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degrees of freedom, respectively. With y; = ry/ (1 + p), requirement (2.1) be-
comes

(2 2) i 6—72::/2;7 (2§>Tz/2—1 /'Tlf(z)/(l+P) <y!>r112—1 e—ml2 p }7.2 dz Y
Yk TGr) \2 b 2 arGm) V' "2

Since z and y are nonnegative, the discussion is confined entirely to the first
quadrant of the plane of « and y. Thus it is essential that f(x) = 0 (see Section
9). Put

In() = {, (G20 Gr)) dy,  g@) = I {rif@) / (L + p)}.

Further, let £ be such that I,,(¢) = a. Thus an f is required such that

(23) e (122)”’“ rg(z)

« I'(3rs) \20 2p
independently of p. We do not know whether there exists a function f(z) which
satisfies the above conditions nor, if it exists, whether it is regular. In this paper
we derive a function f;v(z) which is such that (2.2) is approximately satisfied:
when f;v(x) is inserted in place of f(z). How good this approximation is can be
determined only by computational means.

dz = a = I,,(%),

3. Method I. In equation (2.3) we expand g(z) in a Taylor series about z = p.
That is, we confine the investigation to the finding of a solution for which this is
permissible, if one exists. Now g(z) = ¢“ "’g(w), where 8" = [0"/dw ], . Thus

(2.3) becomes
) e——rzzlh 7,2x>fz/2—-l (@—p)a T2 dz _
| o (5,: Gyt = e

With @ = (1 — 2p3/r;)"*%*°, this becomes I, {rif(w) / (1 + p)} = o. Ex-
pansion of I, {rif(w) / (1 + p)} about {rif(w) / (1 4+ p)} = & yields

{1 - o (119§ Jno o -[£].

Hence the equation to be solved becomes

3.1) 6 exp ({[nf(w) / (1 + p)] — £}D)11,(2) = a.

Equation (2.2) is very similar to the one solved approximately by Welch
[13], [14] and Aspin [1], [2] in their work on the problem of comparing two means;
the method used here is the same as theirs. The different functional form of the
inner integrand’s upper limit, and the different type of the inner integral, prevent
deriving our solution from Welch’s, although a comparison means of checking
for 1 = 1 can be used. It is evident that © is essentially the same in both cases.

Continuing, we put f = fo + fi + f2 + ---, where f, is of order —s in r,,
and the expansion may be finite or infinite. The quantity fo is, as in Welch’s
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work, the large sample approximation, here £(1 + z)/r, . Expanding,
6 = exp {— pd — 3rlog (1 — 2p9/72)}
(32) = exp (p'0"/rs + 40°9°/3r% + -}
=14 p'0°/r: + {40°0°/3r3 + p'3*/203} +

Neglecting terms of order r3° in (3.1), we have

14+w r1 filw)D r1f2(w)D Tif%(’w)Dz
ee"p{w[w ]}{1+ T+5 +[1+,, +2(1+p)2]+'"}

* Irl(z) = I"l(E)-

Substituting for ©, and grouping separately terms of order 73" and r3”, we obtain

7’1f2(P) rlfl(P)Dz P26 { 1+w . >} 7’1f1(w)D
[ Tl i+ T ™ SD(I-I‘ Y/ RET

S o (53]
-I—{ 37 + 2r§ exp{ ¢D 1) | I,,(2)

+o
420+ el (22 - -

Equating to zero the first order term yields

L

[rifie) / (1 + oI (8) + [0°8 / r(1 + )17, (8) = 0.
Therefore fi(p) = —p’£'I;,(§) / rire(1 + p)I1,(8). We put R, = If)(¢) / I,,(8),
so that
filx) = —2€Ry [ rra(1 + ).
Equating to zero the second order term yields
fol@) = __TOE 3R — 28R, — 4R + SER, + 36R)

6rirs(1 + x)°
+ 82[£’Rs — 3£°R3] — 12¢R.}.

