AN EXTENSION OF WALD’S THEORY OF STATISTICAL
DECISION FUNCTIONS!

By L. LECam
Unaversity of California, Berkeley

1. Introduction. The material of the present paper was developed, during the
spring of 1953, primarily to meet pedagogical needs. It is similar to the contents
of Chapters 2 and 3 of Wald’s book [1]. The results are an extension of Wald’s
theory in the sense that some requirements of boundedness or even finiteness of
the loss function are removed. Moreover, Wald’s requirements of equicon-
tinuity are replaced by a requirement of lower semicontinuity of the loss func-
tion.

In the first part of the paper it is shown that, under suitable assumptions, the
set O of all decision functions can be identified with a convex subset of a certain
topological vector space. If further assumptions are made on the loss function, the
risk functions become lower semicontinuous linear functions defined on ®. It
is then easy to give conditions under which 9, or some subset D of D, is compact.

The next section is devoted to proofs that convexity and compactness of the
space of decision functions, together with lower semicontinuity of the risk
functions, imply completeness of the intersection of the class of Bayes’ solutions
in the wide sense with the closure of the class of Bayes’ solutions.

The methods of proof differ very little from the methods used by Wald [1],
though it has been necessary to use slightly more general topological methods,
for instance, to prove compactness instead of sequential compactness. Although
it might be possible to extend the proofs given by Wald [1] or Karlin [2], [3] to
the case considered here, it is on the whole simpler and shorter to start from the
basic elementary lemmas.

2. Assumptions on the decision problem. In this section weakened forms of
Assumptions 3.1 t03.6 of [1] are stated. Let X = {X,} for7 = 1,2, --- be a set
of random elements, not necessarily real or even vector valued. Let & be the space
of values of X and let Q be an arbitrary set of indices. We will suppose that there
is given on X a o-field @ with respect to which all the X,’s are measurable, and
that to each w £ @ corresponds a probability distribution on @.

If the variables X;,, X,,, - -+, X, are observed in this order, we will say that
N = {41, 2, ++-, 4} is observed and restrict the notation A to ordered sets of
indices which can be observed in the order given by A, the first variable observed
being X;, , the second X;,, and so on. The variables {X, , ---, X;} determine
on X a smallest o-field @ C @ with respect to which they are measurable. For
all practical purposes it is equivalent to say that an @-measurable function f(z)
is @)-measurable or that it is a function of {X,,, ---, X;} only.

Received May 25, 1953, revised May 3, 1954.
1 This paper was prepared with the partial support of the Office of Naval Research.

69

%Jg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% V2

%

The Annals of Mathematical Statistics. IIKOIN

WWW.jstor.org



70 L. LECAM

At a certain stage A of experimentation (including the start), the statistician
has to choose an element among a set of available actions. This set A, includes
the available terminal decisions T as well as the decisions on how to continue
experimentation, say J) . The set J) will be identified with the set of indices of
variables which could be observed in the next step. We assume the following.

AssumpTiON 1. Whatever may be A, the set J is finite.

This condition implies that the set of variables which can be observed in not
more than n steps is finite. Let A, be the corresponding set of \’s and let A =
U.A, . Let @, be the smallest o-field containing all the G\ for A € A, . To simplify
further formulas, we denote by Pj and P} the contractions of P, to @, and
@, , respectively.

AssumpTioN 2. For every n there exists on @, a o-finite measure u, such that,
whatever may be w ¢ @, the probability measure P is absolutely continuous with
respect to p, .

Assumption 2 will be the only restriction placed upen the strategies of nature.
It is implied by (3.1) or (3.2) of [1], but is strictly weaker than either (3.1) or
(3.2). Discussion of Assumption 2 is deferred until after the statement of As-
sumption 6.

AssumpTioN 3. For every A ¢ A, the terminal space T) is a metrisable space,
locally compact and the union of a denumerable family of compact spaces.

The space A, will be considered as topological sum of T and J, , this last set
being supplied with a discrete topology.

If 6 is a certain decision function, for a given n, a given \ € A, , and an z £ X,
we can consider the probability that A be observed and ‘that the next decision
belongs to a specified subset S of A, . This defines a measure denoted below by
¢(\, x, 8) on a o-field of subsets of A, . It will always be assumed that this o-field
is the o-field of Borel subsets of A, . If  is a numerical function defined on A,
its integral with respect to the measure o(\, z, 8) will be denoted by o(), x, 8)ou.

