SOME CLASSES OF PARTIALLY BALANCED DESIGNS!

By R. C. Bose anp W. H. CLATWORTHY?

University of North Carolina

1. Summary. Incomplete block designs with a few replications are of practical
interest to experimenters. Partially balanced incomplete block (PBIB) designs
with two associate classes, and k& > r = 2, were studied by one of the authors
[1]. The present paper extends this investigation to the case k > r with \; = 1
and \; = 0. It is shown that the parameters of all PBIB designs in this case
are given by (4.27) and thus depend upon three integral parameters k, r, and ¢, .
with the additional restrictions that

Hl1stsr,

(i) rk(r — 1)(k — 1)/t(k 4+ r — t — 1) is a positive integer.

For the particular case r = 3 it is shown that all designs with ¢ = 2 or 3
necessarily exist, but if ¢ = 1, then the only possible value of k > r is 5. How-
ever designs with parameters (4.27) with r = 3, ¢t = 1, and k = 2 or 3 are
also combinatorially possible though they do not belohg to the class k£ > r.

Interesting by-products of this study are a lemma and five corollaries which
give an insight into the structure of PBIB designs with A\; = 1 and Ay = 0,
and p1; = k — 2, no special assumptions being made regarding r and k.

2. Introduction. PBIB designs with m associate classes (m = 1) were intro-
duced by Bose and Nair [2]. Balanced incomplete block designs and square
lattices were included as special cases. Nair and Rao [5] broadened the definition
so as to further include cubic and other higher dimensional lattices. Bose and
Shimamoto [3] have rephrased the definition so as to stress the fact that the
relations between the treatments are determined only by the parameters n; and
pjx with 4, j, k = 1, 2, ---, m. For the special case of two associate classes
(m = 2) the Bose and Shimamoto definition is substantially as follows.

A PBIB block design with two associate classes is an arrangement of v treat-
ments (or varieties) in b blocks such that:

(i) Each of the v treatments is replicated r times in b blocks each of size I,
and no treatment appears more than once in any block.

(ii) There exists a relationship of association between every pair of the v
treatments satisfying the following conditions:

(a) Any two treatments are either first or second associates.

(b) Each treatment has n, first and 7, second associates.

(c¢) Given any two treatments which are ith associates, the number Dik
of treatments common to the jth associates of the first and the kth associates
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of the second is independent of the pair of treatments with which we .start.
Furthermore, pji = pi;ford, j, k = 1, 2.

(ili) Any pair of treatments which are 7th associates occur together in ex-
actly X; blocks for ¢ = 1, 2.

If either n; or n, assumes the value zero, one associate class does not exist.
Hence, we shall require that both n; and n. be positive integers.

(2.1) or = bk,

(2.2) v=mn + ne + 1,

(2.3) My 4 Agnp = r(k — 1),

(2.4) pi+ piz + 1 = ph+ ple = m,
(2.5) pu+ P = pu + pr+ 1 = na,
(2.6) mpiz = ngPi1, TPz = MgPls .

Furthermore, it was proved that if values are assigned to the parameters of the
first kind (v, b, 7, k, A1, A2, 71, and n,) satisfying (2.1), (2.2), and (2.3), then
there is one independent parameter of the second kind (pj; for 4, j, k = 1, 2).

The parameters of the second kind will be exhibited as elements of two sym-
metric matrices

P}l P}z pfl P¥2
(2.7) P1=<1 1>, P2=<2 ,,>.
D21 P22 D2 P22

Nair [6] established a necessary condition for PBIB designs having k£ > r.
This condition was used by Bose [1] in exhausting the subclass of PBIB designs
with two associate classes and \; = 1 and A, = 0, with » = 2. For the special
case of PBIB designs with two associate classes with A\; = 1 and A\, = 0, and
k > r, Nair’s condition simplifies to

(2.8) rpiz — (r — Dpie = r(r — 1),
a useful tool in the present investigation.

3. A less demanding definition for PBIB designs with two associate classes.
We shall now show that for PBIB designs with two associate classes the Bose
and Shimamoto definition is more demanding than it need be. To this end we
establish two theorems.

THEOREM 3.1. Let there exist a relationship of assoctation belween every patr among
the v treatments satisfying the conditions:

(a) Any two treatments are either first or second associates.

(b) Each treatment has n, first and n, second assoctates.

(¢c) For any pair of lreatments which are first associates, the mnumber pi
of treatments common to the first assoctates of the first and the first associates of
the second is independent of the pair of treatments with which we start.
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Then, for every pair of first associates among the v treatments the numbers pis
D21, and Py are constants, and pis = pi; .

Proor. Let 6 and ¢ be an arbitrarily chosen pair of first associates from among
the v treatments. Let pj.(6, ¢) denote the number of treatments common to the
jth associates of 8 and to the kth associates of ¢, for j, k¥ = 1, 2. The n, first
associates of  are made up of ¢, the pi;(0, ¢) treatments which are first asso-
ciates of 6 as well as ¢, and the pis(8, ¢) treatments which are first associates
of 8 but second associates of ¢. Hence

(3.1) 4 1+ pu(6, ¢) + pia(6, ¢) = m.
Likewise, classifying the first associates of ¢, we have
(3.2) 1+ pu(6, ¢) + pu(8, ¢) = m1.

Similarly, the n, second associates of  are made up of the p3 (6, ) treatments
which are second associates of 6 and first associates of ¢,.and the p3:(6, ¢) treat-
ments which are second associates of both 6 and ¢. Hence

(3.3) p2(0, &) + (8, $) = n,.

But by hypothesis, p1:(6, ¢) is independent of the pair of treatments 6 and ¢
and is pl . Hence, from (3.1), (3.2), and (3.3) we obtain

(34) P}‘Z(G: d’) = pél(ea ¢) = Ny — p}l - 1,
(3.5) p22(0, $) = ne — n1 + pu + 1.

Since 6 and ¢ are an arbitrarily chosen pair of first associates, the relations
(3.4) and (3.5) amount to a proof of the theorem.

