THE EFFICIENCY OF TESTS'

By WassiLy HoEFFDING AND JOAN RAuP ROSENBLATT
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Summary. The efficiency of a family of tests is defined. Methods for evaluat-
ing the efficiency are discussed. The asymptotic efficiency is obtained for cer-
tain families of tests under assumptions which imply that the sample size is
large.

1. Introduction. Let w$” and w'” be two tests each of which has the same
fixed significance level for testing a hypothesis § = 6, , and which are defined for
every sample size n. The relative efficiency of test w'?, or rather, of the sequence
{w?}, with respect to test w\” has been defined as the ratio ny/n, , where n, is
the least sample size required by a test of the sequence {w'”} in order to achieve
the same power for a given alternative § = 6, as is achieved by the test in {w$"}
using a sample of size n; . This is essentially the definition used by Pitman (see
Noether [6], p. 241).

In Section 2 we extend this definition by replacing sequences of tests by
arbitrary families of (nonsequential) tests and the parameters 6; and 6, by two
arbitrary classes of distributions. The tests are regarded as general two-decision
rules. If N (3) is the least sample size used by a test in family 3 whose probabilities
of the two kinds of error (corresponding to the two classes of distributions) do
not exceed two given numbers, the ratio N(3,)/N(3;) is defined as the relative
efficiency of family 3, with respect to family 3; .

In Section 3 it is pointed out that the determination of N (3) is closely related
to finding a test ‘which maximizes the minimum power.

In Section 4 the problem of asymptotic efficiency is considered. In studies of
the asymptotic efficiency of tests it is customary to consider a simple hypothesis
6 = 6, (say) and a simple alternative, 8§ = 6, , and to assume that asn — «, 6,
remains fixed and 6, approaches 6; in a certain way, for instance by setting
0, = 6, + kn~"%. Neither the restriction to simple hypotheses nor the assumption
that 6. depends on n seems to be entirely adequate from the point of view of
most applications.

In Section 4 of this paper a somewhat different approach is used. As a typical
special case, consider a sequence of independent random variables with common
cdf (cumulative distribution function) F. Let 6(F) be a real-valued function of
F, and suppose that one or the other decision is undesirable according as
0(F) < 6, 0r (F) = 60,, where 6, and 6, > 6, are fixed numbers. Since 6; and 6,
usually will be so chosen that neither decision is strongly preferred when 6, <
6(F) < 0., small values of 6, — 6, are frequently of particular interest.
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Let N(3) denote the least sample size required by a test in family 3 for which
the probability of a wrong decision does not exceed oy if 6(F) < 6, , and does not
exceed o if 6(F) = 6;. Thus N(J) is a function of 6, and 6,. Under suitable
assumptions we derive asymptotic expressions for N(3) as § = 6, — 6, tends to "
zero, while a; and a; remain fixed. Illustrative examples are given in Section 5.

2. The efficiency of a family of tests. Let X be a random variable or a random
vector with cdf F, which is assumed to belong to a class @ of cdfs. It is desired
to decide, on the basis of n independent observations x, = (21, -+, %) on X,
between two alternative courses of action, A; and A, . Let d; denote the decision
in favor of A;, with ¢ = 1, 2. Suppose there are given two disjoint subclasses
@; and @, of @ such that decision d; is preferred if F is in @;, for ¢ = 1, 2. (In
most applications one will choose the classes @; and @ in such a way that neither
decision is strongly preferred if F is neither in @; norin @, .)

Consider a decision rule, briefly referred to as a test, of the following type.
Let E,. denote the space of points x, ; if z; is a vector with k¥ components, E,
may be taken as the nk-dimensional Euclidean space. Let wi, be a subset of
E, , and denote its complement by w,, . (All sets of points x, considered in this
paper are assumed to be Borel sets, and all functions of x, are understood to be
Borel-measurable.) A test determined by the pair of sets w, = (w1, , we,) con-
sists in taking » observations on X, and making decision d; if the observed point
X, is in w;, , for ¢ = 1, 2. This test will be referred to as the test w, . A test w,
with w., © E, will be called a test based on n observations.

Let a; and a; be two positive numbers. We shall say that the test w, solves
the problem (@, @, a1, as) if

(2.1) PXpoewn|F) 21— a; for all Fine;, 1=1,2,
where X, = (Xi, ---, X,) is a random vector with values in E, , and P(R | F)
denotes the probability of relation R when X;, ---, X, are independent with

common cdf F.

