NOTES

A NOTE ON THE THEORY OF UNBIASSED ESTIMATION

By D. Basu
University of California, Berkeley

1. Summary. It is shown that even in very simple situations (like estimating
the mean of a normal population) where a uniformly minimum variance un-
biassed estimator of the unknown population characteristic is known to exist,
no best (even locally) unbiassed estimator exists as soon as we alter slightly
the definition of variance.

2. Introduction. Let (&, @) be an arbitrary measurable space (the “sample
space”) and let {Py}, 0 £ @, be a family of probability measures on @. A real-
valued function u = us of 0 is “estimable” if it has an “unbiassed estimator’’.
An unbiassed estimator of  is a mapping n = 7, of the “sample space’” X onto
the space of all probability measures over the o-field of all the Borel sets on
the real line such that

WO T, = / t dn. is an @G-measurable function of =,

(1) pe = f T. dPs for all 8¢Q.
X

If, for every x ¢ X, the whole probability mass of #, is concentrated at one
point, say T, then 7. (or equivalently T) is called a nonrandomized estimator.
With reference to a given loss or weight function w(¢, ), which is a Borel-
measurable function of the real variable ¢ for every fixed 8 £ Q, an unbiassed
estimator 7, of wp is hetter than an alternative unbiassed estimator 7, at the
point 6 = 6, if

f dPs, f w(t, 60) dn. < f dPs, f w (t,60) dn..
x — o0 X — o0

We consider only such estimators ». for which [%, w(t, 8) dn. is an @-measurable
function of z for all 6 £ Q.

Hodges and Lehmann [2] noted that if, for every 8 & Q, the loss function
w(t, ) is a convex (downwards) function of the variable ¢, then the class of non-
randomized estimators of u is essentially complete. Barankin [1] and Stein [4]
considered the particular case where w = |t — |’ for s = 1 and proved, under
a few regularity assumptions, that there always exists an unbiassed estimator
which is locally the best at a given value of § = 8, . Simple examples may be
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346 D. BASU

given to show that there need not exist a uniformly best unbiassed estimator
even in the simplest case of s = 2. If, however, there exists a complete sufficient
statistic [3] for 6 and if w is convex (downwards) for every fixed 6 ¢ Q, then there
exists an essentially unique uniformly best unbiassed estimator for every
estimable parametric function s . The convexity of the loss function is essential
in the proofs of the above results. We demonstrate in the next section how a
slight departure from the convexity of the loss function might destroy all these
results.

3. Nonexistence of a best unbiassed estimator. Let us assume that w(l, §) =
w(ue, §) = O for all ¢ and 0. That is, we assume that the loss function is non-
negative and that there is no loss when the estimate hits the mark. Let U be
the class of all unbiassed estimators 5, of us for which the risk function

"0 1n) = Elut,0) 2,0 = [ aPs [ w0 dn.

is defined for all 6. We prove the following
THEOREM. If for every fixed 6 & Q the loss function w(t, 8) is bounded in every
finite interval |t — po| = A, and s o( |t — ug| ) as |t — ue| = o, then

infr(@|n) =0.
neU [}

Proor. Let T = T, be a nonrandomized unbiassed estimator of us. The

existence of an unbiassed estimator clearly implies the existence of such a 7T’ .

Consider now the randomized estimator 1 = 5'” which, for any = € %, has its

entire probability mass concentrated at the two points us, and (T» — ue,)/d
=+ ue, on the real line in the ratio 1 — & to §, with 0 < & < 1. It is easily
verified that »‘” is an unbiassed estimator of us and that

(6o | 7°) = Efw(t, 6) | 2, 6]
= E[Bw(H/B + Moy 00) l 00], H = T,; — Mo, -

Since w = o( |t — ug,| ) as |t — ug,| — =, given ¢ > 0 we can determine A so
large that

w(t, 60) = €|t — u,l, [t — po| Z A.

Let B= sup w(¢ 6)) < o.Then

|t—ngol<4

11 =3 [ [ b oulH /s + e, ) dPo,
|H|<34 |H| 234
< 0B + eE(|H| | 60).