TueoREM 3.2. Let there exist a relationship of association belween every pair
among the v treatments satisfying the conditions:

(a) Any two treatments are either first or second associates.

(b) Each treatment has n, first and n,y second associafes.

(c) For any pair of treatments which are second associates, the number pi,
of treatments common to the first associates of the first and the first associates of the
second s independent of the pair of treatments with which we start.

Then, for every pair of second associates among the v treatments the numbers
pfg , p;‘;l , and p§2 are constants, and pfg = pgl .

Proof is similar to that of Theorem 3.1. In fact, it can be shown that

(36) p?i2(67 d’) = pgl(oy ¢) =N — p%l;
3.7 pa(0,¢) = n2 — my + ph — 1,

where 8 and ¢ are an arbitrarily chosen pair of second associates.
The question naturally arises whether one of the preceding thcorems implies
the other. The answer is no. Consider the following design with » = 7 treat-
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ments in b = 14 blocks, each of size k¥ = 2, and with each treatment replicated
= 4 times:

0, 1), (1,2), (2,3), 3, 4), 4, 5), (5, 6), (6,0,
(0,3), (1,4), (2,5), B, 6), 4, 0), (5, 1), (6, 2).

Each treatment of this design has n; = 4 first associates and n; = 2 second
associates with A; = 1 and A, = 0. For any pair of treatments 6 and ¢ which
are second associates, pii(f, ¢) = 3. Hence, this design satisfies Theorem 3.2
with pl; = p31 = 1 and p3; = 0. However, for any two treatments « and g8
which are first associates, pii(e, 8) = 1 or 2, and Theorem 3.1 is not satisfied.

Insofar as PBIB designs with two associate classes are concerned, the conse-
quence of Theorems 3.1 and 3.2 is that the definition of a PBIB design given
by Bose and Shimamoto demands more than is needed. For PBIB designs with
two associate classes, a less demanding definition could be formed by replacing
condition (¢) of (ii) in Section 2 by

(¢’) For any pair of the v treatments which are ¢th associates, the number,
pi1 for ¢ = 1, 2, of treatments common to the first associates of the first and the
first associates of the second is independent of the pair of treatments with which
we start.

This new definition and Theorems 3.1 and 3.2 are then equivalent to the
Bose and Shimamoto definition. Under the Bose and Shimamoto definition,
to prove that an arrangement of objects is a PBIB design, it is necessary, in-
sofar as (¢) of (ii) is concerned, to show the constaney of all elght parameters
pix for 4, j, k = 1, 2, and also to show that the equalities pjx = px; hold for
J#k and 1, k = 1, 2. By use of Theorems 3.1 and 3.2, with regard to the par-
ameters of the second kind, it is necessary only to show the constancy of pi
and pﬁl .

4. Complete enumeration of PBIB designs with two associate classes and
kE>r =2 withA; = 1and X, = 0. We first establish the following useful lemma.

LemMmA 4.1. For any PBIB design with two associate classes and k > r = 2,
with AL = 1 and )\2 = 0,

(4.1) k—2<pn<(k—2) + (r— 1%

Proor. The left portion of (4.1) is obvious; consider the right portion. Let the
treatments 6 and ¢ be first associates. Then they occur together in exactly one
block which we shall denote by B(6, ¢). There are k — 2 other treatments in this
block which are first associates of 6 as well as ¢. Since A\; = 1, both 6 and ¢ can-
not occur together in any other block. Denote the r — 1 blocks in which @
but not ¢ occurs by B;(f), for 7 = 1, 2, 1 and similarly the r — 1
blocks in which ¢ but not 6 occurs by ](d)) for j=1,2,.--,r — 1.If a treat-
ment does not occur in B(f, ¢) but is a first associate of 6 as well as ¢, it must
occur exactly once in the blocks B:(6), and exactly once in the blocks B;(¢).
But the block B;(¢) cannot have more than one treatment in common with any



216 R. C. BOSE AND W. H. CLATWORTHY

of the blocks By(8), Bs(6), - - - , B,-1(6). Hence B;(¢) cannot contain more than
r — 1 first associates of 6. This holds forj = 1,2, ---, r — 1. Therefore there
cannot exist more than (r — 1)® treatments which occur once among the blocks
B;(6) and once among the blocks B;(¢). Thus pi; cannot exceed (k — 2) +
(r — 1)°, which proves the lemma.

We shall now obtain the combinatorial parameters of all designs belonging to
the class under consideration. From (2.4) and (2.6) we obtain

(4.2) mpie + napla = nma .

Solving (2.8) and (4.2) simultaneously, we have

(4.3) iz = ma(r — 1)(r + m) / [ — 1) + nar]
(4.4) piz = rma(ne — r + 1) / [m(r — 1) + narl.
From (2.2) and (2.3) we get

(4.5) n =rk —1)

(4.6) v=mn+ 14 r(k — 1).

From (2.1) and (4.6) it follows that

(4.7) b=+ /k)(m —r 4+ 1).

Since both b and 7* must be integral, we set

(4.8) r(ne —r 4+ 1) = sk

where s is an integer. Then, from (4.8), (4.7), (2.1), (4.3), (4.4), and (4.5) we get
(4.9) ne = sk/r+1r—1,

(4.10) b=1r"+s

(4.11) v = k@ + s)/r,

(4.12) pi = (r — Dk —r(r — 1)’(k — 1) / [s 4+ r(r = 1)],
(4.13) pl =1k — 1) — r*(r — D)k — 1)/ [s + r(r — 1)].

From (4.12) and (4.13) it is seen that r(r — 1)’(k — 1) and »*(r — 1)(k — 1)
must both be integral multiples of s + r(r — 1). Hence, their difference must
also be divisible by s 4+ r(r — 1). Therefore, we introduce an auxiliary integral
parameter ¢ defined by '

(4.14) t=rr— Dk —-1)/[s+ r> - 1)
Then
(4.15) s=r(r— Dk —t— 1)/t t#0.

