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(818:8:8;), such that ad;; = Z}Ll 185 , where ;s;; is the entry in the sth column
of S, . This can always be done by the 4 square problem ([2], p. 235). Let B =
a'*(P™)™'B,, then B has integral entries, since B; and a" >(P™)™ have integral
entries. Then

P'B = ¢?B,, P"BB"P = aB\B{ = d’D,
Thus BB” = a(P")"a'*Da*P™. But A = (P")™DP™. Thus BB” = a’4.

REFERENCES

[1] C. C. MacDuFFEE, The Theory of Matrices, Chelsea Publishing Co., 1946.
[2] EpmuNDp LANDAU, Vorlesungen uber Zahlentheorie, Vol. 1, Chelsea Publishing Co., 1949.

—

ABSTRACTS OF PAPERS

(Abstracts of papers presented at the [owa City Meeting of the Institute, November 26-27, 1946)

1. The Distribution of the Number of Components of a Random Mapping
Function. (Preliminary Report.) LEo Karz, Michigan State College, and
Jay E. FoLgerT, Michigan State College and Hope College.

A set H, of N elements, is mapped into itself by a function f. The most general function
takes each point into an arbitrary number of points of the set. A function‘issaid to be random
if the r; images of the point z; may with equal probability be any subset of ; points of H.
A subset & of H is a component of the mapping if it is a minimal subset such that f(k) C h
and f~1(k) C k. Every mapping f decomposes H into a number of disjoint components. The
probability distribution of the number of components of a random mapping, where only the
numbers of images of each point are known in advance, is obtained. The probability dis-
tribution of the number of components is also obtained for a variant case in which the
mapping is hollow in the sense that no point maps into itself. The two distributions are
obtained through a modification of the King-Jordan-Frechét formula. For each case two
specializations are considered; first, one in which the multiplicity of images is the same for
each point of the set, and second, where this common multiplicity is unity (so that the
function f is single-valued). Numerical examples and approximations to the exact distri-
bution are considered. This work was supported by the Office of Naval Research.

2. Approximate Sequential Tests for Hypotheses about the Proportion of a
Normal Population to One Side of a Given Number. WiLLiaMm KRUSKAL,
University of Chicago. ‘

It is sometimes of interest to test the hypothesis that the proportion of a given population
exceeding a given number U is p, against the hypothesis that this proportion is p; . This
testing situation has been called that of testing for one-sided fraction defective. If the
population is normal then the problem is to test the hypothesis (U — u) /o = K, against the
hypothesis (U — u)/o = K, . (Here u is the mean, ¢? the variance, and K; the unit-normal
deviate exceeded with probability p: .) A simple translation puts this in the form: u/oc =
Ky vs. u/o = K, . If a sequential test is desired, it is very reasonable to base it on the se-
quence of Student ¢ values computed from the first n observations. Application of the Wald
sequential probability-ratio method to this sequence gives a procedure that may be called
the WAGR test (after Wald, Arnold, Goldberg, and Rushton). Another sequential test
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procedure for this problem has been suggested by Wallis. A sequence of successive ap-
proximations to the WAGR test is derived; of these the Wallis procedure is the final ap-
proximation. When the true value of (U — p)/s is distant from K, and K; any of these
sequential procedures may lead to unduly large average sample sizes. A suggestion is made
to overcome this difficulty.

3. A Note on Some Limit Theorems in Probability Theory. JoEN GURLAND,
Iowa State College.

A theorem by Cramér on the limiting distribution function of a sequence of random
variables is extended by widening the class of functions to which the theorem applies.
A theorem by Mann and Wald is modified by relaxing the continuity restrictions. The
present note utilizes the continuity theorem for the limit of a sequence of characteristic
functions in establishing the results stated.

4. Uniqueness of Latin Square Association Schemes for Partially Balanced
Incomplete Block Designs. (Preliminary Report.) D. M. MESNER, Purdue
University.

In Latin square type partially balanced incomplete block designs with ¢ constraints, first
associates are defined by means of a square array of the n? varieties with 4 — 2 mutually
orthogonal Latin squares. n; = i(n — 1) and ph = i(i — 1), determining n, and the re-
maining pin . For i =1 the designs reduce to a special case of Group Divisible, for which
Bose and Connor proved a uniqueness theorem (Ann. Math. Stat., Vol. 23 (1952), p. 368).
The analogous theorem here, that a design with the given parameter values implies the
existence of the square array, is proved for ¢ = 2. In this case, an arbitrary pair of first
associates have as common first associates n — 2 additional varieties; these n varieties are
assigned to one row of the array. Investigation of the incidence matrix of first associates
shows that they are pairwise first associates. This is then used to show that the remaining
association relations are those defined by the remainder of the array. The cases ¢ = 3 are
being investigated and partial results have been obtained. That a complete generalization
is impossible is shown by examples for which designs exist but the Latin squares do not.
One example corresponds to the non-existent 6 X 6 Graeco-Latin square.