Let 3 be a family of tests. We shall mainly be concerned with families 3 which,
for every positive integer n, contain at least one test based on n observations.
For example, 3 may be the family of all tests w, with

Win = {X4 :1a(X0) < €}, —o < ¢ < o, n=12---.

where {f,} is a given sequence of functions, and {x, : R} denotes the all set of
points x, such that relation R is satisfied.

Let N(3) = N(3,C1, €, a1, az) be the least integer n such that the inequalities
(2.1) are satisfied for some test in 3. Thus N (3) is the least number of observa-
tions with which problem (@, , @z, a1 , a2) can be solved when we restrict ourselves
to tests belonging to family 3. If no test in J satisfies (2.1), we set N(J) = .
The number N (3) will be termed the efficiency indez, or simply the indez, of fami-
ly 3for problem (@;,@:, a;, az). Evidently 3 may contain more than one test
based on N (3) observations.
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If 3, and 3, are two families of tests and at least one of the indices N(3;) =
N@;:,C1,Cs, a1, ), for ¢ = 1, 2, is finite, the ratio

eff (31/32) = N(32)/N(31)

will be called the efficiency of family 3, relative to family 3, for problem (G, ,
@z, a1, o). The relative efficiency can thus equal any nonnegative rational
number or infinity. This definition of relative efficiency of two tests is an ex-
tension of Pitman’s definition of the same term (see Noether [6], p. 241).

Let 3* be the family of all tests w, = (win, wan), for alln = 1,2, --- . If
N(3*) = «, problem (@, @z, a1, ;) has no solution (within the family 3*). If
N(3*) < =, and 3 is any subfamily of 3*, then eff(7/T*) may be called the
(absolute) efficiency of family 3 for problem (@, , @;, a1, a»), provided we con-
fine ourselves to tests in J*.

Clearly, eff(3/3*) < 1, the sign of equality holding if and only if 3 contains a
test which solves problem (C;, @z, a1, a;) and is based on the least possible
number of observations with which the problem can be solved by any test in 3*.

All that has been said can immediately be extended to families of randomized
tests. A randomized test is determined by a function ¢i.(x,), where 0 =<
é1n(Xs) < 1. Let ¢p2n = 1 — ¢1, . The test consists in taking n observations x,
and performing a random experiment whose two possible outcomes, e; and e,
have probabilities ¢1.(X.) and ¢2.(X.), respectively. If event e; occurs, decision
d; is made. A test determined by the pair of functions ¢, = (¢1n, ¢2.) Will be
referred to as the test ¢, .

If 3 is a family of randomized tests, the index N (3, €1, @;, a1, a2) is defined
as the least n such that the relations

E@n|F)=1—a; forall Fine,, i=12,

are satisfied for some ¢, in 3. Here E(¢pin | F) denotes the expected value of
¢in(X,) when X, ---, X, are independent with the common cdf F. If random-
ized tests are admitted which do not use any observations, we could have
N(3) = 0. This trivial case can be excluded by assuming that a; + a; < 1.
The notion of efficiency could be extended to families of tests such that the
choice of the number of observations also depends on a random experiment, the
probabilities of whose outcomes may or may not depend on the observations. (In
the former case we are dealing with sequential tests.) This paper is confined to
families of nonsequential tests based on a nonrandom number of observations.

So far we have assumed, to simplify‘the exposition, that X;, X, , ---, is a
sequence of independent, identically distributed random variables. Suppose,
more generally, that for every n the random vector X, = (X;, ---, X,) has a

cdf G, which belongs to a class @, . For every = there are given two disjoint sub-
classes, @;, and @y, , of @, . We say that a test ¢, = (¢1,, ¢2,) solves problem
({eln}, {Gz,.}, ay , ag) if

E((ﬁ;ﬂ l G,.) g. 1 - ag fOl‘ all G,. in e,;,. N 1: = 1, 2,
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where E(¢:, | G») denotes the expected value of ¢;, (X,) when X, has the cdf G, -
The definitions of N(3) = N(3, {Ci}, {C2a}, a1, o) and eff (3,/3;) are obvious
extensions of the corresponding definitions in the special case.