Thus if u is the indicator of a Borel set D* C T , then (A, 2, 8)ou corresponds
exactly to the p(d, ds, --- , di , D' | z, 5) defined in Formula (1.3) of [1]. In the
present notation, A replaces the ordered set of di and u replaces D'. It will be
convenient to denote by a) the function identically equal to unity on T, and zero
on Jy, and by by the function identically equal to unity on Ay = T, U J, . Fur-
thermore, let K, denote the linear space of bounded continuous functions defined
on A, and vanishing outside a compact subset of A, .

AssumprioN 4. Whatever A ¢ A and whatever u ¢ K, , the integral (A, x, §)ou
is an @)-measurable function of z.

The purpose of this assumption is to give a meaning to integrals used below
in the definition of a risk function. It also expresses the fact that (A, z, §) does
not depend on variables which have not yet been observed.

AssumprioN 5. The cost of observing A is a nonnegative, G\-measurable func-
tion C(A, z, w). If A’ is an initial segment of A then C(\', z, w) £ C(A, z, w). More-
over there exists a sequence Ch(w) of nonnegative functions of « such that
lim e Ch(w) = © and C%(w) < C(\, z, w) for every A having at least n elements.

AssumprioN 6. If the statistician does not reach a terminal decision in a finite
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number of steps, he pays an infinite amount. If the statistician reaches a decision
¢ in n steps by observing A he pays a total amount

C(\ =, 0) + W, £ MR(, 2, ),

where C is the cost function defined above and W and h are extended numerical
functions satisfying the following conditions:
(1) inf W(w,E;A) > —oo;

NeA,teT)
(ii) h is a nonnegative @\-measurable function such that sup, h(A, z, w) < 1
for every (A, w).

(iii) For each (A, w), the function W is a lower semicontinuous function of ¢
on Ty .

REmMmARK. It is possible to make W depend directly on z by introducing condi-
tions of strong measurability. For instance W (w, ¢, \)h(A, z, w) could be replaced
by Z}';l W i(w, t, Mh;(\, z, w), with W ; and h; nonnegative.

Before entering further developments we will discuss Assumption 2 and intro-
duce some simplifying notation. We notice first that in Assumption 2, u, could as
well be taken finite instead of ¢-finite. Since u, will not enter by itself in the next
section, this is irrelevant. The properties actually used in the proofs are much
weaker, and Assumption 2 could be relaxed as indicated below. Assume that u,
has been chosen finite. For each X € A, let £, be the space of equivalence classes
of numerical functions defined on 9, measurable with respect to @\ and u, inte-

grable. If the norm of f ¢ £, is defined by ||f]| = f |f] dun , then £, is a Banach

space. The adjoint of £, is, according to (2), identical with the space of u,-
equivalence classes of bounded G\-measurable functions on .

It is convenient to reduce the arbitrariness of u, and £, , and take instead of
£, the smallest L-space, say Ly , containing the family {P}}. For the definition
of this space and the properties used below, see [4] and [5]. Two @®\-measurable

functions ¢; and ¢, can be called P-equivalent if f ler — @o| dP% = 0 for every

w € Q. Assumption 2 could then be replaced by the considerably weaker assump-
tion that, whatever may be A € A, the space Ly has for adjoint the space My of
P-equivalence classes of bounded @,-measurable functions. Thus such noncon-
ventional families of distributions as the family of all discrete distributions on
the interval [0, 1] could conceivably be introduced in the theory.

Even under its restricted form, Assumption 2 is more general than, for instance,
(3.1) of [1] since it does not place such a strong restriction on the dependence
between successive observations. This allows the consideration of different groups
of random variables as vector variables which might be very strongly related.
Since the cost of observing a vector might very well be different from the total
cost of observing the components separately, and since moreover some of the
spaces T\ might be empty, the scheme considered here is at least as general as
the scheme considered in [1].

The spaces L\ and M), just defined will be used in the rest of the paper. Let
LY denote the positive cone of L,, and let Ly(a) be the sphere Ly(a) =
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{f: lIfll £ a}. Furthermore, let Lyf(a) be the common part of Li and L,(a).
Similar notations will be used for the spaces M, and K, previously mentioned.