It is required to express R, in terms of ¢ and r; . Now
1,0 = [ G e 2r ) ay,

I,® = GoOm* e ¥ /2r (3r)].

Using Leibniz’s formula,

9@ = o dn = D! <§>w_, o
Gr = 9l \2 2T(3m)
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_ (s - 1) (Gr, — 1! g5t <§_>rl’2—8+l e
1 (31 — s+ 1! 2 2T (3m1)
—ot1 [ £ rf 6_5/2
o= () o

oms E r1/2—s e—£I2 8—1 _g ) ('%rl - 1)! s —1
=2 Qﬁ N%ﬂ§(3>(%?iﬁﬁﬂ<i )
Therefore
_ et S e ¢ Grni—=1! [(s—1
R, = @)™ X 2" (=p) m( ; )
= (22)"“{&1 —2n — 4 -+ [ — 2(s — 1] —‘(s 1 1)

fm—m~»m—m—mp+~wwﬁr}

Substituting for R, in the f’s, we obtain

@ EE—r+2)
142 21172

M@=a+@§, file) =

_ o’ 22 _ _ _
folz) = LT (248 — 11E(r — 2) + (1 — 2)(Try — 10)]

+ 162[8 — 28(ry — 2) + (rn — D — 2)] + 24(rn — 2 — 9)}.
For further terms operate on ‘

fow) + -+ + fr(w)
“{ T+ 5 ’%

by —6 and arrange the result as a power series in 1/r:, say 2_ar41(p)/r5"". Then

rlf"+l(P)Ir1(E)/(l + P) = ar+l(P)/r;+l

whence fr+1(p). Now this expansion is in descending powers of r,, but though
this may be large compared with r; it may not be large compared with certain
powers of 7, which may occur in the numerators of the f’s, or compared with &.
This matter is considered in Section 8.

Only the terms shown above have been worked out by this method, as the
calculations become laborious and this solution is used only as a check on the
solutions obtained by other methods.

Another point regarding this solution is that in replacing p by =z it has been
assumed that a solution f(x) exists which is independent of p, whereas the func-
tion f(w) which is operated upon by 9 may be actually of the form f(w, p). How-
ever, if such a solution exists, then this method will give it. Moreover, f = fo +
f1 + f2 does satisfy (2.2) to the order 72, whether or not an exact solution exists.
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A check has been made in the case = 1, when it is possible to deduce the ap-
propriate series from Welch’s solution of the two means problem.

4. Graphical representation. At this stage, a picture helps one to visualize
Methods II and III, described in the subsequent sections. For simplicity, put

v = irg, u = 3ry, a=13in-—1, b=1r — 1.

The joint probability density function of u and v is

an(m5) &) s = - [+t

where a! = T'(a 4 1) whether a is an integer or not. It is required to find g(u, v)
such that the integral of this density function over.the region g(u, ») < 0 shall
equal @, that is, such that

(1/alb}) fj;) u’e T dudy = o, D = {u, v:glu(l + p), vo] =< 0}.

This equation shows that ¢ is required such that when the curve g(u, ») = 0
is scaled down by dividing the u-value of every point by (1 + p), and the
v-value by p, then the integral of (1/a!b!) u*s’e” ™+ over the region on one side
of the resulting curve is a, independently of p. Also, when g(u, v) = 0, only one
value of » corresponds to one of u.

When p — 0, the slope becomes very small and the curve flattens out to the
form » = constant. If the integral under the curve is «, then the constant value
of » will be %£, where £ is such that I,,(§) = «.

When p — «, the curve cannot lie completely in the range u < U for any
finite U. If it did, the scaled curve would lie completely in the range u < U/
(1 + p), which becomes arbitrarily small as p — . Thus the integral on one side
of the curve can be made arbitrarily small, or close to 1, as the case may be.
Similarly the curve cannot lie wholly in the region » < V, for any finite V. Thus
the curve extends to infinity in both variables.