From (4.9) through (4.13) and (4.15) it follows that
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(4.16) v = K[(r — 1)k — 1) + /4,

(4.17) b=r[r— 1E— 1)+ t)/t,

(4.18) ny = (r — 1)k — 1)(k — t)/t,

(4.19) pr = (r — 1)k — 1),

(4.20) pla = r(k —t — 1).

From (4.19), (4.20), (2.4), and (2.5) we get

(4.21) ph=tr—1)+k—r—1,

(4.22) p=(—1k—1)&—1t— 1)/

(4.23) P = 1t

(4.24) pi = [(r — 1)k — 1)k — 2t) + t(rt — Ek)]/t.
Applying Lemma 4.1 to (4.21), we obtain ‘

(4.25) 1=t=sm,

a most useful set of bounds on the integral parameter ¢. It is now seen that the
divisor, s + r(r — 1), in (4.12) produces no difficulty because

426 r—1Dk -1 =s+rr—1) =2rr— 1)k — 1), E>r=2.

In summary, all PBIB designs with two associate classes belonging to the class
characterized by k > r = 2, with A; = 1 and \» = 0, are obtainable from

v=Fkllr—-DE-1+4/t r=r, M=1,

b=rlr—1DE—-1) + i/t k=% A=0,

m=rk—1), n=0—-1Ek-—-1Ek-—10D/,

427 b <(t - D -1 +k—-2 (r — 1)k — ) )
b r— D& — 0 ¢ —1DE =& —t —1)/t)

b < rt r(k — ¢ — 1)
L ' r(k—t—1 [(r—1DGE—1DE — 20 + tlrt — lc)]/t>’

where 1 = ¢t < r.
Connor and Clatworthy [4] have shown (Theorem 5.1) that for a PBIB design
with two associate classes it is necessary (but not sufficient) that the quantities

(4.28) a=1[0 — D= v+ VA +1 — 2u/2vA
429) w=[0-D6+ VA+1) - 2n]/2VA
be positive integers, where

(4.30) y=ph— P, B=7ph+ph, A=++28+1
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Thus for any design of (4.27) it is necessary that
(4.31) a=rk(r—DE&-—-1)/tk +r—1t— 1).

In the case of designs of three replications, there are only three series, one
corresponding to each of the three permissible values of ¢. Setting ¢ = 1, 2, and
3 in (4.27) we obtain

v=k@k—-1), r=3 M=1 n =3F—1),

b=302k—1), k=k A=0 n=2k—1)7",
(4.32) /
p <Ic—2 20k — 1) P ( 3 3%k — 2)
e -2k -k -2/ " k-2 2w —Tk+7/)
v=k, r=3 M=1 m=3k—-1),
b=3k, k=k AN=0 nm=Ek-Dk—-2),
(4.33) ? ? ‘

P_( k 20 — 2) ) P_< 6 3(k—3)>
T \etk-2 k-2 -3) 0 \3%k —23) ¥ —6k+ 10/

v = k(Zk 4+ 1)/3, r = 3, A= 1, n = 3(’0 - 1),

b=2k+1, k=% =0 n=2k— 1k — 3)/3,
< k42 20k — 3) )
(434) P1 = ’
20 — 3) 2(k — 3)(k — 4)/3

p _< 9 3k — 4) >
P8k —4) @k — 17k +39)/3)

In (4.34), k must be of the form 3p or 3p 4+ 1, p being an integer.

The designs given by (4.33) are the well known lattice designs of three repli-
cations. For all integral values of k¥ = 3 solutions exist.

The results of Reiss [7], together with those of Shrikhande [8], are sufficient to
guarantee the existence of solutions for the designs of (4.34) as duals of the
corresponding balanced incomplete block designs given by

(435) v*=2k+1, b*=k@Qk+1)/3, k*=3, =k A*=1,

)

where k is of the form 3p or 3p 4+ 1, p being a positive integer.

It follows from (4.31), that for designs of (4.32), 12/(k 4 1) must be integral.
The only permissible values of k are therefore 2, 3, 5, and 11.

The designs corresponding to £ = 2 and 3 are known, the design corresponding
to k = 5 is new, and the case k = 11 is impossible. We shall defer the discussion
of these designs to Section 7.

5. The block structure of PBIB designs with two associate classes having
M = land \, = 0, with p}; = k — 2. First, we shall introduce the notation and
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terminology used throughout the remainder of this paper. We shall then estab-
lish a lemma and five corollaries which provide necessary conditions for the
existence of the designs we consider.

Consider any PBIB design with two associate classes, and having A; = 1 and
X: = 0, with p1; = k — 2. Let the Greek letter 6 represent any treatment of the
design. The n; = r(k — 1) first associates of 6 will be denoted by r Latin letters
each bearing subscripts 1, 2, --- , k — 1. The £ — 1 first associates of 8 appear-
ing together with 8 in a block will be denoted by the same letter, and first associ-
ates of 0 appearing in different blocks with 6 will be denoted by different letters.
The n, second associates of 6 will be denoted by the integers 1, 2, ---, n,.
The n, first associates of § will sometimes be referred to as lettered treatments and
the n. second associates of 6 as numbered treatments. The r blocks containing
treatment 6 will be referred to as the 6-blocks.

Likewise, the blocks containing the lettered treatments z;, where z = a
orborec etc,andj = 1,2, .- k — 1, but not 6 will be referred to as the
z-blocks, and the r blocks containing the numbered treatment 7, with 1 < ¢ <
n , will be called the ¢-blocks. Blocks containing only first associates of 6 or only
second associates of 6 will be called pure blocks while blocks containing both
first and second associates of 8 will be called mized blocks.