If s e My and f e Ly, let fos denote the integral fos = j s(z) df. Let 91, be the

space of P-equivalence classes of @\-measurable finite or infinite numerical
functions on .

Let S be a subset of 9, such that, if s;, s; € S, then there exists s; £ S satis-
fying s; = s; and s; = s, . Assume moreover that the elements of S are all larger
than a given sy ¢ My . The assumption that M, is the adjoint of L, is known to be
equivalent to the following: for each S with the precited properties, there exists
an § € 91, such that f ¢ Ly implies fo§ = sup,es fos. If S & My(a), then § £ M\(a)
and is uniquely determined. This § will be called the supremum of S and denoted
by § = sup,.s s = sup S. By convention if X is the empty set we will take M,
and L, to be the real line.

It will be necessary to distinguish between the equivalence classes belonging
to M, and functions belonging to these equivalence classes. Thus, if s ¢ M, a
function of the equivalence class of s will be denoted by § or by s(z). Similar no-
tation will be used for M, and i, .

3. Representation of decision functions by families of linear mappings. If
Assumptions 1 to 6 are satisfied, as far as the value of the risk is concerned a
decision function is adequately described if the measures ¢(), z, §) are given up
to a P-equivalence. It will therefore be convenient to identify decision functions
which differ only on P-null sets. For a given A ¢ A the measures ¢(), z, §) define
linear mappings from K, to M, . These linear mappings satisfy the following con-
ditions (the subscript A has been omitted for easier reading).

(@) pous + pous = po(ur + us),

(b) goau = agou for every real «,

(©) lleoul = [,

(d) if u e K, then gou e M7,

For any element s ¢ M, let |s| = sup(0, s) — inf(0, s) and for any mapping

satisfying properties (a, b, ¢) let v, = Sup..xm |eou|. It is easily seen that for
a ¢ satisfying (a), (b), (c¢), and (d), we have

Vo, = <p)\°b)‘ = Sup e\ou.
ueK{‘(l)

In these formulas the supremum is taken with the meaning as previously defined.
Let A, be the space of decisions available before experimentation starts. Let

N= {4, ,u and A\, j) = {&1, -+, &, j} withjeJy, and let u; be the
indicator of 7 in Ay . The decision procedures also satisfy:
(€) ety = 1,

(f) exou, = ea,nba.i ,

©) ¢\, 7, )ou = [p(\, 7, 8)oby] f ()P0,
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where F, is for each = a probability distribution on A, . It is not difficult to see
that every system of measures satisfying conditions (a) to (g) defines an essen-
tially unique decision procedure. The only condition not directly expressible in
terms of equivalence classes is condition (g). The purpose of this section is to
show that under reasonable conditions it is automatically satisfied, and thus
eliminate it. To this end consider the following system of mappings. For each
n and each A € A, let ) be a mapping (not depending on n) from K, to M, .
Assume that each of the ¢’s is a normed linear mapping from K, to M) , that is,
o satisfied (a), (b), and

(¢ llecu|| = m |jul| for some m.

Such a system will be denoted by ¢ , and the sequence {y%} forn = 0,1, - - -
by ¢*. The set of all ¢%’s will be denoted by ¥% and the set of ¢*’s by ¥*. A
system ¢ in which the ¢\’s satisfy (a) through (f) will be denoted by ¥, ; simi-
larly for ¢ and the corresponding capital letters. The proof that every y & ¥
satisfies (g), so that it defines a decision function, is an immediate consequence
of the following lemma. Let &, Ly, M) and A, be as before, and for simplicity
omit the subscript A.

LemMA 1. Let K be a vector lattice of numerical functions defined on a set A. Assume
that

(h) K 7s separable for the topology defined by the norm ||u|| = supea |[u(t)|, and

(k) there exists a o-field ® on A such that every positive normed linear functional

6 on K can be represented by 6ou = || f u(t) dF (t), where F is a o-additive
A

probability distribution on (A, ®).
Then every linear mapping ¢ from K to M satisfying (a), (b), (¢), and (d) can
be represented in an essentially unique manner by

oou = v, equivalence class of f u(t) dF, (1),
A

where F, is for each x € X a probability measure on (A, ®).