Further, looking for a solution whose slope tends to a definite limit (not
necessarily finite) for large 4 and » (if such a solution exists), then for p large
the shape of the scaled curve will be roughtly that of a straight line through the
origin, with slope equal to the slope at infinity. Now the integral on one side of
this line, say below it, must be e, that is, Pr (y/z < m/r1) = a. Since y/z is
distributed as F,,, »,, (i.e. the F variate with degrees of freedom ry , r,),

m = riF,, .,(a), where Pr [(F,,, ;; £ Fry,r(@)] = a.

From this crude picture of the approximations for p very large and very small,
the first stages of the approximations derived in Methods II and III can be ob-
tained. A greater understanding of these methods is also provided.

The same conclusions are reached by the following intuitive reasoning:

When p — 0, then p = ¢3/K and K = o] — o3 . Let 03 — 0, then K = o7, so
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that M tends to become an unbiased estimate of K, distributed as r1'Kx* on r;
degrees of freedom. Hence ryy is distributed as x* on r; degrees of freedom. An
approximate f(x) such that Pr [my =< rif(x)] = a is f(x) = &/r1, which is thus
the limiting solution as p — 0.

When p — », let K — 0 and o3 — o3, so that M;/M, tends to become an
F., ., variate. Thus in the limit y/z is an F,,,, variate, and the appropriate f(z)
such that Pr. [y < f(x)] = ais mx/r, which is thus the limiting solution as p — .

6. Method II. As p — 0, M, tends to become an unbiased estimate of K, so
that for p small, f(x) = £/r; would approximately satisfy (2.2), as just pointed
out in the preceding section. This solution neglects terms of order p’, so that the
accuracy could be improved by neglecting higher orders of p instead.

We take b = 4r, — 1 as before, and change (2.2), by the transformations of
Section 4, to the form

© —u b
e _u r1f(2pu/rs) _
(56.1) u{; - Irl{ e du = o
It can be seen easily that it is appropriate to seek an f(x) of the form
rf(x) = bo + b + bpz® + bz’ + -+ .

We now expand the function I,, in (5.1) about the point where its argument
equals £ When p = 0, we find that b, = £. The expansion gives

I {bo + bu(2ou/rs) + ba(2ou/ra) + - -
r 1 + P

} =a+ 51,0 +§§I:'I(e) +
where
p = {[bo + bi(2ou/rs) + baou/m)* + -1/ [1 + pl} — &
= [p(2bu/rs — §)  + ba(2pu/r)* + -1/ [1 + .
Substitution in (5.1) gives
[ et © + G/20ILE + - 1du = 0.

Dividing through by I.,(£)/(1 + p) gives

© —u b
/0 eb!u [{p(2by u/rs — &) + ba(2ou/r)’ + -+ } + {R:/2(1 + p)}

{p(2bru/rs — £) + ba(2ou/rs)’ + - - }* + {Re/3!(1 + p)°}
{p@bru/re— & + '+ - 1du = 0.

Equating to zero the coefficient of p gives 2b,(b 4 1) = re£, or by = £. Similarly
equating to zero the coefficient of o gives

(2/7'2)2172(17 +2)0+1) = -_%R2{(2b1/7'2)2(b +2)+ 1)+ fz — (4by/r2) (b + 1)¢}
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Therefore by(b + 2)/(b + 1) = —3RE{(b + 2)/(b + 1) + 1 — 2}, and conse-
quently b, = —31R.£/(b + 2).
Similar consideration of the coefficients of p* and p* gives, in turn,

ho— O+ {Riz?_l_lﬁz___]jﬁ_\
T OF20F3) b +1 2 3+ 1)’

_ ®+ 1 {(b + DR Reg' _ SB3E | 2R f
G+ +HC+H 46+DF 20+D  3G6+D

_Re# (V"4 31b 4+ 60)R3E (b + 3)R4£‘}
2 80 + 0 + 2) 86+ 12

This term is as far as this solution was taken, since the work involved increases
very rapidly. One would expect this solution to be unreliable for p = 1, but it
will not be used by itself. No simplification seems likely from replacing the R’s
by their expressions in terms of £ and 7, , in this case.