5. On Bounds for the Normal Integral. J. T. Cru, University of North Carolina.

Let v(z) = [§ 2n)~} e~ dt, and u(z, a) = } (1 — e~=*)}, for all z = 0. Then u(z, a) =<
v(z) S u(z, b) if and only if 0 < @ < 4, and b = 2/x. Therefore u(z, 4) and u(z, 2/7) are
respectively the best possible lower and upper bounds for v(z) of the type u(x, a). The
ratio v/u(}) is a steadily decreasing function of z and has an upper bound 2/=t. If w(z, a) =
}ax?/(1 + az?) ]}, then v(z) = w(z, a) if and only if 0 = ¢ = 2/, and w(z, 2/x) is the best
possible one of the type w(z, a). Comparisons are made of the two new lower bounds for
v(z) and several known ones converted from inequalities for Mills’ ratio, obtained by R. D.
Gordon, Z. W. Birnbaum, and R. F. Tate (Ann. Math. Stat. (1941), 364-366; (1942), 245~
246; (1953), 132-134). Of the three: w(z, 2/7), u(z, 3), and Tate’s 3 + (e==*/2xz?))}
— (e~%*2/z(27)}), it is found that approximately the first is the best for 0 < = < 1, the
second, for 1 < z < 1.01, and the last, for z = 1.01.

6. Rules for Determining Error Terms in Hierarchical and Partially Hierarchi-
cal Models, Mary Lum, Wright Air Development Center.

In the classical analysis of variance procedure a linear mathematical model is used,
together with certain well-known assumptions, as a basis for determining proper test
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factors for the F-test of significance. This paper is concerned with models for which one or
more factors are of the “within’’ or ““nesting’’ type, with complete replication for the other
factors. A set of rules is given for obtaining the appropriate test factors (error terms) for
all main effects and interactions of the general n-factor partially hierarchical model. These
rules take into account models which are fixed, mixed, or random in nature. The usual as-
sumptions of the analysis of variance are made, with one exception: a weaker set of re-
strictions is imposed concerning the independence of the interaction effects. The resulting
test factors are compatible with those which result from the randomization theory approach
of Kempthorne and Wilk. To illustrate the convenience and usability of these rules, two
examples are given.

(Abstracts of papers presented at the Annual Membership Meeting, December 27-30, 1964)

7. Maximum Likelihood Estimates of Monotone Parameters. H. D. BRUNK,
University of Missouri.

The maximum likelihood estimators of distribution parameters subject to certain order
relations are determined for simultaneous sampling from a number of populations, when
(i) the order relations may be specified by regarding the distribution parameters, of which
one is associated with each population, as values at specified points of a function of n
variables monotone in each variable separately; and (ii) the distributions of the populations
from which sample values are taken belong to the exponential family (cf. Girshick and
Savage, “Bayes and minimax estimates for quadratic loss functions,” Proc. Second Berk.
Symposium, Univ. of Calif. Press, 1951, pp. 53-73; p. 65). The results of the present paper
generalize those of Ayer, Brunk, Ewing, Reid, and Silverman, “An empirical distribution
function for sampling with incomplete information,’’ to appear in Ann. Math. Stat., which
treats the special case in which n = 1 and the distribution is binomial. This paper also
represents a specific application of results obtained by Brunk, Ewing, and Utz on min-
imizing integrals in certain classes of monotone functions (to be offered for publication).
This research was supported by the United States Air Force, through the Office of Scientific
Research of the Air Research and Development Command.

8. Extension of Certain Classes of Contagious Distributions. JoHN GURLAND,
Towa State College.

Beall has recently shown that Neyman’s types A, B, and C of contagious distributions
are members of a certain general class of contagious distributions. The present paper
provides alternative ways of extending this class of distributions, and discusses the in-
terrelations which exist among various classes. The methods employed are similar to those
in recent articles on the subject.

9. Recurrent Markov Processes II. (Preliminary Report.) T. E. Harris, The
Rand Corporation.

All sets considered are Borel measurable. For X a real set, let P»(z, E) =
Prob (z, € E) | zo = z) forn = 0, 1, - - - be the iterates of a temporally homogeneous Markov
transition function; m is a sigma-finite measure. Condition 1: m(B) > 0 implies
Prob [z, € Bi.0. | x,] = 1, for all 7, ¢ X. Condition 1 implies (abstract, Nov. 27, 1954 AMS
meeting, Los Angeles) existence of a sigma-finite measure = where =(X) = « is allowed,
such that m is absolutely continuous with respect to =, with =(E) = fx =(dz)P(z, E), for
all E < X. Next, Condition 1 being satisfied, suppose A C X, with 0 < n(4) < = ; suppose
the Markov process, obtained by observing only those z, which are in 4, satisfies condition
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Dy, (Doob, Stochastic Processes, p. 221). Then
lim 2}, Pr(z, E)/Z\_, P"(y, F) = = (E)/x(F)

N1
N-wo

for all z, y, E, F in A, provided «(F) > 0.

10. The Role of Perks’ Distributions in the Theory of Wiener’s Stochastic
Function. Josepe Tavracko, Marquette University and University of
California.

In “Wiener’s Random Function, and other Laplacian Random Functions,” by Paul
Lévy, Second Berkeley Symposium on Math. Stat. and Prob., 1951, pp. 171-187, Wiener’s
function has been applied to the study of the Brownian plane curve. For the area between
an arc and its chord particular solutions of the relative transition probability are found.
This paper, using the method of characteristic functions, shows that the solutions are all
non-Gaussian and from the Perks family of functions f(z) = c(e** + k + e **)71, where
0=kz=2

11. On the Orthogonality of Measures and the Existence of Consistent Tests.
CuArLES KraFT, University of California.

Let (X, @) = I&, (X:, @:) and let {P} and {Q} be any two families of measures on ®.
{P} is called orthogonal to {Q} when there is a set A in @ such that P(4) = 1and Q(4) = 0
forall P ¢ {P} and Q ¢ {@}. When the families each contain one element, their orthogonality
is equivalent to the existence of a consistent test between the simple hypotheses P and Q.
Further, the orthogonality can be characterized in terms of ‘‘distances’’ between the n-
dimensional distributions. This characterization is a generalization of the one given by
Kakutani for product measures. It is shown that the orthogonality of the two families of
measures and the existence of a consistent test for the corresponding hypotheses are identi-
cal as long as the families are countable, but that this is not necessarily the case when the
families are not countable. The methods used for these problems are then applied to the
problem of consistency for likelihood ratio test and maximum likelihood estimates for
cases when the observations are dependent.