This lemma is a modified version of Theorem 3 of Doob [6]. (See also Gelfand
[7], part 2, par. 7, Thm. 1.) If A is locally compact, metrisable, and denumerable
at infinity, then the space K of continuous functions with compact nucleus satis-
fies both (k) and (k). The separability of K is well known and (k) follows immedi-
ately from the Riesz representation theorem. For other spaces to which the con-
clusion of the lemma applies see [6] and the theory of the Daniell integral (for
instance Saks [8], p. 328).

Since conditions (a) to (f) are preserved under convex combinations, we have

TuroreM 1. Under Assumptions 1 to 4, every system ¢ € ¥ of mappings satis-
fying (a) through (f) can be obtained in an essentially unique way by a decision
procedure, and conversely. The space D of decision procedures satisfying Assump-
tions 1, 3, and 4 can thus be identified with the convex subset ¥ of the linear system
¥,
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Since ¥* is a linear space, it is possible to define on it a number of interesting
topologies. One such topology 3 is defined below. Under the conditions (3.1)—(3.6)
of [1] the topology 3 coincides with the topology of regular convergence of [1].
Consider mappings ¢» satisfying (a), (b), and (¢’). On the set of such mappings
we can define a topology 3, by the generic neighborhoods

Viex [N w, f, € = {on: |fopou — fogiou| < ¢ |foproa — foproa| < e},

where u ranges through K, and f through L), and ¢ is a positive number. On
¥ define the topology 3, by replacing ¢, by ¥ in the preceding formula and
letting A run through A, . For m < n consider the projection ¢% — II,, 4% defined
in the following way. If A £ A, , then to ¢, corresponds ey . If X = {41, -« , tm ,
Tms1, ***, I}, Withm < r < n, then to ¢, corresponds oy with N = {21, - -+, im}.

It is clear that I,u, = IL,I0,, for m < » < n and that the projections II,.,
are continuous for the topologies 3., and 3, . Let 3 be the topology defined on ¥*
as projective limit of the J,’s with system of projection_the IL,..’s. (See, for in-
stance, Lefschetz [9], p. 31.) For 3, the linear system ¥* becomes a locally convex,
Hausdorff vector space. Moreover, conditions (a) through (f) are preserved by
passages to the limit under J; hence ¥ is a closed convex subset of ¥*.

4. Compactness of the space of decision functions and lower semicontinuity
of the risk functions. This section gives a necessary and sufficient condition that
a subset D of D be compact in the topology 3 defined above. The word compact
is used in the sense that every covering by open sets has a finite subcovering,
not in the sequential sense. The conditions for compactness of D result from

LemmMa 2. Let \ be fized and let ® be a family of mappings from Ky to My which
satisfy conditions (a) through (d). Let Assumptions 1 to 4 be satisfied.

Then a necessary condition that ® be relatively compact for 3, is that, whatever
f & L and whatever ¢ > 0, there exists u(foe) € K¥ (1) such that

felve — ¢ou(f, O] = e||fll for every ¢ £ ®.

4 sufficient condition is that the preceding condition holds for every f in a subfamily
of {P)} generating the same L-space.

Proor. If instead of the smallest L-space containing the {Pf‘,} we had taken
another space £, then in the statement of the lemma P, would have to be re-
placed by f ¢ £f(1). Lemma 2 is of the same general nature as the well known
Helly compactness theorem. The proof sketched below differs from the usual
proofs of Helly’s theorem in that the denumerable Helly selection principle has
been replaced by the topological tool known variously as “ultrafilter” ([10),
pp. 25, 59) or “universal net”’ [11]. The use of this tool is necessary to avoid sep-
arability assumptions.

The necessity of the condition is quite obvious. The proof of sufficiency follows.
Let U be an ultrafilter on® (or a universal net of ¢’s). Then limy fopou = a(f, u)
exists for every f ¢ Ly and u ¢ K, . Conditions (a) through (d) are preserved when
taking limits so that a(f, u) can be written foglou where ¢° is a mapping having



DECISION FUNCTIONS 75

the properties (a) through (d). Moreoverlimy v, = » = v,0. Foragiven f £ { P.}
we have

folve — eoulf, ] < ¢  folv — *ou(f, €)] < e

This implies fo[r — v,0] =< ¢, hence fo[v — v,0] = 0 for every f ¢ {P}}. Conse-
quently go[v — »,0] > 0 only if ¢ has a nonzero part disjoint from every f & {P}}.
But then g does not belong to the minimal L-space containing {P}. This im-
plies » = limy », = v, = v(limy ¢) so that U converges to ¢° for the topo-
logy 3, . This leads us to the following

AssumprioN 7. A set D of decision functions satifies Assumption 7 if, for each
e > 0, each \ ¢ A, and each f ¢ {P),}, there exists a u ¢ K) satisfying

10 =wu=1 and u() =0 for tedy,

(i) foer(8)ou = fopr(8)oan — ¢,

this last condition being fulfilled uniformly for every é € D.