bs

6. Method IIL. This is rather similar to the last method, involving the neglect
of successive descending powers of p. Thus it is suitable for p > 1. In Method IT
a Taylor expansion about a constant was used; in this method the corresponding
expansion is about a function of z. We look for a solution of (2.3) of the form

rif(x) = mx + mo + ma™  mag 4
for which it is legitimate to write
I {rif2eu/rs) / (1 + p)} = I {2mu/rs}
+ [rif(2pu/rs) / (1 + p) — 2mu/roll; {2mu/re} + -+ + Ra,
for some n > 3, with R, being of order p~". Now, for N = n,
f@ou/rs) / (1 + p) — 2mu/rs) = [mo — 2mu/rolp™"
+ [mury/2u — (my — 2mu/r2)]p_2
+ [ma(rs/2u)? — {myrs/2u — (mo — 2mu/r)}]p™ 4+ -+ + Ty.
Thus (2.3) becomes

fow (e"“ub/b!)({[mo — 2mu/ralp "  [mare/2u — (mo — 2mu/ro)lp + -+ -},

@mu/rsy) + {(1/20)[me — 2mu/rolp™ + -+ -}° -I:'l 2mu/rs) + ---) du = 0.

Equating to zero the coefficient of p™* gives

f i (¢ “u’/bY) (me — 2mu/rs) I, (2mu/rs) du = 0,
0

‘ that is, (m/re)*(1/a!b) f g OtmITD Y b ( — Qmu/rs) du = 0.
0
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Therefore, mo = 2m(a + b + 1) / (rz + m) = m(ry + r. — 2) / (r: + m).
Similarly, by considering the coefficients of p* and p~°, we find successively
my = 2m(ry + rp — 2)(rs + m)*{ro(m — 1 + 2) — 2m},
my = Fm(ry + 1y — 2)(rs + m) " (2m’(rs — 2)(r; — 4)
— rym(3r + Trire — 32ry — 26r, + 76) + r3(ry — 2)(5r1 + 3r, — 14)}.

Again, this is as far as this solution was carried, due to the heavy work involved
in proceeding further.

7. Final approximate solution. A fype A function will be defined to be of the
form ¢(z) = (1 + &) " (@rpz’ ™ + a8 + a2 + - -+ + @ + ao). Now it is
evident that this type of function can be put into the form of a type II or IIT
solution, so as to agree with the first (r + 2) terms in either expansion. Further
solutions of the form I, IT, or III (save that a finite number of terms only are
considered, so that (r + 2) of the calculated constants are involved) can be put
into the form of type A. In this way Solution I was used to check Solutions II
and III.

For a final solution a type A function is formed using Solutions II and III.
Since four constants of Solution III and five of Solution II have been calculated,
then r 4+ 2 = 4 + 5, so that r = 7. The coefficients a0, a1, a2, a3, and a, are
calculated from by , b1 , by , b3 , and by , and the coefficients as , a7, as , and as from
m, mg , my , and me . We put

a0 + o + 0’ + 0’ + aix’, a2’ + ax” + a2’ + a2

respectively equal to the corresponding terms in
(1 + )" (b + by + box® + bz’ + byz'), (1 + z)"(mx + mo + max™ + maz 7).
Hence

ao=bo, a1=b1+7bo, az=b2+7b1+21bo,

az = b3 + 7b2 + 21b1 + 35bo ) as = b4 + 7b3 + 21b2 + 35b1 + 35bo )

as = my + (my + G)mo + G)m = ma + Tma + 21mo + 35m,

as = my + Dmo + GYm = my + Tmo + 21m,

a=mo+ O)m =me+ 7m, ag = m.
Using these values, we take

rnf) = (1 + x)—7(a3x8 + arﬂ" + - 4+ ax + ap).