3. The determination of N(3). Let 3 be a given family of tests, randomized
or not. Since a randomized test ¢, such that ¢,(x,) = 0 or 1 for all x, is equiva-
lent to a nonrandomized test w, , we may denote the tests in J by ¢, . Let 3, be
the family of all tests in 3 which are based on n observations. Denote by 3, the
family of all tests ¢, in 3, for which

@3.1) Edin |Ga) 21 — a1 for all G, in @y,.
TaEOREM 3.1. Let
M(¢ﬂ) = Supan‘ezn E(¢lﬂ I Gﬂ)) M" = inf¢n‘51n M(¢“)'

If N(3, {€C1a}, {@C2a}, an, az2) ©s finile, it is the least integer n for which M, = a2
and either M, < az, or M,, = oz and M($,) = a2 for some ¢, in J1,.

The proof is left to the reader.

Due to the symmetry of the problem, the roles of €, and @,, obviously can be
interchanged.

Adapting a familiar terminology, we may say that a test which satisfies (3.1)
has level oy with respect to €1, , and we may call 1 — M(¢,) the minimum power
of test ¢, with respect to Ca, . If there exists a test ¢, in 31, such that M(¢,) = M, ,
the test is said to maximize the minimum power with respect to Co, . Tests which
maximize the minimum power can sometimes be obtained by a method due to
Wald and explicitly applied to this problem by Lehmann ([3], Theorem 8.3). A
proof of a special case of the theorem and illustrations of its use are given by
Lehmann and Stein [4], [5]. Lehmann’s theorem immediately applies to cases
where 3, is the family of all tests ¢, , or of all tests ¢, which depend on a given
function of x, . It can be extended to arbitrary families of tests.

4. Asymptotic efficiency. The rest of this paper considers the asymptotic
behavior of the efficiency index N (3) for certain families of tests in cases where
the “distance’” between the classes @;, and @, is small. Let 6(G,) be a real-
valued function defined for all G, in @, and for every (or every sufficiently large)
positive integer n. We assume that the set w of values 6(G,) when G, € C, is an
interval, finite or infinite, which is independent of n. Let 6, and 6, be two num-
bers in w, with 6, < 6, , and let €;, and @,, be the classes of all G, in C, such
that 0(G@,) =< 6, and 6(G,) = 6, , respectively.

Let {t.(x,)} forn = 1,2, -- -, be a given sequence of functions. Let 3 be the
family of all tests ¢~ with

1 if t(x.) < ¢
4.1) #{2(x,) = < arbitrary if t.(x,) = c;
0 if t.(x,) > ¢

—w < ¢ < o,
n=12-:-.
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For definitgness, we shall assume that {5 = 1if ¢, = ¢, so that 3 is the family
of nonrandomized tests w” with

(4.2) Wi = {Xn: ta(%n) £ c}, —o <c< 0wy no=1,2 .
The asymptotic results to be derived for family (4.2) will also hold for any family
4.1).

Nothing will be changed if 3 consists of all tests (4.1) with n exceeding a fixed
number #»’. In this case the words “for every n’’ in the following assumptions
should be read “for every n > n'.”

We shall study the asymptotic behavior of N(3) = N(3, {Ciu.}, {Can}, a1, @)
when o, , az and 6, are held fixed and 6 = 6, — 6, tends to zero.

AssumrptioN A. The functions ¢,(x,) are independent of 6.
Let

Ml,.(x, 0) = inf(;(a,,) <0,GneCyp P(tn é x l Gn)y
Mu(z, 0) = SUDPs(a,)20.aneC, Plln = | Gn).
The functions M ;,(z, 6) are nonincreasing in 6. Hence the conditions

PX,ewin|Gn) 21 —a; foralG,eCu, 7

I

L, 2,
are satisfied by test (4.2) if and only if
Mi(c,6) =21 — o, Mon(c, 61+ 8) < az.

AssumpTioN B. For every n, lim, . Mi,(x, 6)) > 1 — o .
Let ¢, be the least number which satisfies the inequalities

(4.3) Mln(cn""‘, 01) g 1 - a1 = Mlﬂ(cn—'; 01))

where ¢,+ and ¢,— are, respectively, the right and left limits. This number exists
by Assumption B. In Theorem 3.1, we have M, = Ms.(c.+, 61 + 5). Hence if
N = N(9) is finite and greater than 1,

(4.4) Mon(cw+, 01 + 8) S an £ My ya(cy—1+, 01 + 9).

AssumpTiON C. o1 + a2 < 1.