According to Lemma 2, in order that a set D C D be compact for J it is neces-
sary and sufficient that it be closed and satisfy Assumption 7.

We can now obtain a relation between 3 and the risk function. Let A be a
particular element of A, and let » be a lower semicontinuous function defined on
A, and such that » = 0. If ¢ is a mapping having the properties (a) through (d),
it can be extended to a class of Baire functions by the Daniell-Bourbaki procedure
giving

gov = Ssup ¢ou,
ueK)\;iu<v
the supremum being taken in the sense previously defined for measurable func-
tions in 917, . Under conditions (a) through (d), and assuming f ¢ LY, the follow-
ing equality holds
Jopov = sup fopou = f°[ sup ¢°u]-
ueK)\iu<v ueK)\iu=<v

Thus for the topology 3, the function fogov is a lower-semicontinuous function of
©. The same property still holds if » is bounded from below (that is infy.a, v(¢) >
— ) instead of being nonnegative.

The risk function R(w, 8) is a sum of two terms, R(w, §) = Ri(w, §) + R(w, 8),
where R;(w, 8) is equal to zero if the probability that the process terminates is
unity, and to infinity otherwise, and R(w, ) is the amount paid when the process
terminates. Since Rj(w, 8) is a sum of terms of the form fopyov, and since by
Assumptions 5 and 6 only a finite number of these terms can be negative, it is
clear that R,(w, ) is lower semicontinuous on D for the topology 3. Moreover,
the probability of taking at least n steps is a continuous function of & so that, by
Assumption 5, R(w, ) is also lower semicontinuous on D. It is also clear that the
assumption of lower semicontinuity in (iii) of Assumption 6 cannot be weakened
if R(w, 8) is to be lower-semicontinuous on the whole of ®.

The results just established are collected in
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THEOREM 2. Let D be the family of decision functions satisfying Assumptions
1 to 4. If Assumplions 5 and 6 are also satisfied, and D s a subset of D, then

(1) D 4s a closed convex subset of the locally convex Hausdorff vector space ¥*
supplied with the topology 3. The risk function R(w, 8) is a lower semicontinuous
linear function of 6 € ® for each w & Q. Furthermore,

inf R(w, 8) > — = for each w € Q.
deD

(2) In order that D be relatively compact in (D, 3), it is necessary and sufficient
that D satisfy also Assumption 7. In this case the closure D and the closed convex hull
D of D in D are compact in (D, 3).

In view of Theorem 2, the problem of finding complete classes of solutions can
be reduced to similar problems considered by Karlin [2] in an abstract setting.
There is, however, some difficulty due to the fact that the risk function R(w,s)
can take strictly infinite values.

6. Complete classes of decision functions. Let A and B be two nonempty sets.
In this section A will represent the “states of nature” and B the set of decision
functions available to the statistician. Let R be an extended numerical function

definedon 4 X B. Let H = {x, ---, 2} be a finite subset of 4, and let {3;} for
i=1,2 -,k be k strictly positive real numbers such that >_%8; = 1. Let
g = {(xz;, B)} for7 = 1, ---, k. Denote by K(g, y) the function K(g, y) =

2 i8R (z, , ¥). For any subset A’ of A let G4 be the set of ¢g’s corresponding to
finite subsets of A’. If H is a finite subset of A4, let G& denote the subset of G&
for which all the 8.’s are strictly positive numbers.

The theorems on the existence of complete classes given in the present paper
are proved in two steps. It is first shown that a result is correct when the set of
“states of nature” is reduced to a finite subset of A or G4 . The result is then
extended to an arbitrary A by a limiting process, using the fact that the family
T of finite subsets of A is directed and covers A. That is, if S; and S, belong to
=, then there exists an S; ¢ = such that S; U S, < S; and moreover A C
Uses S. The required tool for such a passage to the limit is given by the following
entirely obvious proposition.

