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From well known limit theorems,
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The second portion of inequality (2) follows directly from (8) and (9). The
remainder is a consequence of these, of the fact that A, decreases monotonically
from A,,, t0 Ay, n411n the interval [n, n 4 1), and of

10) An,n+l > Ao,l = 6—1, n = 1, 2, v
If an additional term is included in the sum, we note that
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since by > Any1.a41 for A £ n + 1. A final reformulation of part of (2) is

12) Pr{X, = A} > Pr{X, > A}, all integral A > O.

.

NOTE ON LINEAR HYPOTHESES WITH PRESCRIBED MATRIX OF
NORMAL EQUATIONS

By Joun E. MaxrFieLp AND ROBERT S. GARDNER

Naval Ordnance Test Station Inyokern,

The existence theorem proven in this note relates to the problem of finding an
experimental design leading to the analysis determined by the given rational
matrix A of the normal equations. The matrix B found by the method used in
the proof always has an interpretation as specifying the rational values of some
set of regression variables. In the interesting case in which the entries of 4
are integers, so are the entries of B, but B is not in general interpretable as an
analysis of variance. The transpose of a matrix A will be denoted by A”.

TurEoREM. Let A be a symmetric positive semidefinite matrix with rational in-
tegral entries. There exist a rational integer a and a matriz B having rational in-
tegral entries such that BB™ = d’A.

Proor. There exists a nonsingular matrix P such that P’AP = D, a diagonal
matrix, where P and D have rational entries ([1], p. 56). Then (P”)™" has rational
entries. Let a; be the least common denominator of the entries of P”, a, of (P")7,
and a; of D. Let @ = a1a.a; . Then a'*P"a’*AP = aD.If A is positive semidefi-
nite, then aD has only positive integers or zeros on its diagonal. Let B; be a
n x 4n matrix composed of four diagonal n x n matrices placed side by side,
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(818:8:8y), such that ad;; = Z}Ll 185 , where ;s;; is the entry in the sth column
of S, . This can always be done by the 4 square problem ([2], p. 235). Let B =
a(P")™'B;, then B has integral entries, since B; and a"*(P”)™ have integral
entries. Then

P'B = ¢"?B,,  P"BB"P = aB\Bf = d’D,
Thus BB” = a(P")"a'*Da'*P™". But A = (P")™'DP™. Thus BB” = a’4.
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1. The Distribution of the Number of Components of a Random Mapping
Function. (Preliminary Report.) LEo Ka1z, Michigan State College, and
Jay E. FoLgerT, Michigan State College and Hope College.

A set H, of N elements, is mapped into itself by a function f. The most general function
takes each point into an arbitrary number of points of the set. A functionissaid to be random
if the r; images of the point z; may with equal probability be any subset of r; points of H.
A subset h of H is a component of the mapping if it is a minimal subset such that f(h) C b
and f~!(k) C h. Every mapping f decomposes H into a number of disjoint components. The
probability distribution of the number of components of a random mapping, where only the
numbers of images of each point are known in advance, is obtained. The probability dis-
tribution of the number of components is also obtained for a variant case in which the
mapping is hollow in the sense that no point maps into itself. The two distributions are
obtained through a modification of the King-Jordan-Frechét formula. For each case two
specializations are considered; first, one in which the multiplicity of images is the same for
each point of the set, and second, where this common multiplicity is unity (so that the
function f is single-valued). Numerical examples and approximations to the exact distri-
bution are considered. This work was supported by the Office of Naval Research.

2. Approximate Sequential Tests for Hypotheses about the Proportion of a
Normal Population to One Side of a Given Number. WirLLiaMm KRUSKAL,
University of Chicago. ‘

It is sometimes of interest to test the hypothesis that the proportion of a given population
exceeding a given number U is p, against the hypothesis that this proportion is p, . This
testing situation has been called that of testing for one-sided fraction defective. If the
population is normal then the problem is to test the hypothesis (U — u) /o = K, against the
hypothesis (U — u)/o = K, . (Here u is the mean, o2 the variance, and K; the unit-normal
deviate exceeded with probability p; .) A simple translation puts this in the form: p/oc =
Ky vs. u/o = K, . If a sequential test is desired, it is very reasonable to base it on the se-
quence of Student ¢ values computed from the first n observations. Application of the Wald
sequential probability-ratio method to this sequence gives a procedure that may be called
the WAGR test (after Wald, Arnold, Goldberg, and Rushton). Another sequential test