In the special case of designs having \; = 1 and A\, = 0, with p}; = &k — 2,
it will be shown that there are exactly r(r — 1)(k — 1) mixed blocks each of
which contains one lettered treatment and £ — 1 numbered treatments. Those
(r — 1)(k — 1) mixed blocks containing first associates of 6 denoted by the same
letter (and subscripts 1, 2, --- , k — 1) will be called a group of blocks. There are
r such groups of blocks. The group of mixed blocks containing the lettered treat-
ment x with any subscript will be referred to as the z-group of blocks (x = a,
b, ¢, etc.) Within the z-group of blocks there are r — 1 blocks containing the
lettered treatment xz;. These r — 1 blocks will be referred to as the zj-set of
blocks.

Lemma 5.1. For a PBIB design with two associate classes having Ay = 1 and
A: = 0, with p = k — 2, any two treatments appearing in different blocks con-
taining a common treatment must be second associates of each other.

Proor. There is no loss in generality if the treatment common to the two
blocks is taken as treatment 6. Let z; and y; , withz # yand 7,5 = 1,2, -+,
k — 1, be any two treatments appearing in different blocks containing 6. Since
M = 1 and A, = 0, two treatments appearing in the same block are first associ-
ates of each other while any pair of treatments which do not occur together in
any block are second associates of each other. The k¥ — 2 other treatments
appearing in the same block with the pair (8, z;) are first associates of both 6
and z; . Since pi; = k — 2, all other first associates of 0 (including ;) must be
second associates of z; . This proves the lemma.

CoroLLARY 5.1. Under the conditions of Lemma 5.1, each mized block contains
only one lettered treatment, and the r(r — 1)(k — 1) mized blocks can be divided into
r distinct groups, each group containing k — 1 sets and each set containing r — 1
blocks.
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Proor. Let the r 6-blocks of the design be

0 ay 12 R Op—1
0 b b, s bi—1
0 l1 l2 e l}.-._l .

Since \; = 1 and A\, = 0, no pair of treatments can occur together in more than
one block. By Lemma 5.1 any pair of lettered treatments z; and y; , with x = y,
must be second associates of each other. Hence, no two lettered treatments can
appear together in a block free from 6. Therefore the design must contain 7(r — 1)
-(k — 1) mixed blocks, each of which contains one lettered and & — 1 numbered
treatments. Since each lettered treatment must appear in 7 — 1 blocks free from
0, there are (r — 1)(k — 1) mixed blocks containing treatments z;, z,, - - -,
Zr-1 . These blocks constitute the z-group of blocks, where x = a, b, --- , or [,
and there are r distinct groups of blocks. Within the z-group there are r — 1
blocks containing the lettered treatment z;, and these we have called the x;-set
of blocks for ¢ = 1,2, ..., k — 1. Each group of blocks obviously contains
k — 1 distinct sets of blocks.

CoroLLARY 5.2. Under the conditions of Lemma 5.1, the numbered treatments
appearing in a group of blocks must all be distinct. Hence ny = (r — 1)(k — 1)°.
If no = (r — 1)(k — 1)% each group must contain precisely one complete replica-
tion of the numbered treatments.

Proor. Since \; = 1 and \; = 0, no numbered treatment can appear in two
blocks belonging to the same set. Suppose the same numbered treatment j,
forj = 1,2, .-+, ny, appears in blocks belonging to different sets of the same
group. Let the lettered treatment in one of the sets containing j be z.. and the
lettered treatment in the other set containing j be z, , with m % n and m, n =
1,2,---,k — 1. Now z, and z, are first associates of each other since they
appear together in the same 6-block. But by Lemma 5.1, z, and z, must be
second associates of each other since they appear in different blocks containing
the common treatment j, a contradiction. Therefore no numbered treatment can
appear in two or more blocks belonging to the same group. Hence the numbered
treatments appearing in the same group of blocks must all be distinct. Since each
mixed block contains k& — 1 numbered treatments, (r — 1)(k — 1) distinct
numbered treatments appear in a group of blocks. Since numbered treatments
are second associates of 8, n, = (r — 1)k — 1)>. If np = (r — 1)(k — 1)%,
each group must obviously contain exactly one complete replication of the
numbered treatments.

CoroOLLARY 5.3. Under the conditions of Lemma 5.1, the mixed blocks contain
ph complete replications of the numbered treatments. The pure blocks must contain
r — ph complete replications of the numbered treatments.

Proor. Consider treatment 8 and an arbitrarily chosen numbered treatment
i,forz = 1,2, ---, m,. Since 0 and 7 are second associates of each other, and
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since 6 has only lettered treatments as first associates, treatment ¢ must have
exactly pi; lettered first associates. Since lettered treatments appear only in
6-blocks and mixed blocks, and since no numbered treatments can appear in a
6-block, it follows by Corollary 5.1 that treatment ¢ must appear in exactly
pi: mixed blocks. This is true for 7 = 1, 2, - - -, ny ; therefore the mixed blocks
contain exactly pi; complete replications of the numbered treatments. Now,
there are, in all, » complete replications of the numbered treatments. Therefore
the pure blocks consist of 7 — p}; complete replications of the numbered treat-
ments.

CoROLLARY 5.4. Under the conditions of Lemma 5.1, two sets of blocks belonging
to different groups must intersect in piy — 1 numbered treatments; that is, they
must have pfl — 1 numbered treatments 1n common.

Proor. By Lemma 5.1 and Corollary 5.1, the pair of lettered treatments x;
and y;, where x # y, appearing in two sets belonging to different groups are
second associates of each other. Since z; and y; have 6 common to their first
associates but no common lettered first associates, they must have pi, — 1
common numbered first associates. Since x; and y; appear only in the 6-blocks
and in the sets under consideration, these two sets must contain the p}; — 1
common numbered first associates of x; and y; . This proves the corollary.

CoROLLARY 5.5. Under the conditions of Lemma 5.1 a mixed block cannot in-
tersect a set belonging to another group in more than one treatment. If n, = (r — 1)
-(k — 1)%, then each mized block must intersect each set of another group in exactly
one numbered treatment.