12. The Minimax Character of the Neyman-Pearson Critical Region. L. M.
Courr, Diamond Ordnance Fuze Laboratories.

In his “Statistical Decision Functions’’, Wald indicates that the Neyman-Pearson theory
of testing statistical hypotheses is a special case of Decision Theory for which d(0) ¢ D¢ =
1, -+, N)and d(z | s1) e D! = (df , di). By a further natural restriction of the class of
decision functions to be considered, the minimax character of the Neyman-Pearson critical
region is easily established. Since a minimax solution of a decision problem is essentially
also a Bayes’ solution with respect to a least favorable a priori distribution, the Neyman-
Pearson critical region also corresponds to a Bayes’ solution.

13. On the Existence of Linear Regressions. T. S. FErcuson, University of
California.

Let £ and 5 be independent nondegenerate random variables with zero means. If the
regression of £ on X = af + 7 is linear for two values, a; and a:, of a with |ai| = |as],
then £ and 5 are both semistable in the sense of P. Lévy, with the same characteristic ex-
ponent. Hence if second moments are assumed, both £ and » are normal. If the regression of
£on X is linear for three values a;, a., and a; ot a, with log |a:/a:| and log |ai/as| incommen-
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surable, then both £ and » are stable. This extends the results of E. Fix: ‘“Distributions
which lead to linear regressions,” Proc. Berkeley Symposium on Math. Stat. and Prob.,
Univ. of Calif. Press, 1949. Two further results are obtained. (1) If the regression of £ on
X = a1t + m and X = as£ + 218 linear where £, 1 , and 5, are independent nondegenerate
random variables with zero means, and a; # 0 ¢ a;, then £ m , and 5. are each normal.
(2) Let X = A% + n where £ and 5 are independent s- and n-dimensional random vectors,
respectively, with zero means, and 4 is an n X s matrix of constants. The components of »
are assumed independent and at least one of them nondegenerate. If the regression of bt
on X is linear for all values of the matrix 4 and the vector b, then for n = 1 both £ and »
are multivariate stable and for n > 1 both £ and 5 are multivariate normal.

14. On the Asymptotic Distribution of U-Statistics Modified by the Introduction
of Estimates of Parameters. (Preliminary Report.) B. V. SukHATME,
University of California.

Let X1, ---, Xa be n independent identically distributed r.v.’s with c.d.f. F(z — 9).
Let 8,(X1, -+, X») be an estimate of 6 such that given ¢ > 0, there exists a number b
such that for n sufficiently large, P{|#. — 8] = b/ v/n} < e The paper investigates the
asymptotic behavior of U-statistics when each observation is centered at 6, and shows that
under certain mild restrictions, they are asymptotically normally distributed. Conditions
are also given under which these statistics have the same asymptotic normal distribution as
the original U-statistics. These results have been extended to random vectors, to functions
of several U-statistics, and to the type of statistics that occur in testing the hypothesis
that two populations differ only in location.

15. Essentially Complete Classes of Experiments. SyLvaiN EureNFELD, Colum-
bia University.

An experimenter has available a family of independent random variables Y. depending
on a parameter 8 ¢ @ C E® and where z ¢ A C E®, with A compact and E‘® and E®
Euclidian spaces. This paper deals with choosing the z’s if the experimenter is restricted to
a finite number of observations. Suppose Y, is normally distributed with mean ¢ (0, x)
and variance o2. Let Ex(B) be the class of experiments with z restricted to B C A, and let
Veoonn ,N(z/'\o) be the variance of the maximum likelihood estimate of ¢'6 when Y,,....Y.y
are observed. &v(B) is said to be essentially complete if for any z; (j = 1, --- , N) with
z; € A and any unknown 6 £ @ C E® there exists aset z; (j =1, .-+, s) with s < N and
& e B C Asuchthat Vsy,....;({%0) S V... .,,N(t/’l\?) for all t ¢ E®. The notion of asymptotic
essential completeness is defined and several classes are shown to have the above property
for this general case. In case (8, z) = 2’6 (thelinear Hypothesis) stronger results can be
proven without the normality assumption. Let r(4) C A be defined as follows: 7(4) =
{N(z)z | z € A} where \(z) is for each z ¢ A (z = 0) a scalar such that \(z) = 1 and\(z)zc 4,
while if A’ > A(z) then A\’ non-¢ A. It is shown that: (a) Ex(r(A4)) is essentially complete
forall N; (b) if b1, --- , bs are s vectors in r(4) such that their convex closure contains
r(4), then &y (b1, -+ ,b,) is asymptotically essentially complete; (c¢) with by, --- , b, as
above Ey.s(b1, - -+ , b,) is essentially complete with respect to E(4) for all N.