AssumpTtioN D. One of the following conditions is satisfied.

(a) For every n and every x, M,,(x, 0) is continuous on the right in 6 at
0 = 01 .

(b) For every n and every 6 ¢w there exists a cdf Gon. €@, such that
0(Gern) = 0, and for every z, p.(z, 6) = P(t. < z| Gsn) is continuous on the
rightinfat 6 = 6,.

Lemma 4.1. If Assumptions A, B, C, and D are satisfied, N(3) — « as é — 0.

Proor. First suppose that part (a) of Assumption D is satisfied. Then for n
fixed and § — 0,

Mou(cn+t, 01 + 8) — Man(cn+, 61).
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Since Mi,(z, 0) < M2.(z, 6), we have, by (4.3) and Assumption C,
M2n(cn+, 6,) = Mln(c+, ) =1 —ar1> .

Hence N (3) will be larger than any fixed n as 6 — 0.
Now suppose that part (b) of Assumption D is satisfied. Then

MZn(cn+, 01 + 5) g pn(cm 01 + 5)) pn(cn ) 01) g Mln(cn+, 01) g 1 - a1 > asz |

Since pn(cs, 61 + 8) — palcs, 81) as 8 — 0, we arrive at the same conclusion.

AssumprioN E. There exist a sequence {h.(x)} of nondecreasing, continuous
functions, a positive number r, and functions Hi(z) and H.(z, d), defined for
every d > 0, such that

(45) Mln(hn(x), 01) - Hl(x))
(4.6) Min(ha(z), 61 + dn™") — Hy(z, d)

as n — o, for every x which is a point of continuity of Hi(z) and H,(z, d),
respectively, and every d > 0.

Note that Hx(x, d) is necessarily nonincreasing in d, while H,(z) and H(z, d)
are nondecreasing in x.

AssumpTioN F. (i) The equation Hy(x) = 1 — oy has a unique root z = a
at which H,(x) is continuous.

(ii) The equation H(a, d) = a; has a unique positive root d = D(ai , a2). The
function Hy(z, d) is continuous at z = a for all d in a neighborhood of D(a; , as).

Assumptions E and F have the following meaning. The function M ;,(z, 6) is
a bound of cdfs of ¢, . The function M ;.(h.(x), 0) is the corresponding bound of
the cdfs of ¢, = fa(t,), where f, = h,', the inverse of h,. The function f, is
strictly increasing. The tests with w;, determined by ¢, < ¢ are equivalent to the
tests (4.2). Thus Assumptions E and F require, roughly speaking, that a suitable
function of ¢, have a limiting distribution which satisfies certain regularity
conditions.

TaeoREM 4.1. Let 3 be a family of tests of the form (4.1), or the subfamily with
¢ = c,, fixzed in such a way that h;'(c,) — a as n — o . If Assumptions A through
F are satisfied, then asymptotically as 6 — 0,

(47) N(S) ~ {5—1D(Ol1 5 Olz)}llr.

Proor. We first assume that family 3 is defined by (4.2). By the remark fol-
lowing Assumption F we may assume that h,(x) = z. Then relations (4.5) and
(4.6) are replaced by

(48) Mln(xs 01) - Hl(x)7
(4.9) M. (x, 6. + dn™") — Hy(z, d).

From (4.3), (4.8) and Assumption F(i) it follows that ¢, —aasn — .
We now show that N = N(3) is finite for every § > 0, that is,
My, (ca+, 61 + 8) < a; for some n. By Assumption F we can choose d > D =

b
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D(a;1, o) so that Hy(z, d) is continuous at = a. For every § > 0 and = so
large that & > dn™" we have

MZn(crH‘, 01 + 8) é M2n(cn+1 01 + dn_f)-

By Assumptions E and F, the right side tends to Hi(a, d) as n — o, and
Hy(a, d) < a; by Assumption F. Hence N is finite.
We have to show that

(4.10) ON"—>D as &—0.

Suppose this is not true. Then there exists a sequence {8} of positive numbers
such that 8 — 0 and 6:Ny — D' # D ask — o, where0 < D’ < 4+« and
N is the value of N for 6 = & . By (4.4) we have for every k

(4.11) My, (cnp+, 01 + &) < az £ M, ypalewa+, 01 + 6).