From Solutions IT and III we obtain
m=11Fr0y(2), mo=mlz+m) (14— 2),

mi = %m(rz + m)—a(rl + 1y — 2)[mlrs — 2) — rao(ry — 2)]
= Imo(ry + m)Im(r: — 2) — ra(ry — 2)],
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my = Ygm(rs + m)~*(ry + ry — 2)[2m*(ry — 2)(ry — 4)
—mry(3r® + Triry — 32ry — 2611 + 76) + r3(r, — 2)(5ry + 32 — 14)];

bO = E" bl = 5; b2 = _%R2/(b + 2);

hoo b1 {Rﬁf R Rae*‘}
N CE IR AV T Y
- ®+ 1 {@+m%mw_ 5R: ¢
T FO B FH | 40 F 12 206 + 1)

L 2R Rl (0 +31b + 6O)RIE (b + 3)R4e‘}

36 +1) 2 T80+ D +2 8(b + 1)
The solution thus derived will be called Solution IV.

8. Accuracy of solution. It can be shown that for ¢ large compared with a,
/ We¥/al) dy =1 — o(1).
0

Thus rif(z)/(1 + p) cannot be large compared with r, ; if it were, the left side
of (2.2) would be 1 — o(1) and the equation would not be satisfied. So, f(zx)
must be O(1); similarly, £ must be O(ry).

Now for Solution I to exist for large r; there must be at least a finite £ such
that f,(r) is 0. Since £ isO(ry), fo, f1, and f; are of orders 7, ri, and r},
respectively, which suggests k£ = 3. That this k& will suffice, or even that there
exists a suitable £ = 1, has not been proved and may be only conjectured. Fortu-
nately, it is not necessary to make any such assumption about the value.

For quick (or even any) convergence of Solution I it is necessary that o) =
O(ry) for a suitable choice of k. In practical cases r, is usually greater than r,
and is often large compared with it for K positive.

It can be shown that the f.(z) of Solution I is of type As—1, where “type 4.”
will mean ““of the form (1 4+ :1:)_"(a.-.,.laci+1 +ax' + -+ + awx + ao).” If Solution
I were developed as far as fy(z), it would yield a type A, function, which could
be compared with the A7 function Solution IV. The former of these two type 4z
functions is correct to the order 77 *. Thus when it is expanded in ascending or
descending powers of z, the resulting coefficients are correct to the order 77 *, and
thus differ from the exact ones obtained from Methods II and III, respectively,
by terms of the order r3°.

Consequently it is readily seen that the type A7 form of Solution I and that of
Solution IV dlffer only by terms of the order 73°, so that Solution IV is correct
to the order 73*. Using the consequences of the above discussion, we see that
Solution IV is correct to the order (r/r})~*

Further, if Solution IV is put in place of f(z) in (2.2), the error involved for p
small will be of the order o°. Similarly the error involved in using Solution IV
for p large is of the order p—*. These statements apply whether or not there exists
an f(x) exactly satisfying this equation.
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For convenience of calculation one could, of course, use fewer leading terms
of Solutions IT and III to form a less accurate Solution IV. The error involved in
substituting this Solution IV into (2.2) may be rather less than the error in the
approximate f(x), particularly if the upper limit of the inner integrand is suffi-
ciently large or small, when the rate of change of the inner integral with respect
to the upper limit will be negligible.

However, when tables have been prepared using the solution given in this
paper, there will be no need to use a less accurate approximation to save labour.

The solution given in Section 7, say frv(x), has been calculated for r; = 8,
r; = 50, a = .975, and a series of x values. The left side of (2.2) was then
calculated for p = 1. One would not expect this to give a particularly accurate
value to a function correct to the orders p° for p small and p~* for p large. Further
ry/r1 = 6.25, which is not very large. Thus one would expect the majority of
practical cases to be more favourable than that chosen. By numerical integra-
tion, the value of the left side of (2.2) was found correct to five significant figures
as .97492, a satisfactory approximation to a.