16. A Theorem on Uniform Convergence of Families of Sequences of Random
Variables. EMANUEL PArzeN, Columbia University.

In the author’s paper “On uniform convergence of families of sequences of random
variables’” (Univ. Calif. Publ. Statist., Vol. 2 (1954), pp. 23-54), a theorem (18D) was stated
which is a uniform analogue of theorem 20.6 in Cramér’s Mathematical Methods of Statistics
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(Princeton, 1946). In this note we state a theorem, more general than our previous theorem,
which pays attention to UC* convergence, and does not impose unnecessarily broad equi-
continuity conditions on the limit distribution functions. This theorem applies to the
multivariate case as well as to the univariate case, and may be proved as an immediate
consequence of the Uniform Continuity Theorem. AssumpTIONS: Let r-dimensional random

vc* . . P
vectors X((9) —— X(6), and s-dimensional random vectors Y(™(6) — a(8), constants,
uniformly in 6. For j = 1, --- , m, let u;(x, y, ) be a family of real-valued Borel func-

tions, such that, for each x, u;(x’, y, 8) — u;(x, a(6), 6) uniformly in 6 as [|x’ — x||— 0 and
ly — a(8)| — 0, and, for each x, |uj(x, a(d), 6)| is bounded uniformly in 6. Define
l.l(x, y, a) = (ul(xy y, 0)1 Tty um(x’ y, 0)). Let Z(n)(o) = u(x(")(o)y Y(ﬂ)(o)’ 0) and

vc*
Z(6) = u(X(6), a(6), 6). CoNcLUSION: Z("(8) ——> Z(0).

17. Decision Procedures for the Comparison of Exponential Populations. F. S.
McFEELY and J. E. FrEUND, Virginia Polytechnic Institute.

Minimax procedures are applied to the comparison of two ‘exponential populations to
determine optimum sample size if one of two alternatives must be accepted. Interpreting
the first r out of » ordered observations from each population as failures in a life test, the
loss function is taken as

L =ci(1 — 6:/65) Priby > b} + 2car + 2c5(n — 1) + ca62 Diam —j 4+ 1)t

assuming that 8: > 6, . In order, the terms stand for losses due to wrong decision, to
items used, and to cost of experimentation. Boundedness is obtained by considering L to be
split into components L, and L, consisting of the first two and last two terms of L respec-
tively. Minimax procedures applied to L, yield an r which is subsequently used in minimiz-
ing L, for n. Values of 7 and » are tabulated for selected values of the constants in L.

18. The Efficiency of Some Nonparametric Competitors of the ¢-test. J. L.
Hopages, Jr. and E. L. LEaMaNN, University of California.

Consider samples from continuous distributions F(z) and F(z — 6). We may test the
hypothesis § = 0 by using the two-sample Wilcoxon test. It is shown that its asymptotic
efficiency (in the sense of Pitman), relative to the ¢-test, never falls below 0.864. This lower
bound is attained when F’(z) is parabolic. A number of alternative notions of asymptotic
efficiency are compared. In particular, the limit of the power efficiency function of Dixon at
a fixed alternative is derived for the sign test relative to the ¢, for normal F.

19. Multi-level Continuous Sampling Plans. GErRaLD LieBERMAN, Stanford
University, and HErBERT SorLoMoN, Teachers’ College, Columbia Uni-
versity.

In 1943, Dodge (Ann. Math. Stat., Vol. 14 (1943), pp. 264-279) published a sampling
inspection plan for continuous production for production in statistical control. Wald and
Wolfowitz (Ann. Math. Stat., Vol. 16 (1945), pp. 30-49) later gave a continuous sampling
plan which guaranteed a prescribed Average Outgoing Quality Limit (AOQL) even when
production is not in statistical control. An inconvenient feature of both plans is the abrupt
change between 100 percent inspection and partial inspection. Multi-level continuous
sampling plans are introduced to provide smoother transitions between partial inspection
and 100 percent inspection. The Dodge plan is a special case occurring when there is one
sampling level. The Average Outgoing Quality (AOQ) function is derived for a k-level plan.
Contours of constant AOQL are developed for two-level sampling plans and infinite level
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sampling plans. An approximation is given for contours of constant AOQL for other levels.
The choice of a specific multi-level plan is discussed in terms of minimum average fraction
inspected and local stability.

20. Numerical Values for Covariances of Order Statistics for Samples of Size
Twenty and Less from the Normal Distribution. D. TricHROEW, Uni-
versity of California.

This paper gives the covariances to more than ten decimal places. The method of com-
putation is given and auxiliary tables obtained in the process are described. These tables
include the normal density function, the normal probability integral and its first nineteen
powers. All these functions are now available to twenty-five decimal places for the argu-
ment increasing in steps of .02.

The table of covariances is the end result of a project proposed by W. J. Dixon to the
Institute for Numerical Analysis of the National Bureau of Standards. The project was
started before and completed after the Institute for Numerical Analysis had become Numer-
ical Analysis Research of the University of California, Los Angeles. The project was sup-
ported by the Office of Naval Research,

21. Estimation of the Parameters of the Rectangular and the Exponential
Populations from Singly and Doubly Censored Samples. A. E. SARHAN,
University of North Carolina.

. The best linear estimates of the parameters of the rectangular population f(y) = 1/6.,
6y — 30: = y = 61 + 30:, and of the exponential population f(y) = ¢7! exp [—(y — u) /o],
where u < y < «, and the variances and relative efficiencies of these estimates are worked
out for singly and doubly censored samples of size n. The corresponding quantities are also
derived for thespecial cases f(y) = 1/6. , where0 < y < 6., and f(y) = 0/¢7'¢ — y/o, where
0=y = ».