First assume D’ < D. By Assumption F(ii) there exists a number D" such
that D’ < D” < D and H,(z, D) is continuous at x = a. For k sufficiently
large we have §;:N; < D’ and hence

(4.12) Mow,(cxy+, 01 + 8) = Mony(cy+, 01 + D'Ni').
As k — o, we have (by Lemma 4.1) N, — o« and cy, — a. Hence
(4.13) Mzn.(cN,‘+, 0, + D"Nk—r) g Hz(a, D”) > oz

But relations (4.12) and (4.13) contradict (4.11). Hence D’ = D.

If we assume D’ > D, a similar argument starting with the right member of
(4.11) leads again to a contradiction. This completes the proof for family (4.2).

An inspection of the proof shows that (4.7) also holds for any family (4.1)
and the subfamily with ¢ = c,, fixed, as stated in the theorem.

We observe that the argument will not be essentially affected if the factor
n~" in (4.6) is replaced by an arbitrary decreasing function k(n) which tends to
zero as n — o . Then N(3) ~ k(5/D).

Let {t1.} and {t:.} be two sequences of statistics, and denote by 3; and 3, the
corresponding families of tests of the form (4.1). Suppose that Assumptions A
through F are satisfied by both families. If r; and D;(a1 , @), for 7 = 1, 2, denote
the values of r and D(ey, o) for the two families, an application of Theorem
4.1 gives immediately

TrEOREM 4.2. Let 3, and 3; be two families of tests of the form (4.1) which both
satisfy Assumptions A through F. Then as § — 0,

N(:;?) ~ D2(a1, a2)1/1‘2 6("'2—"1)/"1":
N(@)  Dilas, ag)'/mt ’

Thus if r; < 7., the efficiency of family J; relative to family 3, tends to zero.
If Thn=Tys =T,

eff (3,/3,) =

limy.eg eff (31/32) = (Dy(en, az) / Dilen, a2))™".
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Consider now the particular case where the distribution of ¢, depends on
G, only through 6(G,). We shall write P(t, < z | 6) for P({,(X,) < z | G») when
6(G,) = 6. In addition we shall assume that the power P(t, > c| 6) does not
decrease as 0 increases; a ‘“‘reasonable’ test can be expected to have this property.

AssumprioN B’. The distribution of ¢,(X,) depends on G, only through 6(G,),
and P({, < x| 6) is a nonincreasing function of 6.

If Assumption B’ is satisfied, we have M1.(z, ) = Mo (z, 6) = P(t. < z | 0).
Assumption B is then satisfied for every aa > 0. Assumption D is implied by
Assumption D’.Forevery z, P(t, < z|0) is continuous on therightin 6 at 6 = 6;.

In Assumptions E and F we have Hi(x) = Hi(z, 0). If we let H(z, d) =
H.(z, d), then D(a; , a,) is the unique positive root of the equation H *(az , D) =
H'(1 — ;,0). Theorems 4.1 and 4.2 hold with Assumptions B and D replaced
by B’ and D'.

In many applications the statistic ¢, or a function of ¢, will be asymptotically
normally distributed. Let

(4.14) B(z) = (2n)"" [ M gy,

AssumprioN E’. There exist a sequence {g.(t)} of everywhere increasing func-
tions, a positive number r, and two functions u(6) and ¢(6) defined for ¢ ¢ w,
such that

(4.15) P{n’ g"(t")q - ‘_‘éozi:;)dn_f) <z ‘ 6 + dn"} = &(z)

asn — oo, for every z and every d = 0.

AssumprioN F’. The function u(6) has at 8 = 6, a right derivative ¢/(6;) > 0.
The function ¢(6) is positive and continuous on the right at ¢ = 6, .

By Assumption F’ we can write

w6+ dn”) = p(0r) + dn W ()1 + e),  o(6 4 dnT) = a(B)(A + €3),
where ¢, — 0 and e, — 0 as n — . Hence

nr gn(tn) - F(ol + dn—f) = nr gn(tn) - “(01) —d Ml(ol)(l + fn)
a(6; + dn) a(0)(1 + €2) a(6)(1 + €)

has the same limiting distribution as

r gn(tn) - F(ol) _ F'I(ol)
" a(6) d a(6)

Thus if we replace z in (4.15) by £ — du’(6y) / o(61), we obtain

r gn(tn) - F(ol) —r} — _ u’(01)
P{n T =z 6, + dn <I><:c da(t)l))'