Proor. Suppose a mixed block intersects a set of another group in two or more
treatments. Then consider a pair of numbered treatments common to the given
mixed block and the intersected set of blocks belonging to another group. These
two numbered treatments are first associates of each other since they occur to-
gether in a block. Their common first associates will include the & — 2 other
treatments in the block containing them both and also the lettered treatment
occurring in all blocks of the set intersected. Hence p1; = k — 1, in contradiction
to the hypothesis. This proves the first part of the corollary.

Each group must contain a complete replication of numbered treatments
when ny = (r — 1)(k — 1)°, and we have proved that a mixed block cannot in-
tersect a set of another group in more than one treatment. Therefore, when
ng = (r — 1)(k — 1)%, the k¥ — 1 numbered treatments in a mixed block must be
distributed one to each set in the other groups. This proves the second part of the
corollary. .

DeriNiTIoN. Two number-pairs may be defined to be set compatible if it is
possible for them to occur in the same set without violating Lemma 5.1 and its
corollaries.

6. The relationship of duality between members of a certain two-parameter
series of PBIB designs. Let D be a design with a known solution. To form a
design D*, let the treatments of D be the blocks of D* and the blocks of D
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be the treatments of D*. The design D* has been called the dual of design D.
The process described is sometimes called inverting or dualizing the design D.
In general, the dual of a PBIB design is not itself a PBIB design. Inversion of a
partially balanced design D can result in a dual design D* having a different
number of associate classes than design D. Inversion of a PBIB design D may
yield a balanced incomplete block design.
Consider the two-parameter series of designs having

v=k@E —-1DEk—-1)+1], r=7r, =1, n =rlk — 1),

b=rlc — 1)k —1)+1, k=k A=0, n=—1FE-—1)7>%
E— 2 (r— 1Dk —-1)

LT <(r —DE -1 =1k =10 - 2))’

—t

(6.1)

Py = < r r(k — 2)
Nk -2 Be—1) - @ -2k —‘1)>’

obtained by setting ¢ = 1 in (4.27). Note that (6.1) satisfies the conditions of
Lemma 5.1 and its five corollaries, with equality holding in Corollary 5.2.

Assuming the existence of a solution of some design belonging to (6.1), let us
examine its dual. Let the parameters of the dual be distinguished by the asterisk
as superscript. Clearly

rfr = DGk — 1)+ 1], r* =k,
E[(r — (& — 1) + 1], k* = r.

¥

(6.2) -

The r blocks of (6.1) containing treatment 8 go over into r treatments appear-
ing in a single block of the dual design. Since no pair of §-blocks of (6.1) contain
another common treatment, in the dual no treatment-pair corresponding to a
pair of blocks containing 8 can occur together in a block (excepting the one
block corresponding to treatment ). Hence

(6.3) M=1, AN=0

Arbitrarily choose a block of the original design and a treatment within this
block. There are r — 1 other blocks containing this treatment. The arbitrarily
chosen treatment may be called 6 and the r blocks containing 8 are then the 6-
blocks. The arbitrarily chosen 8-block intersects each of the other r — 1 6-
blocks in exactly one treatment. It also intersects each of the (r — 1)(k — 1)
blocks of one group in a single treatment, but it intersects no other blocks. Hence
in the dual

(6.4) ny = k(r = 1).

These n; blocks in the original design (treatments in the dual) we shall call the
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first associates of the arbitrarily chosen block. Since the arbitrarily chosen block
fails to intersect any of the blocks in the other » — 1 groups, in the dual

(6.5) ny = (k — 1)@ — DA

We shall call these n; blocks the second associates of the arbitrarily chosen
block.

Now consider any pair of blocks which are first associates. There is no loss in
generality in assuming that they are the 7th and jth blocks containing treatment
6 for¢ # j; with 1 < 7 and j < r. The first associates of the ¢th block containing
6 consist of all 6-blocks except the ¢th, and of all the blocks in the 7th group
(the 7th group being the one whose lettered treatments occur in the 7th 6-block).
The first associates of the jth block containing 6 consist of all 8-blocks except the
jth, and of all blocks in the jth group. The blocks which are common to the first
associates of the 7th and jth 6-blocks are the other » — 2 6-blocks. Hence,

(6.6) pif =71 —2,

a constant for any particular design. Since the conditions of Theorem 3.1 are
1

satisfied, it follows that pis, psi , and p;s are constants, and from (3.4) and
(3.5) we obtain
(6.7) piz = pai = (r = 1)k — 1),

(6.8) p = (r — 1) — 2)(k — 1).

Next consider a pair of blocks which are second associates of each other, that
is, a pair of blocks containing no common treatment. There is no loss in gen-
erality if we take one of them to be the first 6-block and the other to be a block
in the jth group, where j # 1. The first associates of the first #-block are the
r — 1 other 6-blocks and all the blocks in the first group. The first associates of a
block in the jth group consist of the » — 2 other blocks in the same set of the
jth group, one block (not the first) among the 6-blocks, and & — 1 blocks in
each of the r groups excepting the jth. Hence

a constant for a particular design. Thus it is seen that the conditions of Theorem
3.2 are satisfied, and hence, pi; , psr , and p3s are constants. Furthermore, from
(3.6) and (3.7) we obtain

(6.10) pis = pn = k(r = 2),
(6.11) pix =¥k — 1) — Bk — 2)(r — 1).

It

In the original design, any pair of blocks which are first associates interesect in
a single treatment, so A\¥ = 1, while any pair of blocks which are second associ-
ates fail to intersect at all, so A3 = 0.
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We have shown that the conditions (i), (ii), and (iii) stated in the definition
of a PBIB design with two associate classes are satisfied. Hence, the dual of
design (6.1) is a PBIB design with two associate classes having parameters

v =rlr—1D)Ek —1)+1], r*=k N =1, nf =k{r—1),
b*=klr— 1) —1) +1], k*=7r, \f =0, n¥ =G — 10— 1%

612) P*=< r—2 r =1k -1) )
' C\Ne-DE-1) ¢ -De-2G -1/

P*—( k k(r — 2) >
T\ —2) Pl -1) — @k—2)0 —1)/

If in (6.12) we replace & with »* and r with L*, it is seen that the dual has the
same form as the original design (6.1) and hence belongs to the same series.
We have proved that the existence of the original design (6.1) implies the ex-
istence of (6.12) as the dual of (6.1). If we now assume the existence of (6.12),
it can be shown by exactly the same type of argument that its dual exists and is
given by (6.1). We have thus proved the following theorem.