22. Estimation from “Censored” Samples of Extreme Data. JuLius LIEBLEIN,
National Bureau of Standards.

In a previous report (NACA Technical Note 3053), the author has obtained unbiased
minimum-variance order statistics estimators of an arbitrary linear function of the two
parameters of the extreme-value distribution with c.d.f. P(z) = exp{—exp[— (z — w)/B]}.
These estimators are ‘“optimum’ within the class of all linear functions of the order sta-
tistics of a sample of given size n. The present paper extends these methods, together with
the necessary tables, to the case of a ‘‘censored’’ sample, defined as one where the total
number of observations is known but full information is not available with regard to some
of them. For example, in fatigue testing, the test may be discontinued before all test speci-
mens have failed, so that the endurance lives for the ‘‘run-outs’’ are not available. The
method is applied to an example of fatigue life-‘testing of ball bearings.

23. On the Probability Integral Associated with a Certain Multivariate Test. K.
V. RamacHANDRAN, University of North Carolina.

The acceptance region ¢, < all ¢(S:187") = ¢o has been proposed by Roy for testing the
hypothesis Ho: 21 = Z,, where Z; and Z; stand for the dispersion matrices of two p-
variate normal populations, S; and S, for those of two random samples from them, ¢(S:S77)
for the characteristic roots of $187”, and ¢, and ¢, are two preassigned positive constants. In

this paper a technique for obtaining the probability Plco < all ¢(818:") < co|Ho] is devel-
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oped which is an extension of the previous methods due to Roy, Nanda and Pillai for ob-
taining P[all ¢(8, D = ¢ | Ho] or Plco < all ¢(8187") | Ho). The actual expressions for the

probability are given for p = 2, 3, 4 and 5.

24. Some Uses of Quasi-ranges. J. T. Cru, University of North Carolina.

Confidence intervals for, and tests of hypotheses about, the difference of two quantiles
(of the same distribution) are obtained, using the difference (called quasi-range) of two
properly chosen order statistics. Let 0 < p < ¢ < 1 be given and %, and £, be the pth and
gth quantiles of a certain distribution. Let z, and z, , with r < s, be the rth and sth order
statistics in a sample of size n. Then

P{(@s—z) Z (6, — &)} 2 Bo(s—1,9) = Balr — 1,p) = ,,

where B.(r, p) = Zio({)p*(1 — p)»~. Corresponding to every integer k, with0 S k < n —1,
definer = [(n — k)p / (1 — ¢)] + 1, and s = r + k, where [z] is the integral part of z, and
¢ = ¢ — p. Then L is a nondecreasing function of k. Fora given a (and sufficiently large n),
choose the least integer k such that L = 1 — a. Then P{(z, — z,) = (¢ — &)} 2 1 — a.
If the parent distribution satisfies certain continuity conditions, then z, — z, is a consistent
estimate of ¢, — &, and variance O(n™!). Confidence lower bounds and intervals for, and
tests of hypotheses about, £, — £, can be obtained in similar ways. Applications are given
to the standard deviation of a normal distribution, quantiles, and the proportion of de-
fectives in a lot.

25. Inadmissibility of the Usual Estimate for the Mean of a Multivariate
Normal Distribution. CEARLEs M. STEIN, Stanford University.

If X,, --- , X, are independently normally distributed with unknown means & , --- , &
and variance 1, the usual estimate of £; is X; . If the loss is the sum of squares of the errors,
this estimator is admissible for n < 2, inadmissible for » = 3. In the latter case, a better
estimatoris [1 — (n — 2) / (¢ + =X})]X; , with ¢ sufficiently large. The constant ¢ should
be chosen to increase with = a little faster than 4/, and the estimate should be replaced by
0 if the correction factor is negative. As Z& — o, this yields asymptotically the best pos-
sible improvement over the usual estimator among all estimators having spherical sym-
metry about the origin. For large Z¢; or large n, the mean squared error of the proposed
estimator is nearly n — (n — 2)? / (C&} + n). For large n, it is nearly a Bayes’ estimator
with respect to any spherically symmetric a priori distribution. For extremely large =,
it seems desirable to represent the parameter space as an orthogonal direct sum and apply
the method separately in each of the spaces entering into the direct sum. In many ex-
perimental designs there is a natural way of doing this, for example by the order of the
interaction. Better approximations are needed before this method can be applied freely.
It seems likely that the present results can be extended to a large class of problems in which
one is interested in estimating many parameters with a single overall measure of the error.

26. A Locally Optimal Test for the Independence of Two Poisson Variables.
MounameD S. AameD, University of California.

Let (z;,y:),fori=1,2, --- | n, be independent observations on a bivariate Poisson with
respective expectations N and u. It is shown that no test for the independence of = and y
can be both similar in A, x and also uniformly most powerful. However, a test of the form
25 (xs — %) (ys — §) = ca(ZF)} is similar and locally most powerful. Using a theorem on the
convergence to a normal of the conditional distribution of Z{* (z; — £)(y: — 7), given %
and §, asymptotic formulae for the values of the ¢.’s corresponding to a given level are
derived. Furthermore, it is shown that the asymptotic power of the test can be obtained
from a normal approximation.
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27. Statistical Estimation of the Endurance Limit. E. J. GuMBEL, Columbia
University.