Assumption E is now satisfied with Hi(z) = ®(z) and H,(z, d) =
®(x — du'(61) / o(61)).
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Let A(u) be defined by
(4.16) u=1—3dA(u) = &(—A(u)).
Then Assumption F is satisfied with

Dlas, ar) = 2 (n (@) + Maw)).
(0

Hence we can state

THEOREM 4.3. Let 3 be a family of tests of the form (4.1) or the subfamily with
¢ = c,, fized in such away that e (8:1) [galcn) — 1(61)] = A(aa). I f Assumptions
A, B, C, D', E', F' are satisfied, then asymptotically as & — 0,

o~ ey

If 5, and 3, are two families of tests which both satisfy the conditions of
Theorem 4.3 with the same number r, we have

wo g (4 / ()

where u;(6;) and o.(6;) are the values of ©’(61) and o(6;) for family 3; .

Thus in this case the asymptotic relative efficiency is independent of a; and a; .

Relation (4.18) is essentially due to Pitman, who obtained an analogous
result (for r = 1) under somewhat different assumptions. Pitman’s result was
extended by Noether [7].

Assumption A (¢, independent of §) is somewhat restrictive. Thus if @, is a
class of distributions depending only on the parameter 8, the most powerful test
for testing the hypothesis § = 6, against the alternative 8 = 6; 4 & will in general
depend on §. If Assumption A is dropped, M .(x, ) and ¢, will depend on &.
Theorem 4.1 can be extended to this case by suitably modifying the assumptions.
We shall state a corresponding theorem for the special case where the distribu-
tion of ¢, depends only on 6(G.) (and on & through ¢,), and a function of ¢, has
a normal limiting distribution.

To emphasize the dependence on § we shall write ¢, for ¢, and c¢.(8) for ¢, .
Let Assumption B’ be satisfied.

Assumption D”. For every n,

(4.19) Pt < 2|6+ 08) — Pl < 2| 6) — 0

as § — 0, uniformly in z.

LEMMA 4.2. If Assumptions B, C, and D” are satisfied, N(3) — « as § — 0.

Proor. After substituting c,.(&) for z in (4.19), the proof parallels that of
Lemma 4.1.

AssumprioN E”. There exist functions g,(t, §), defined for 6 > 0 and n = 1,
2, - -+, which are strictly increasing in ¢; two positive numbers r and 6, ; and
two functions n(6, 5) and ¢ (6, 6) defined for § £ w and & > 0, all such that
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as n — o for every z, uniformly for 6; < § < 6, 4+ 6, and 0 < 6 < 3, .
AssumprioN F”. The limit

w'(61,0) = lim p6: + 8,8 — u(81, 8)

0<3-0 )

exists and is positive. Also, (6, §) is positive and continuous on the right at
(61, 0), that is, ¢(6, 6) — o(6,,0) > 0 as § — 6, and 6 — 0, with 6 = 6, and
s> 0.

THEOREM 4.4. Let 3 be a family of tests of the form (4.1) or the subfamily with
¢ = ¢a(8). If Assumptions B', C, D", E”, F” are satisfied, then asymptotically as
5§ —0,

foo) ()

Proor. Assumption E” implies

NG) ~ (

r gn(cn(a), 6) - I‘(oly 6)
n 0. 5) — Nay)

as n — oo, uniformly for 0 < § < §;. The rest of the proof is similar to the
proofs of Theorems 4.1 and 4.3.

6. Illustrations. Three examples are offered.
. ExaMPLE 1. A test for regression. Let G, be the cdf of n independent, normally
distributed random variables with common variance ¢* and means EX; = j for
j=1,---,n. Let o = 6(G,) = £/o, with 6, = 0 and 8, = 5. Let

ijj — Yn
VYT = (T Vel -
where y, = D52,/ V ﬁ and all summations are from 1 to n. Here y, is
normally distributed with mean £+/37;7 and variance o°. Also,
V(3 x? — y2)/n tends to ¢ in probability. Hence v/nt, is asymptotically
normal (8 v/3/% 1). Observing that 3°;° ~ n°/3, it is easy to verify that the
conditions of Theorem 4.3 are satisfied with

(&) = VBit/n, r=3/2, u®) =06, (0 =3

tn(xn) =

Thus

ExaMPLE 2. A one-sided test of fit. Let 0(F) = SUP_wczcw {Fo(z) — F(z)},
where Fy(z) is a fixed continuous cdf. Let F(z) belong to the class € consisting
of Fy and all continuous cdfs F with 6(F) > 0. Let F,(zx) be the empirical cdf
of a random sample of n observations from F, and let t, = \/n6(F,). For deciding
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whether F = F, or 6(F) > 0, consider a test which accepts the former alternative
when ¢, < ¢. Smirnov has shown (see, e.g., Feller [2]) that as n — «,

Pl < z|Fo) > 1 i z>0.