LemMA 3. Let u be an extended numerical function defined on G4 . Let G be a
subset of G4 such that, for every y € B, the inequality K(g, y) = u(g) for every
g € G implies K(g, y) < u(g) for every g € G4 . Let 2 be a directed family of subsets
of G4 covering G. Finally let C be a subset of B having properties:

(Cy) C is supplied with a topology for which it is a compact topological space
(in the Borel-Lebesgue sense);

(Cy) for every fized g € G the function defined by y — K(g, y) is lower semi-
continuous on C;

(C;) for every S e T and every € > 0, there exists a y, € C such that K(g, y,) =
u(g) + eforeveryg e S.

Then, there exists y € C such that K(g, y) < u(g) for every g € G4 .

A particular family = used below is obtained as follows. For a finite subset H
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of A, let S bea convex subset of G spanned by a finite number of points of G& .
Let Gx be supplied with the usual Euclidean metrie, and assume moreover that
S is closed in Gy for this metric. It is clear that the family Z4 of such subsets of
G4 is directed and covers G5 .

Let o be a particular point of B and assume that K(g, ) is finite for every
g ¢ G& . Tt is also clear that K(g, 1) < K(g, y) for every g ¢ Gf implies
K(g, y1) £ K(g, yo) for every g € Gg, provided that K(g, 1) is bounded from
below on Gy .

In order to obtain completeness theorems, it will be sufficient to add, to the pre-
ceding lemma, the following result.

Lemwma 4. Let H be a finite subset of A, say H = {x1, - - -, xx}. Assume that B is
convex with respect to (H, R), that is, whatever may be y1, y2 e Band 0 < a £ 1,
there exists y € B such thal

Rz, y) £ aR(z, y1) + (1 — a)R{z, y2), for every x € H.

Assume moreover that inf,.z R(x; , y) > — oo for each z;, ¢ H. Let a =
infu:lz Supza‘H R(x, y)

Then, whatever b < a, there exists g € G such that K(g, y) > b for every y € B.

Or, equivalently, if b’ is such that whatever g € G% there exist y, € B such that
K(g, y;) = b, then whatever a’ > b’ there exists y ¢ B such that K(g, y) < a’ for
every g € Gy .

This lemma is well known for the case where R(z, y) takes only finite values
(see for instance Karlin [2]). For a proof readily adaptable to our case see Ville
[12] and Kneser [13]. The lemma is obvious if H contains only two elements, and
an extension by induction does not present any difficulties. We will make use of
the following assumptions.

AssumprtioN 8. For every x ¢ A, inf,.s R(z, y) > — .

AssumptioN 9. Whatever may be 1,y e Band 0 < a < 1, thereexistsy ¢ B
such that R(x, y) = aR(z, y1) + (1 — a)R(z, y2).

AssumprioN 10. B is a compact topological space and R(zx, y) for each x is
lower semicontinuous on B.

It is well known and obvious that these assumptions imply the completeness
of the class of admissible solutions.

Let h(g) = inf,.s R(g, y) and let G% be the subset of G, for which h(g) < + .

TueoreEM 3. Let Assumptions 8, 9, and 10 be satisfied. If yo € B is such that
inf,.q%, K(g, yo) — h(g) = e then there exists y1 € B such that K(g, y1) + e <
K(g, yo) for every g € G4 . Hence the class of Bayes’ solutions in the wide sense is
complete.

Proorv. It results from Lemma 4 that such a y exists for every finite subset of
G% . Consequently by Lemma 3 there exists a y; such that the condition be satis-
fied for every g £ G4 . This result is related to a result of Kiefer [14].

If Assumptions 1 to 6 are satisfied and the set D of decision functions consid-
ered is compact, Theorem 3 implies that the class of Bayes’ solutions in the wide
sense is complete. To prove this result, Kiefer used the boundedness of the loss
functions.
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If G is a convex subset of G, supplied with some topology for which it is com-
pact, and K(g, y) is lower-semicontinuous for every y £ B, and moreover such
that h(g) is upper-semicontinuous on @, then K(g, y) — h(g) must reach its mini-
mum on G. For such subsets G, Bayes’ solutions in the wide sense coincide with
Bayes’ solutions. This applies in particular to the sets S ¢ =g introduced after
the statement of Lemma 3. Take then for C in Lemma 3 the closure of the class
of Bayes’ solutions and apply Lemma 3 twice, first with £ = = for each H and
then for £ = {G%}, with H finite. This gives

TrEOREM 4. If assumptions (8), (9), and (10) are satisfied, the closure of the
class of Bayes’ solutions is a complete class.