The theoretical scheme for fatigue failures and life tests is the probability ls(N) of sur-
viving N cycles under a stress S. Within any such scheme all specimens tested are expected
to fail after a finite number of cycles. However, numerous observations show cases where
n’ out of n pieces tested survived 107 or 10° cycles, which is taken as infinity. A stress S,
so small that the probability of surviving an infinity of cycles is equal to unity is called
the endurance limit. It can exist provided there exist minimum lives No,s , that is numbers
of cycles before which fracture cannot occur under the stress S. To explain the existence of
an endurance limit, the probability of survival is written lg(N) = lg(®) 4+ 1 — Ig(®) Lsg(N)
where Lg(N) stands for the probability of survival up to N cycles of the broken pieces and
ls() is the probability of permanent survival. A first estimate for lg(=) is the quotient
(n — n') / (n + 1). If the probability Lg(N) is interpreted as the asymptotic probability
of the smallest values of a variate limited to the left by No,s , the value lg(») can be esti-
mated by the method of moments and successive approximations. Finally, the probability
Is() is again interpreted by the same asymptotic theory of smallest values with the lower
limit S, , which may be estimated by a procedure similar to the estimation of the minimum
lives No,s . The few reliable observations on the frequencies of permanent survival which
are available lead to a good fit of the theory. (The work was done in part under the support
of the Office of Ordnance Research.)

28. On the Efficiency of Estimates in Successive Multiphase Sampling. (Pre-
liminary Report.) B. D. Tikkiwar, University of North Carolina.

The estimates given in a preliminary report, (Ann. Math. Stat., Vol. 25 (1954), pp. 174),
on sampling on successive occasions for K characters from a finite population of size N,
are further seen to satisfy the necessary and sufficient conditions for the efficiency of an
estimate given by Patterson (1950), in view of the following lemma. Let ;X;; represent the
ith unit observed for the jth character on the Ith occasion and X ; the best estimate, with
corresponding variances 0} and Vy (X ;). The correlation between the units for the same
character on lth and mth occasions is P;,. , and the correlation between units for ith and
jth characters on the same occasion is P:;. Then

P;',j'(lﬂ;/mﬂj') COV(lXii’ mXi')’ .1 > jl;
Cov(Xij mXi?) = {Pjirlmoir/1e}) Cov(X;; X, J<i%
¥ Pimioj moi, =7

Whenl<m, = I()[V,(X) /w0l + ZiZ [P V.. (X:) / w0}l (IL(:) — H(isr)] = 1/N,
where limits on Il aret = I 4+ 1to ¢t = m and «; is the weight associated with the estimate
for jth character on tth occasion. Whenl =2 m, y = V(X i) / mo;. If 1Xi; is not in the
sample, ¢ = —1/N. The estimates in an infinite population are seen to satisfy ‘the con-
ditions of Patterson by putting N = .

29. Identification of a Certain Stochastic Structure. HENRY TEICHER, Purdue
University.

The structure characterized by z; = u; 4+ aui_; , with the u; identically and independ-
ently distributed, is analyzed with respect to the identifiability of the parameter « and the
distribution of u. Under simple conditions both are identifiable.
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30. Detection and Hypothesis Testing by Linear Methods. EMANUEL PARZEN,
Columbia University.

The ‘‘measurement signal-to-noise ratio”’ considered by various authors, and con-
sidered as a detection criterion by E. Parzen and N. Shiren (An analysis of a general system
for the detection of amplitude modulated noise, to be published) is shown to be a useful gen-
eralization of the notion of power signal-to-noise ratio, and to be unambiguously defined in
cases where the latter is not. It is also shown that the detection criterion provides a possible
risk function on which to base a theory of statistical hypothesis testing restricted to re-
jection regions determined by linear functionals in the manner of estimation by linear
methods. The test so obtained for the mean value function of a random time function co-
incides with the test obtained for a Gaussian process by the Neyman-Pearson theory.

31. Probability of Indecomposability of a Set Under Random Mapping. Lro
Karz, Michigan State College.

A set @ of N (finite) points is mapped into itself by a single-valued function, f(z). The
mapping, in the general case, is random if the N¥ sample points of f(z) have uniform prob-
ability. Each function decomposes the set into a number, k, of disjoint, non-null, minimal
invariant subsets, as @ = wy + ws + < - + wi , with f(w;) Cw; and ' (w;) Cw, . Ifk = 1,
the set is indecomposable. In the ‘‘hollow’’ case, of some importance in social psychology,
no point maps into itself and the (N — 1)¥ sample points have uniform probability. For
both cases, the probability that the set is indecomposable under the random mapping is ob-
tained. A table of the probabilities is given for N = 2(1)20(2)40(5)100. Asymptotic ex-
pressions for the probabilities indicate that indecomposability is more likely in the hollow
case by a factor of e, approximately. This last finding is significant in that it contradicts
standard sociometric folklore, which holds that the hollow case may be approximated by the
general one, for large N. (This work was supported by the Office of Naval Research.)

32. On the Near Monotonic Character of the Power Function of a Certain Multi-
variate Test. S. N. Roy and K. V. RaMACHANDRAN, University of North
Carolina.