Birnbaum [1] obtained the best upper and lower bounds for the power of the
test in the class of continuous cdfs with §(F) fixed. From Birnbaum’s Theorem 1
we have for0 < z < 6§ \/n,

SUPsry—s Pta < x| F) = supsgo<1 Qu(n ™z, 8, v),
where
aesn =3 (No-% st =hb-dl
Forz = 64/n, supsm—s P(ta <z |F) = 1.
The function Q,(e, 3, v) is decreasing in 8. Hence if § < &',
SUPs<v<1 @n(e, 8, ¥) = SUPs <051 Qnle, 8, V) = SUPK gv<1 Qule, &, v).
Thus for 0 < z < § V/n,
Man(z, 8) = supszyzs P(ta < 7 | F) = supsg.<1 Qu(n™%z, 5, v).
Forz £0, M,(x,8) =0.Forz = év/n, Mz, s) = 1.
If v is fixed, 0 < v < 1, we have forn — o,

T _r—d
Q,.(n z,n d,v)-*@(wl__.—'))), 0<x<d.
Using this result it can be shown that asn — o,
Mon(z, n%d) — &2z — 2d), 0<z<d.

It can now be verified that the conditions of Theorem 4.1 are satisfied with
ho(z) = z and
0, z =0,
=0,

. 0,
H,(z) ={ ot Hyz,d) =<&(2z — 2d), 0 <z <d,
1—-¢7, z>0; , > 4
, z 2 d

That Assumption D(b) is satisfied can be seen from Birnbaum’s Theorem 1
and the fact that Q. (e, 6, v) is continuous in 6. Thusif a; + @ < 1and a; < §,

NG) ~ 5-12{1/ bog L + %k(az)}z.

ExaMmpLE 3. The double-exponential distribution and the sign test. Let x, have
the probability density 27" exp (— »_j=1 |z; — 6]). The most powerful test for
testing 6 = O against § = & > O accepts 6 = O for small values of
tin = 2 j-10(z;, ), where a(z, 5) = (|x| — |z — 3]) / &. Since a(z, 6) is a non-
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decreasing function of z, it is easily seen that P(f;, < c| 0) is a nonincreasing
function of 6.
Asn — o, t;,is asymptotically normal (nu(8, 8), no’(8, 5)), where

—1 4+ (¢ — &)/, 0 <0,
w6, 8) = (20 — 8)/8 + (¢ — ')/s, 0<0=3,
1+ (¢ — )/, 5= 0;

’(6,8) = w6, 8) — w6, 8)%
14 {(4 — 28)e’ — (4 + 25)e"*} /8", 0 <0,
w6, 8) =1 {8 + 4(6 — 3)°}/5" — (4 4 28)(¢™ + &'7)/8, 06 =
14 {(4 — 28)e™"" — (4 + 28)¢™'}/5, 5 <0

It can be verified that the conditions of Theorem 4.4 are satisfied with
ga(t, 8) = t/n, r =%, u(0,0) =1, and ¢(0, 0) = 1. That the uniformity
condition in Assumption E” is satisfied can be seen from the fact that
E{ |a(X, 8) — u(8, 8)]*| 8} / «(8, 8)° is bounded (since a(z, 5) is bounded); this
implies uniform convergence by Liapunov’s or Berry’s bounds for the remainder
term in the central limit theorem.

Thus if 3; denotes the family of the most powerful tests based on #, , we have
N(@s) ~ 8\ (a1) + NMa)]”.

As & — 0, (s, tends to &, = 2m — n, where m is the number of positive
values z;, forj = 1, --- , n. The family 3, of the tests based on #, (sign tests)
has asymptotically the same efficiency index (up to order 4™°), so that the sign
test has asymptotic efficiency 1 for the present problem. This is not surprising
in the light of a recent result of Ruist [8], who showed that the sign test is most
powerful for discriminating between two symmetrical continuous distributions
which can be regarded as approximations of double-exponential distributions.
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