Let Gq be the set of a priori distributions with finite support on Q. Let g =
{{wi}, ¢ =1---k; {as}, ¢ = 1---k} be an element of Go. Denote by
K(g, ) the corresponding risk function K(g, 8) = D _ra:R(w:, 8). From Theorem
4 we obtain at once

THEOREM 5. Let Assumptions 1 to 6 be satisfied and-let S be a convex subset of
Ga . Let D be a class of decision functions satisfying Assumption 7 and let D be its
closed convex hull. Let B D be the class of decision functions & satisfying 8 ¢ D
and such that K(g, 8) = mins-.5- K(g, 8') for some g € S. Let B be the closure
of B. Let C be the class of &’s satisfying

seD, inf [K(g,8) — min K(g, 8')] = 0.

ges 8’eD

Then, whatever may be 8 € D, there exists 8, ¢ B N C such that
K(g, 61) = K(g, &) for every g € S.

REMark. The preceding theorem is an extension of Wald’s Theorems 3.17 and
3.18 ([1], p. 100). Usually the class S can be replaced by a convex class of a priori
distributions which do not necessarily have finite support. Moreover, an in-
equality of the type K(g, ;) < K(g, &) for every g £ S usually implies that the
same inequality holds for a larger class.

This brings us close to Wald’s Theorem 3.19 ([1], p. 101). It is, however, clear
that Wald meant to assume the convexity of the class ¢ of a priori distributions
used in this theorem. Wald’s proof uses the convexity of ¢; it is easy to show on
examples that without this assumption the conclusion of the theorem does not
generally hold. This correction being made, it is possible to use our Theorem 5 to
obtain extensions of Wald’s Theorem 3.19.

6. Miscellaneous remarks.

(1) The theorems given in this paper are generalizations of Wald’s [1] Theo-
rems 3.17 and 3.18. Assumptions on Q are required to obtain the equivalent
of his Theorem 3.20. The same is true of Wolfowitz’s [15] theorems on e-com-
plete classes.

(2) Wald [1] assumed that the spaces L, of equivalence classes of integrable
functions on (X, @, , u.) are separable. In this case our Assumption 2 is certainly
satisfied. Moreover, the topology 3 on D admits at each point a countable basis,
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so that a compact subset of D is also sequentially compact. Consequently every
admissible decision function is a limit of a sequence of Bayes’ decision procedures.

In this case it is possible to use general a priori distributions on @ instead of
the discrete distributions considered in the present paper since, according to

Fatou’s lemma, f R(w, 8) dé(w) is lower semicontinuous in §.

(3) In many problems the spaces (X, @) are countable discrete spaces. In such
cases the method used here is unnecessarily involved. The topologies 3\ become
topologies of pointwise convergence of the measures ¢(), z, 8).

Thus the separability of K, is no longer necessary. For instance, it is possible
to choose for T\ any compact space, or even any completely regular space, and
then to let K, be, for instance, the space of all continuous functions on A, .

(4) We will now give another example of application of Lemma 3. Suppose
that Assumptions 1 to 6 are satisfied and assume that T\ and W(w, ; \) do not
depend on A. It frequently happens that under such conditions the statistician
would be able to find probability measures §(z, ) defined on T such that

r(w, 8, \) = E{d(x, \)oW(w, t) | w}

is finite for each w ¢ Q, provided only that X is large enough, say provided that the
number of elements in A be larger than some n(w). It is clear that under circum-
stances, whatever may be the finite set {w1, - -+, w:} and whatever ¢ > 0 and
whatever may be the decision function &, , there exists a finite N and a decision
function §y terminating surely in not more than N steps such that

R(wi, 6;{) = R(wi, 50) + € for every w;¢& {wl, ceey, wk}.

If we assume that T is compact this implies that there exists a decision function
6, which is Bayes’ among those terminating in not more than N steps and which
satisfies

R(w:, 81) £ R(w;, &) + 2¢, 1=1,2 .-,k

According to Lemma 3 the closure of the class of solutions which for some N are
Bayes’ among those requiring less than N steps is then complete. This has im-
mediate applications to sequential analysis.