9. Obtaining and using the confidence limit. If f;» is of suitable form, a suit-
able approximate confidence limit for K will be given by solving

MI/K = fzv(Mz/K),

where frv is the function given by Solution IV. In view of the complicated form
of frv(z), a numerical method of solution evidently will be necessary. Since
x = M;/Kandy = M,/K, the ratio y/x is M1/M, , which has an observed value.
Thus the confidence limit, K, , is given by the intersection (o, %) of the curve
y = frv(z) with the line y = (M+/M,)zx, since

Ka = Ml/yo = Mz/xo.

This gives a lower limit such that Pr (K, < K) = «.

Certain questions arise immediately:

(¢). How can one be sure that there will be only one point of intersection?

(7). How can one be sure that there will be any point of intersection?

(#%%). The previous results depend on the assumption that K > 0. What modi-
fications are required for the case where the sign of X is not known?

These matters will be considered in turn.

(7). The complicated expression for fr» makes uniqueness of intersection
difficult to prove. A sufficient condition for having no more than one point of inter-
section (since the asymptote to the curve and curve itself intersect the y-axis in
positive values of y) is that the slope of the curve ¥ = f;v(z) should be a mono-
tonically increasing or decreasing function of z. The asymptote to the curve is
given by the first two terms of Solution III, the second of which (that inde-
pendent of x) is positive. This condition is satisfied in the particular example
faentioned at the end of the previous section, in which the slope is monotonically
increasing. Further, the condition is satisfied when r, is sufficiently large com-
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pared with r; ; also, the slope of the curve is increasing when « is chosen to
correspond to the lower limit, and decreasing in the upper limit case, provided
the two appropriate choices of a are both reasonably different from 50 per cent.
Hence, at least for r, sufficiently large compared with r;, if not more generally
(as the author conjectures), there is no more than one confidence limit corre-
sponding to one value of a.

(77). When the slope is monotonically increasing or decreasing, evidently
there will be no intersection of the line with the curve, unless M,;/M, is greater
than or equal to the asymptotic slope of the curve, which equals F,,,,,(a). Now
M,/M, is distributed as

(01/0)Fries = [(1 + 0)/p] Fryrry -

Thus the probability of nonintersection is the probability of an F,, ,, variate not
exceeding pF,, .,(e)/(1 + p). This probability is & when p = «, and decreases
with decreasing p to zero at p = 0. Since M, and M are positive, it is evident
that an intersection in the first quadrant leads to a positive K, . Further, it can
easily be shown that, as M,/M; — F,, .,(a) from above, K, — 0 from above.
At this stage it is convenient to consider (¢77) along with (7Z). Now all the
previous investigation of a solution providing a confidence limit for K could have
been treated in exactly the same way with M; and M, and all related quantities
interchanged. In this way an approximation to a function A, such that

Pr{M;/(— K) = b [My/(=K)]} = &
independently of a nuisance parameter
p=—K/oil=—K/K+ ) = =1/(1L+p7) = —p/(1 + p)

would have been obtained. An approximate h;y would have been derived equal
to frvy with interchanged r;and r. . A variation of p’ between 0 and e corresponds
to one of p between 0 and —1, and is appropriate for K negative. The inter-
changed ranges are appropriate for K positive. The accuracy of h;y with respect
to p’ would be the same as that of f;v with respect to p as far as neglected orders
are concerned. However, if 7, is large compared with r, , favouring the accuracy
of frv, then the accuracy of h;v would not be so favoured; the reverse is true for
r; large compared with r, .

It will be seen to be satisfactory to use the curve y = frv(x) in the first quadrant
together with a second curve, —z = h;y(—y), in the third to provide a confidence
limit. However, if the coefficient « is chosen for the first curve, then 1 — o will
be taken for the second. The reasons for this are explained in the following para-
graphs.

Since F,,,,,(a) F,,,,,(1 — a) = 1, the asymptote to the first curve in the first
quadrant will be parallel to the asymptote to the second curve in the third. Thus
a straight line through the origin will intercept the first curve if its slope is less
than F,, .,(a), while if its slope is exactly equal to this value, it intersects both
curves at infinity. ‘
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The set of points S, consisting of those points of the first quadrant lying below
the first curve and those of the third quadrant lying above the second curve, will
be used to obtain a confidence limit for K. If K > 0, the probability density
function is zero outside the first quadrant and the probability of M; and M,
being such that (z, y) lies beneath the first curve is a. If K < 0, the probability
density function is zero outside the third quadrant, and the probability of (z, y)
lying above the second curve is a.