TaEOREM 6.1. Between corresponding designs of (6.1) and (6.12) there exists a
relationship of duality. They exist or fail to exist simulianeously.

The theorem of duality implies that if a design belonging to one of the series
(6.1) or (6.12) is impossible, then the corresponding design of the other series is
also impossible. Suppose that there exists a solution of a design of one of the
series, but that the corresponding design of the other series is impossible. Then
by Theorem 6.1, upon inverting the design whose solution is known, we obtain
the solution of the corresponding design of the other series. But this contradicts
our assumption. Consequently, the first statement of this paragraph is true.

Actually, the series (6.1) and (6.12) are the same, since we may obtain (6.1)
from (6.12) by interchanging r and k. However, the correspondence between
designs of (6.1) and (6.12) gives a means of pairing off those designs which are
duals of each other.

7. Constructions and impossibility proofs. Putting k¥ = 3 in the two-parameter
series of designs (6.1), we obtain the single-parameter series, with r = 2,

v = 3(2r — 1), r=r, Mh=1  n =2r,
b=r@2r—1), k=3 A=0 n =40 — 1),

< 1 2(r — 1)> <r r )
P1 = N Pg = .
2r — 1) 2(r — 1) r 3r—25

Putting ¥ = 3 in the two-parameter series of designs (6.12), we obtain the
single-parameter series

(7.1)
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*

It

v r(2r — 1), r¥ = 3, AT =1, ni = 3(r — 1),

b* =302r —1), Lk*=r, A =0, ni=20r-1)>F

P*_<r—2 2(r —1) > P*_< 3 3(r — 2)
e —1) 20 -6 —2) " \3¢r—-29 zr2—7r+7>'

It follows from Section 6 that corresponding designs of (7.1) and (7.2) are
duals of each other and exist or fail to exist simultaneously. Note that series
(7.2) is identical with (4.32). It follows from (4.31) that designs of (7.2) cor-
responding to values of r other than 2, 3, 5, and 11 do not exist, and the same
therefore must hold for designs of (7.1). In what follows we shall show that
designs of (7.1) with » = 6 are impossible, which rules out the case r = 11.
We shall also give a construction for the case r = 5 for which the corresponding
design for (7.2) can be obtained by dualization. The designs corresponding to
r = 2 and 3 are known, and will be considered briefly at the end of this section.

We write the r 8-blocks of (7.1) as

(7.2)

[’ ay (12
/] by b
0 L b

Each group consists of 2(r — 1) blocks, the lettered treatments within a group
being denoted by the same letter bearing the appropriate subscript. Each group
contains two sets and each set contains » — 1 blocks, the blocks within a set
containing the same lettered treatment (Corollary 5.1). Since n, = 4(r — 1),
each group must contain exactly one complete replication of the numbered
treatments (Corollary 5.2). Without loss of generality, we may write the first
group containing lettered treatments a; and a. as

a 1 2
a 3 4
G 5 6 } r — 1 blocks,

a 2r -3 2r — 2 |

Qs 2r — 1 ' 2r
Qs 2r + 1 2r 4+ 2
O 2r 4+ 3 2r + 4 7 — 1 blocks.

ay 4r — 5 4r — 4

J
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There is no loss in generality in writing the b;-set as

b 1 2r — 1
b 3 2r+1
b 5 2r + 3
b1 2r — 3 4r — 5

where the b;-set contains only the odd-numbered second associates of # (Corol-
laries 5.4 and 5.5). Then, the by-set must contain all the even-numbered second
associates of 6 (Corollary 5.2). The treatments 2, 4, 6, --- , 2r — 2 must occur
one in each block of the b,-set, the same being true for the » — 1 treatments
2r,2r + 2,2r + 4, -+, 4r — 4.

We shall now show that the pairing off of the even-numbered treatments in
the D.-set is uniquely determined. Since no pair of numbered treatments ap-

pearing in the a;- or a,-set can occur together in any block of the b-, ¢-, - - - , and
l-groups A\ = 1, A, = 0, and Lemma 5.1), we form a lattice (Diagram 1) having
horizontal coordinates 1, 2, 3, .-+, 2r — 2 and vertical coordinates 2r — 1,
2r,2r 4+ 1, -+, 4r — 4. The coordinates of the cells of the lattice diagram give
all conceivably possible number-pairs which might occur in the b-, ¢-, - -+ , and
1 2 3 4 5 6 eee 2r—52r—42r—-32r—2
2r—1] P X X X e X X
2r X P X X | - X ; X
2r+1] x P X X U X
% + 2 x | x | ® Y X Lo
2r+3| X X P X X X
2r + 4| X X X P || .- X LoX
i
|
4r — 71 X X X P X X !
ir—6 : X X X || - x P boXx
&r—5| X i X X e X P X |
i ‘ i
4r — 4 ! X X X oes X X | P l

Di1aGraMm 1
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{-groups. The cells whose coordinates appear as a pair in some block of the
design are marked with a P and the cells whose coordinates are ruled out by
Lemma 5.1 or one of its corollaries are marked with a X. The cells corresponding
to the number-pairs appearing in the b;-set are those lying in the upper left
corner of the subsquares of side 2 lying along the main diagonal of the lattice
diagram.