In previous papers by one of the authors the acceptance region ¢y < ¢; < ¢, S o is
proposed for the hypothesis Hy : Z; = Z:, and some of its operating characteristics are
studied, where =, and 2, stand for the dispersion matrices of two p-variate normal popu-
lations, S; and S, for those of two random samples from them, ¢; and ¢, for the smallest
and largest characteristic roots of 8,87, and y1 < --- = v, for the characteristic roots of
2,%7". The quantities ¢, and co are supposed to be given by (i) P(co < ¢1 S ¢p < ¢o | Ho) =
1 — a = P, (say); and

aP ,
(ii) g(co§q§c,§colf1) =0, i=1--,p.
5 . Y=+ r=7p=1

Itistobenoted that (a) Hy&vy1= -+ =vp,=1andH#Hy; (b)PlcoSc1Scp S co | H)
=Plo=<c=<cyZco|ly1, - ,vp#1) = P (say); and also that (c) the equations (ii) are
equivalent to just one equation. In this paper it is proved (1) that if all the y’s are equal
and stay equal, in other words, if 223" = +I(p), or Z; = v=; , then P or the second kind of
error monotonically decreases, that is, the power monotonically increases as v tends away
from 1 (increasing or decreasing) and also (2) that when the v.’s are not equal the power
increases as each v; , separately, tends away from 1, provided that (i) all are greater than 1
or less than 1 to start with and (ii) the gap between the smallest and the largest one does
not exceed a certain value.
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33. Simultaneous Distribution of the Mean, Standard Deviation, and Range for
Probability Density Functions of Doubly Infinite Range. (Preliminary
Report.) MeLviN D. SpriNgER, U. S. Naval Ordnance.

The simultaneous distribution of the sample mean (£), standard deviation (8), and
range (R) is derived in integral form for probability density functions f(z), for — o < z
< o, This derivation is effected through the use of a transformation which transforms the
sample probability element II7 f(z;)dz; into an element which is a function of z» , 23, --- ,
Zn_2 , %, S, R. After limits of integration of z,_, are determined, this function is integrated
with respect to z,_, for r = 2, 3,:---, n — 2, to obtain the simultaneous dis-
tribution- F(z, S, R). Integration of F(z, S, R) with respect to Z, S, and R, respectively,
yields the joint distributions G(S, R), H(%, R), and K (&, S), whose correlation properties
are then considered. In particular, the regression functions, scedastic functions, and cor-
relation ratios are presented in general (integral) form for both regression systems of each
of the joint functions G(S, R), H(Z, R), and K (&, S). The methods are then applied to the
normal density function to illustrate the procedures for determining F(Z, S, R) and for
analyzing the regression system of R on S.

34. A Class of Asymptotic Tests of Composite Hypothesis. J. NEymaN, Uni-
versity of California.

Let H be a composite hypothesis asserting that all the observable r.v.’s of the sequence
{X;} (possibly multivariate) are completely independent and have the same probability
density p(z|6) defined for z ¢ & and depending on a parameter point § = {6, , 6., --- , 65}.
H fails to specify the value 6° of 8 except that it must belong to an open set 6. The problem
considered is that of ‘‘asymptotically «-similar’”’ regions for testing H. Let Y, =
{X1,X2, -+, X.} and w. be a subset of . We say that the sequence {w,} is an asymptot-
ically a-similar critical region for testing H if P{Y, e w. | 6°} > a as n — « for all §°¢ ©.
Under suitable regularity conditions on p(z|6) it is proved that, whenever for each j =
1,2, --- , s there is known a consistent estimate 6f (¥,) of 67 converging to 6¢ so fast that
the product v/n |67 (Y,) — 6i| is bounded in probability, a family & of asymptotically
a-similar regions can be constructed as follows. Let »(a) be an open set of numbers such
that N(0, 1) € v(a) with probability a. Let f(z, 6) be a sufficiently regular function on XX 8,
such that the expectation of f(X, 6°) is zero andits variance unity for all 8° ¢ 6. Let ¢;(z, ) =
d(log p)/30; , let A;(8°) be the regression coefficient of f(X, 6°) on ¢;(X, 6°) and let ¢2(8°)
be the variance of f(X, %) — 214 ;(0%)¢;(X, 6°). Finally, let w, stand for the subset of &~
defined by

1
al6* (Y]l Vn
Then the sequence {w,} is asymptotically a-similar. The problem of selecting within & an

“‘optimum’’ critical region for testing H is thus reduced to that of selecting f(z, 6) and

v(a).

ZI{f[:c;jO* (Yl — ZlAflo* (Y)lejlz: 5*(Y)]} e v (o).
i= i=

35. The Transitions of a Markovian Process from Set to Set. BAyarp RANKIN,
Massachusetts Institute of Technology.

Let (2, @, P) be a probability space, (I', B) a measurable space and R* the space of
positive real numbers. A measurable function G.(t) defined on @ X R* to I will be called a
stochastic process with range space I'. If v represents a measurable partition of T, it is
possible to describe the transitions of a Markovian process G, (t) from set to set of v in terms
of a stochastic process F,(t) with range space v. The process F,(t) is such that for any
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gey, Fu.(t) = g whenever G.(1) € g. In general F,(t) will be non-Markovian, but analytically
it may be treated as a temporally inhomogeneous Markov process. In particular, if the
transitions of G, (t) through the points of I can be described by a temporally homogeneous
linear diffusion equation, the transitions of F,(t) through the points of v can be described
by a temporally inhomogeneous linear equation which differs from the latter only in the
coefficients. The new coefficients will be weighted averages of the old, the weighting func-
tions being the conditional distribution of G,(t) given that G,(t) belongs to some specified
set of v and given the initial conditions. Thus the ‘‘past’’ of the non-Markovian process is
put into the coefficients. If the conditional distribution is arbitrarily assumed independent
of time, this defines a new stochastic process F,(t) which is non-Markovian but both tem-
porally homogeneous and linear. (This work was sponsored in part by the Office of Naval
Research.)

36. Confidence Intervals for the Ratio and for the Difference of Two Prob-
abilities. (Preliminary Report.) R. R. Bauapur and W. H. KruskaL,
University of Chicago.