(5) The assumption of compactness used in Lemma 3, Theorem 3, and Theo-
rem 4 is obviously too strong. With the notation of Lemma 3, let & be the space
of all extended numerical functions on G, topologized by the topology of point-
wise convergence on G, . The space F is a compact Hausdorff space for this
topology. For each y ¢ C let W, by the function of g defined by ¢ — K(g, y) and
let F be the family F = {W, ;y ¢ C} < &. Furthermore, let ¥ be the closure of
F in §. The only property actually used in the proofs of Lemma 3, Theorem 3
and Theorem 4 is that for every v € F there exists a W ¢ F such that W(y) =
v(g) for every g € G, . This property is the analogue of the property of ‘“weak
compactness’’ used by Wald ([1] p. 53); it will be referred to as property (W).

Similarly in Theorem 5 the closure B of the class of Bayes’ procedures could
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be replaced by any class B* containing B and having the property (W). It is
easy to see that whenever D satisfies (W) the same is also true of the class of
admissible solutions of D, although these classes might not be compact.

(6) In many problems it is couvenient to compact the spaces T\ instead of
restricting the set of decision functions to a compact subset of ®. For instance,
let T\ be precompact and let its compacted T, be metrisable. Furthermore,
assume that for every sequence {t,}] < T converging to a point & ¢ Th — T\
the following equality holds

lim inf W{(w, ¢, ;A) = sup W(w, £;\).
n—w teTy
Take for each (w, \) the largest lower semicontinuous extension of W(w, ¢, \) on
Ty . These Assumptions 1 to 7 are satisfied so that the set © of measurable de-
cision functions obtained by replacing T\ by T is compact. However, if for in-
stance T is a Borel subset of T\, every & ¢ © is dominated by some &, ¢ D.
In this case © has the property (W) without being compact.

As a simple example consider the case where T is for each A the whole real
line R. Then T’ can be taken as the extended real line (compacted by the adjunc-
tion of points at infinity). Let w be a real valued _parameter and let W(w, ¢; )\) =
(w — t)%. Then the class D is not compact but D is compact and every 8 & D is
dominated by the § obtained by replacing infinite values of the estimate by say
zero. The preceding argument gives practical content to a remark of Karlin [3]
that “every game can be completed to a game having a value.”

(7) After this paper was written, an article by M. N. Ghosh [16] was brought
to the author’s attention. Ghosh’s assumptions are stronger than those of the
present paper. For instance, his Assumptions IV and VII imply Assumption 3 of
the present paper, and his Assumptions III and IV are substantially stronger
than our Assumption 6. Ghosh’s theorems on compactness and existence of
complete classes are special cases of Theorems 2 and 5 of the present paper.

(8) To give a simple illustration of the relevance of the results of the present
paper, consider the problem of estimating the mean of a normal population with
known variance from a sample of fixed size. Take T and © to be the real line.
Let W(w, t) be any positive nondecreasing function of r = |w — ¢|, continuous
on the left and such that lim .., W(r) = «. For instance W(w, ) can be taken
equal to (w — t)°. Then

(a) Wald’s intrinsic topology on T is usually the discrete topology on T'.

(b) If W is not continuous the assumptions of [16] are not necessarily satisfied.

(¢) According to Theorem 2 the subclass of decision functions satisfying
R(wy, 8) £ M < o for one arbitrary given wy is a closed convex compact subset
of D.

(d) While D itself is not compact the class of estimates D obtained by allow-
ing infinite values for ¢ is compact in the corresponding topology. According to
Remark (6), D satisfies also property (W).

(e) The class B* obtained by taking the closure in D of the class of Bayes’
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solutions and then replacing infinite values of the estimate by zero or even by
the value of any finite estimate, is a complete class for D.

Instead of estimating the mean w by a point estimate, it might be desirable to
give confidence intervals for w. For instance, it might be desirable to obtain confi-
dence intervals of given length 2I. In such a case take W(w, t) to be zero if
o — ¢/ £ 1 and unity if |0 — ¢| > I. Again allow ¢ to take infinite values. The
Assumptions 1 to 7 are then satisfied so that Theorem 5 applies directly to D.
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