Thus, whether K is greater or less than zero, the probability is « that M; and
M are such that (z, y) lies in S. Just as an intersection of the first curve with the
line y = (M1/M.)x gives a positive value of K, , an intersection of the second
curve with this line gives a negative value. Further, it can be shown easily that
K. — 0 from below as M,/M, — F,,,,(a) from below, or as M,/M, — F,, .,
(1 — «) from above.

Thus the two curves together provide a lower confidence limit which falls
below K with probability «. Evidently they provide equivalently an upper limit
with coefficient 1 — a. Accordingly, two suitable values of « are selected, one for
each limit, and an interval is obtained. The values .025 and .975, giving an
interval coefficient of .95, are frequently used in practice. The complicated form
of K, does not lend itself to an examination of which pair of values of @ having a
given difference (confidence coefficient) yield the shortest interval.

Incidentally, the curves obtained by imaging radially the two curves through
the origin into the opposite quadrants can be shown easily to form the curved
parts of the boundary of an alternative set of points which yields a confidence
limit. However, it is usual to have K > 0 and r, > r;, and one would prefer the
positive confidence limit to be more accurate. To ensure this, the two curves
should be used as discussed above.

Under (#4%), it remains to be decided whether or not the confidence coefficient
is affected by using only that part of the confidence interval which has the same
sign as K, if this sign is known. Consider the lower limit with coefficient a4 ,
when K is known to be positive

Pr{max(0,K,.,) < K|K > 0} = 1 — Pr{max(0, K,,) = K|K > 0}
=1-— Pr{K,, =2 K|K > 0}
= 1—(1—a1)=a1=Pr{K¢l§K}.

A similar discussion applies when K is known to be negative, also for the upper
limit when K has known sign. Hence the natural procedure does not distort the
confidence coefficient.

In the Introduction, we discussed the use of this confidence interval, or a
single limit, for testing a hypothetical value of K. When K is known to be greater
than or equal to zero and the hypothesis to be tested is K = 0, the use of the
upper limit alone is more appropriate. In this case the hypothesis is rejected if
M,\/M; > F,,,, (a), which is the usual test of the analysis of variance.

» However, throughout this paper there is one possibility which has not been
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discussed—nor is it obvious how it could be, considering the technique that has
been used. This is the case of K = 0, when the above derivation of a confidence
interval would be completely invalid. That is not to say that the interval does
not apply in this case—(the author conjectures that it does), but the point -is
just not proved either way, although it is true that Prly/z < f(z)/z] = « in the
limit as K — 0. Thus the confidence interval carries with it the perhaps unneces-
sary proviso that K is not zero.

10. Tabulation. For the practical use of the two curves, discussed in the pre-
ceding section, to obtain a confidence limit, the following procedure seems the
most satisfactory. For each selected value of e, the values of f;v(z)/x are tabu-
lated for different values of 1 , 72 , and z. It might then be advisable to retabulate,
so that for each set of values of 71, 72, and fiv(z)/z a value of z, or of fiv(z), is
tabulated ; otherwise use of the table would require inverse interpolation. To use
the hypothetical table,

If M\/M; = F,,,,(), it is set equal to frv(x)/x and, by direct interpolation,
the appropriate value of + = M,/K, is obtained and since M is known, K, can
then be derived;

if M]/Mz = n,fz(a), then K, = 0;

if M\/M, < F,,,,(a), then r,, 1, and (1 — a) are used as new values of r,,
r,, and a, respectively, in the first procedure.

The expression for fiy(x) is very complicated, and the tabulation discussed
above, for a suitable selection of values of 7, ., and 2z, would require tens of
thousands of cells. Accordingly the table has not been constructed for inclusion
in this paper, and that task remains.
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