Let X for i = 1,2 be the numbers of successes in binomial samples of sizes n; with success
probabilities 6; . The authors propose specific exact randomized tests of composite null
hypotheses such as 6,/6; = 2 and 6, — 6, = .3, more precisely of any linear null hypothesis
of form H: a6, + b6: 4+ ¢ = 0, where a, b, and ¢ are constants. In the usual manner, such
tests may be used to generate confidence sets for parameter functions like 6:/6. and 6, — 6, .
The proposed tests are based on the observation that if Z is 1 or 0 with probability 6 and
1 —6,and if A and B have independent distributions on the same two points with prob-
abilities for 1 of « and B respectively, then AZ + B(1 — Z) alsois 1 or 0 with probability for
1 equal to a6 + B(1 — 6). In this way null hypotheses of form H may be reached to form
6, = 6: . The authors propose to study further the small sample and asymptotic properties
of these tests and confidence sets. One of the authors (WHK) is studying similar methods
in other areas, notably in components of variance problems.

37. Limit Theorems for Conditional Distributions. G. P. Steck, University of
California.

Let Un= (Un1, -+ ,Un) and Vo = (Va1 , -+, Van) be random vectors. Given that the
limiting distribution of (U, , V,) exists, conditions are given which insure that the limiting
conditional distribution of U, given V, also exists. In this connection we have the following
theorems: THEOREM 1. Let the conditional characteristic function of U, given Vo, = v (v a
possible value of V,) be denoted by w.(v). If (1) (Un , V) converges in law to the random vector
(U, V), and (ii) the family {w,(v)} is equicontinuous on bounded sets, then {w,(v)} can be
extended to a family {wh(v)} such that wh() — w®) uniformly for v in a bounded set, where
w(v) is the conditional characteristic function of U given V = v. THEOREM 2. Let U, and
V. be as indicated above. If (1) (Un , V) has a limiting normal disiribution, and (ii) Vax s
the normalized sum of independent random variables which are identically distributed on a
lattice independently of n, then the limiting conditional distribution of U, given V, is also
normal. Theorem 2 can be extended to cases where the summands of V. are not identically
distributed and have distributions depending on n. An application of Theorem 1 indicates
that with mild restrictions on the cell probabilities, the limiting distribution of the Pearson
x? statistic (s observations, n cells) as n — © and s — « is normal if s2/n — «. Further,
if the cells are equiprobable, then the limiting distribution is Poisson if s2/n — ¢ > 0 and
degenerate if s2/n — 0.
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38. Tests of Contagion and Time Effect in Accident Proneness. (Preliminary
Report.) Howarp Tucker, University of California.

This paper considers the case of linear contagion in the theory of accident proneness
treated by Miss Grace E. Bates in ‘“Contributions to the theory of Contagion’’ (to appear
in Ann. of Math. Stat.). In her paper Miss Bates derived a UMPU test for zero contagion
against non-zero contagion in the absence of time effect, based on the exact times at which
accidents occur, and in the case of one type of exposure to accidents. In this paper a model
is considered for r types of exposure, and the Bates test is extended for this model. For
the situation considered by Miss Bates, a test is derived based on the number of accidents
which occur in certain time intervals. The power of this test is lower than, but comparable
to, that of the Bates test. This test is also extended for the multi-exposure model. Finally,
for any fixed value of the contagion parameter, a test is derived for the hypothesis of
zero time-effect against non-zero time effect, based on the number of accidents in certain
time intervals.

39. Chi Square Test of Goodness of Fit for a Class of Cases of Dependent Ob-
servations. JosEpH PuTTER, University of California.

In the ordinary multinomial situation, we have a sequence of vector r.v. {X, , -+ , Xam}
suchthat, given X1, -+« , Xn,k-1, the (binomial) r.v. Xnris B(n — Xp1 — -+ — Xpuk-1, Dr);
we know that Z¥ [ Xn — (0 — X — -+ — Xne))Del2/ (0 — X — +++ — Xnoi1) pe(1 — pi)
is asymptotically distributed as x5 . This is extended to the case where p; is replaced by
Puk(Xn1 5 -+« 5 Xn,k-1), that is, the probability of an observation falling in the kth class
depends on the number of observations in the preceding classes. In this case, under some
restrictions on the functions p.:, the corresponding statistic is still asymptotically a
X} , but the number of d.o.f. is often reduced. For example, in testing the goodness of fit
of a simple chain-binomial model of an epidemic, we get f = 1 no matter how many genera-
tions we observe.

40. Approximate Probability Values for Observed Number of Successes from
Statistically Independent Binomial Events with Unequal Probabilities.
JouN E. WaLsH, Lockheed Aircraft Corporation.

Let us consider a number of statistically independent binominal events with possibly
unequal probabilities for ‘“‘success’”. The principal problem considered is that of deter-
mining the probability that the observed number of ‘‘successes’’ equals one of a specified
set of values. Given the ‘‘success’’ probabilities, this paper presents an approximate ex-
pression which ordinarily furnishes this probability to a reasonable accuracy and is not
difficult to evaluate. This approximate expression is obtained by expanding the true expres-
sion in terms of the differences between the ‘‘success’ probabilities and their arithmetic
average. If the variation among the event probabilities has known bounds and the upper
bound is not too large, usable results often can be obtained in terms of these bounds and
the average of the event probabilities. Inverse use of the results for situations of this type
sometimes will yield approximate confidence intervals and significance tests for the average
of the event probabilities.