Since ¢ and & are arbitrary and B depends only on ¢ it follows that
infa.p (60 | 7) = 0. Since 6y is arbitrary, the theorem is proved.
Now, if w(t, 6)) > 0 for ¢ # ue, , then r(6y | n) can be zero only if n, gives
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probability one to ug, for almost all = with respect to the measure Py, . In the
usual circumstances, 7. then would not be an unbiassed estimator of us .

Thus, this theorem shows that if we work with a loss function satisfying the
conditions of the theorem, even locally best unbiassed estimators would not
exist in all the familiar situations in which we are interested. In particular
estimation problems, it will be easy to see that the theorem holds even in the
restricted class U* of all nonrandomized estimators of u. In the next section we
consider the classical problem of estimating the mean of a normal population,
but with a slightly altered definition of variance.

4. The case of the normal mean. Let x = (x;, #3, - -+, %,) be a random
sample from N (6, 1). The problem is to get a good unbiassed estimator of 8 with
the loss function

(t— 0’ t— 0| < a,
w(t’ 0) = 3/2 ’ 1/2 l l
a“ |t — 6|, [t — 6] > aq,
where @ is an arbitrarily large constant.
Let # and s° be the sample mean and variance, respectively, and let ¢; be the
upper 1005 per cent point of the probability distribution of s*, where 0 > & > 1.

Consider the nonrandomized estimator

2
6o , s = ¢,

(& — 60)/6 + 6o, £>0.

Since the distribution of s* is independent of  and Z, it follows that 7 is a
function of z and & alone and that T, for every fixed & with 0 < & < 1, is
an unbiassed estimator of 6. Also

(8| T) = Elow{(z — 80) /6 + 6, 60} |64l

T® — 7O {

AN l= _ ply2
= 8 (x 0°> ¢(®) dz + sa T 4(2) az
|3—00 | <ad ) )

|&—09 |>ab ,

< 6(12 + 5”2 a3/2 E(lf _ 00l1/2 l 00),

where ¢(Z) is the frequency function of £ when 6 = 6,. Thus (6, | T — 0
as § — 0. Therefore
inf (6| T®) = 0, —o <0< o,
TeU*
where U* is the class of all nonrandomized unbiassed estimators of 6.

When the constant a is very large, the modification to the usual definition of
variance apparently is very negligible, yet this slight change of variance com-
pletely wrecks the theory of unbiassed estimation. Not even locally best un-
biassed estimators exist, let alone a uniformly best one.

In the construction of 7%, the independence of s* and & is not essential. As a
matter of fact, we can replace s* by any real-valued statistic ¥ whose conditional
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distribution, given Z, is continuous. We then replace ¢; by c;(%), where ¢;(Z) is,
say, the upper 1006 per cent point of the conditional distribution of ¥ given Z.
From the sufficiency of Z it follows that c;(Z) is independent of 8, and the rest
of the proof follows through. Under similar circumstances the general theorem
proved earlier will remain true in the restricted class U* of all nonrandomized
unbiassed estimators of ug .
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ON CONFIDENCE INTERVALS OF GIVEN LENGTH FOR THE MEAN OF
A NORMAL DISTRIBUTION WITH UNKNOWN VARIANCE
By LionenL Weiss!
Unaversity of Virginia
1. Summary. The problem of finding a confidence interval of preassigned

length and of more than a given confidence coefficient for the unknown mean of
a normal distribution with unknown variance is insoluble if the sample size used
is fixed before sampling starts. In this paper two-sample plans, with the size of
the second sample depending upon the observations in the first sample (as in
[1]), are discussed. Consideration is limited to those schemes which increase the
center of the final confidence interval by k if each observation is increased by k,
and for which the size of the second sample is a function only of the differences
among the observations in the first sample. Then it is shown that the mean of
all the observations taken should be used as the center of the final confidence
interval. Those schemes which make the size of the second sample a nondecreas-
ing function of the sample variance of the first sample are shown to have certain
desirable properties with respect to the distribution of the number of observa-
tions required to come to a decision.

2. Assumptions. We deal with an infinite sequence of independent and
identically distributed chance variables, (X;, X:, - - -). Each has a normal dis-
tribution with unknown mean x and unknown standard deviation o. A positive
integer n = 2 is given, and X, , ---, X, are observed. Then additional chance
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