The number-pairs whose coordinates are the numbers oceurring with 7 in
the a;- and bi-sets, where ¢ = 1, 3,5, - -- , 2r — 3, are ruled out by Lemma 5.1.
So are the number-pairs whose coordinates are the numbers occurring with 7
in the ao- and b;-sets, wherej = 2r — 1,2r + 1,2r + 3, - - - , 4r — 5. The cells
corresponding to these number-pairs lie in the upper right and lower left corners
of the subsquares of side 2 lying along the main diagonal of the lattice diagram.
Furthermore, Lemma 5.1 rules out the occurrence of the number-pairs indicated
in Diagram 2.

1 3 5 2r — 5 2r — 3
2r — 1| -—— 3,2r—-1) G,2r—1) -« (2r-5,2r—1) @r—3,2r - 1)
o +1!Q,2 +1) ——- G,2r+1) - @ =52 +1) 2 —3,2r+1)
2 +3'(1,2r+3) G,2r+3  --- ceo @r—5,2r+3) @ — 3,2 +3)
4 —7 (L 4r—T) @ 4r—7) B Ar—T) - —_— @r — 3, 4r —7)
4r—5.(,4r—5) (3,4r—5) (5,4r —5) --- (2r — 5, 4r — 5) -
Diagram 2

The corresponding cells in the lattice (Diagram 1) are those lying in the odd
numbered columns and odd numbered rows, with the exception of those lying
along the main diagonal of the lattice diagram. In other words, they are all cells
lying in the upper left corners of the subsquares of side 2, with the exception of
those lying along the main diagonal of the lattice diagram.

Treatments 2r — 1,2r + 1,2r 4 3, - - - , 4r — 5 must each occur in each of the
remaining r — 2 groups (Corollary 5.2). The available number-pairs involving
these treatments are given in Diagram 3. Since there are only r — 2 number-

2 4 6 2 — 4 2r — 2
|
2r — 1 -—- 4,2r — 1) (6,2r—1) - @r—4,2r—1) (2r —2,2r — 1)
r+1! (22 +1) S 6,2r +1) -+ @r—4,204+1) @ —2,2 + 1)
2r+3,| 2,2r +3) 4,2r+3) -—— cee 2r—4,2r +3) (2r—2,2r 4+ 3)
4r -7 (2,4r -7 G4 -=-T) 6,4r-=17) -—- @r —2,4r —7)
4r — 5| (2,4r — 5) (4,4 —5) (6,4r —5) .- (2r —4,4r — 5) -—-
DiaGram 3

pairs involving each of the treatments 2r — 1,2r 4+ 1,2r 4+ 3, --- , and 4r — 5,
each of the number-pairs in the Diagram 3 must occur in the design.
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Comparing the available number-pairs of Diagram 3 with those in the a,-set,
and using Lemma 5.1, rules out the number-pairs indicated in Diagram 4. Thus

2 4 6 2r — 4 2r — 2
2r -—- 4, 2r) (6, 2r) @2r — 4, 2r) @r — 2, 2r)
2r + 2| (2,2r + 2) -——- 6,2r+2) - @2r—4,2r+2) (2r—2,2r +2)
2r+ 4| (2,2r +4) 4,2r 4+ 4) -——- e 2r—4,2r+4) 2r—2,2r +4)
47‘—6} (2,4r — 6) (4,4r —6) (6,4r —6) --- -—- @r — 2,47 - 6)
4r — 4 (2,4r — 4) 4,4 —4) 6,4r —4) --- (2r — 4, 4r — 4) -

DiaGraMm 4

in the lattice (Diagram 1) we cross out the cells lying in the lower right corners
of all subsquares of side 2, except for those lying along the main diagonal of the
lattice diagram.

Examination of the lattice diagram now shows that, the only cells for which
both coordinates are even numbers are those lying along the main diagonal,
that is, cells whose coordinates are

2,2r, 4,2r+2), -, (@r—2 4 — 4).

Thus the pairing off of the numbered treatments appearing in the b,-set is
uniquely determined. The » — 1 blocks of the b,-set are:

b2 2 2r
by 4 2r 4 2
be 6 2r 4+ 4

be 2r — 2 4r — 4.

The occurrence of the above number-pairs in the b,-set rules out only number-
pairs which have been previously excluded.

Each of the treatments 2r, 2r + 2, 2r + 4, -- -, 4r — 4 must occur in each of
the remaining » — 2 groups (Corollary 5.2). The only available number-pairs
involving these treatments are given in Diagram 5. Again, there are only r — 2
pairs involving the treatments in question. Hence, each of the number-pairs in

1 3 5 2r— 5 2r — 3
2r -——- @3, 2r) (5, 2r) (2r — 5, 2r) @r — 3, 2r)
o +2| @A,2 + 2 - (B, 2r +2) o (2r—5,2r+2) @ —3,2 +2)
2r+ 4 (1,2r+4) @3,2r 4+ 4) —-—— cee 2r—=5,2r+4) @r-3,2r+4)
4r — 6| (1,4r — 6) (3,4r —6) (5,4r —6) --- -—- @r — 3, 4r — 6)
dr— 4! (L, 4r—4) G, 4r—4) (5, 4r —4) --- (2r— 5, 4r — 4) S

DiaGraM 5
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Diagram 5 must occur in the design. Furthermore, these number-pairs and those
in Diagram 3 involving treatments 2r — 1,2r + 1,2r 4+ 3, --- , 4r — 5 are the
only available number-pairs.

In each of the number-pair diagrams of available pairs, it is obvious that
number-pairs lying in the same row or in the same column are not set com-
patible. Furthermore, the occurrence in any set of two unsymmetrically located
number-pairs with respect to the main diagonal of the number-pair diagram
would rule out the occurrence of the number-pair lying at the interesection of the
rows and columns containing the two number-pairs in question (Corollary
5.5). Hence, only symmetrically located pairs with respect to the main diagonal
of the number-pair diagram can possibly be set compatible.

Now each set contains » — 1 blocks and consequently requires » — 1 number-
pairs. But we have available a maximum of 4 possibly set-compatible pairs, two
from each number-pair diagram. Hence, all designs of the series (7.1) having
r = 6 are combmatorlally impossible.

We shall now give a construction for the design of (7. 1) corresponding tor = 5.
Its parameters are

v=27, T=5, )\1=1, n
b = 45, k=3, Ae = 0, N2

)

By the preceding argument it is seen that we may write, without loss of
generality, the five 6-blocks, the eight mixed blocks of the a-group, the eight
blocks of the b-group, and the distribution of the lettered treatments throughout
the remaining mixed blocks as shown below. The placing of the underlined
numbered treatments comes later.

10,
16,

(7.3)

'] a; as

[} b bs

[’} Ci Ca

[/ d; ds

'] (3] (23
g a-Group 5-Group ¢-Group d-Group e-Group
" ay 1 2 b1 1 9 C1 é ‘ 9 d[ 6 9 (7] 8 9
La 3 4 by 3 1 |a 2 1 d, 2 13 e 2 15
l ay 5 6 b 5 13 |a 7 14 d; 7 12 [ 3 12
| ay 7 8 b1 7 15 Ci E_) lﬁ dl 3 l@ [ 3 li
|
’ as 9 10 by 2 10 | e 8 13 dx 8 11 € 6 11
l as 11 12 b 4 12 Ca 6 15 d2 4 15 (23 4 13
i as 13 14 be 6 14 ¢ 3 10 dy 5 10 23 7 10
| az 15 16 b, 8 16 |ec 1 12 dy 1 14 (2 1 16 |

DracraM 6.—Plan for design (7.3)
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From Diagram 3 of available number-pairs it is seen that the only available
number-pairs involving treatments 2, 4, 6, and 8 are those shown in Diagram 7.

2 4 6 8
I
9 =T = (4) 9) (67 9) (87 9)
11 2, 11) -——— 6, 11) (8, 11)
13 2, 13) (4, 13) - 8, 13)
15 2, 15) 4, 15) 6, 15) -
Driagram 7

From Diagram 5 of available number-pairs we also see that the only available
number-pairs involving treatments 1, 3, 5, and 7 are those shown in Diagram 8.

1 3 5 7
10 -—— 3, 10) (5, 10) (7, 10)
12 1, 12) - (5, 12) 7, 12)
14 1, 14) 3, 14) —-—= 7, 14)
16 , (1, 16) 3, 16) (5, 16) -
Diacram 8

Since these are the only available number-pairs and since each of the numbered
treatments must occur in each of the c-, d-, and e-groups, by Corollary 5.2 the
design must contain all the number-pairs in these two arrays (Diagrams 7
and 8).

Now, by Corollary 5.2 the number-pairs (4, 9), (6, 9), and (8, 9) must be
distributed one in each of the last three groups. Suppose we arbitrarily form
the three blocks

C1 4 9
dy 6 9
€1 8 9.

Since each set must contain four number-pairs and since only symmetrically
located pairs with respect to the main diagonal of the number-pair diagram are
set compatible, we must also form the blocks:

C1 2 11
dx 2 13
e 2 15.

The occurrence of the pairs (4, 9) and (2, 11) in the ¢;-set precludes, by Corol-
lary 5.5, the occurrence in this set of pairs involving 1, 3, 10, and 12. Thus, the
ci-set must be completed with (5, 16) and (7, 14). Then by Corollary 5.2, we
must complete the c,-set by use of pairs (8, 13), (6, 15), (3, 10) and (1, 12).



SOME CLASSES OF PARTIALLY BALANCED DESIGNS 231

The occurrence of pairs (6, 9) and (2, 13) in the di-set precludes, by Corollary
5.5, the occurrence in the same set of any pairs involving 1, 4, 5, 8, 10, 11, 14,
and 15. Thus, it is seen that the only pairs which can occur with (6, 9) and (2, 13)
in the d;-set are (7, 12) and (3, 16). Then by Corollary 5.2 the ds-set must con-
tain pairs (8, 11), (4, 15), (5, 10), and (1, 14).

Since the e;-set contains pairs (8, 9) and (2, 15), Corollary 5.5 rules out the
occurrence in the e;-set of any pair involving 1, 7, 10, 16, 4, 6, 11, or 13. Thus, it is
seen that only (5, 12) and (3, 14) are available. Then by Corollary 5.2 the pairs
(6, 11), (4, 13), (7, 10), and (1, 16) must occur in the ey-set. This completes the
construction of design (7.3). The conditions set forth in Lemma 5.1 and in
Corollaries 5.1 through 5.5 are satisfied, and Theorems 3.1 and 3.2 are also
satisfied.

When r = 2, the design (7.1) is a lattice design obtained by arranging 9
treatments in a 3 X 3 square and taking the rows and columns for blocks. The
corresponding design of (7.2) is the dual of this and is a group divisible design
[3] with 6 treatments divided into two groups, say 1, 3, 5 and 2, 4, 6. The 9
blocks are obtained by taking all possible pairs consisting of one treatment from
each group.

When » = 3, both series (7.1) and (7.2) lead to the same symmetrical (self-
dual) design with 15 treatments and 15 blocks. This is a triangular design with
known solution [3]. Hence we may state the following theorem:

TureoREM 7.1. The series of designs (7.1) contains only three combinatorially
possible designs:

(1) the lattice design withv = 9, r =2, andk = 3;

(2) the symmetrical triangular design withv = b = 15, r =k =3, n = 6,
ng=8, >\1=1, )\2=0;

(3) the design with parameters (7.3) and plan following (7.3).

Combining the results of this section with those of Sections 4, 5, and 6, we may
state the following theorem:

TuroreEM 7.2. Partially balanced incomplete block designs with two associate
classes for which k > r = 3, with Ay = 1 and N2 = 0, must belong to one of the
following classes:

(a) Designs obtained by dualizing balanced incomplete block designs with k = 3
and N = 1. These designs belong to series (4.34).

(b) Lattice designs with three replications belonging to series (4.33).

(¢) The design of series (4.32) for which k = 5. This is the dual of the design
with parameters (7.3).
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