ESTIMATION OF PARAMETERS OF TRUNCATED OR CENSORED
EXPONENTIAL DISTRIBUTIONS
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1. Summary. This paper gives maximum likelihood estimators of parameters
of truncated and censored exponential distributions, asymptotic variances of
the estimators, and asymptotic confidence intervals for the parameters.

Applications to bombing accuracy studies and to life testing are pointed out.
As regards bombing accuracy the parameter estimated is the reciprocal of the
variance in a normal bivariate distribution having circular symmetry. The
reciprocal is estimated because there is no maximum likelihood estimator of
the variance and any estimator of the variance is badly biased (see Section 2).

Results of a synthetic sampling experiment are given to provide information
on rapidity of convergence of the distributions of the estimators to their asymp-
totic distributions.

2. Introduction. In bombing accuracy studies and in other aiming accuracy
studies, the assumption is often made that aiming errors (range and deflection
errors in bombing; azimuth and elevation errors in gunnery) have a bivariate
normal distribution with mean at the aiming point, zero correlation and equal
variances.

Under these assumptions the radial error, or distance from the aiming point
to the point of impact, is a chance quantity say R with probability density
function

(2.1) k(r) = ro " exp [—7*/(24)], 0<r< m,
Let $R® = Z, say, and denote ¢ by c. The density, say k(z), of Z is
(2.2) h(z) = ce™*, 0<z< w;¢>0;

thus Z has an exponential distribution.

In some situations values of Z greater than a fixed value cannot be observed.
For example, in gun camera missions the view angle of the camera defines the
maximum observable R (and thus the maximum observable Z). An example
arises in life testing from an exponential distribution when the time of testing
is fixed in advance (see [3], pp. 4-9). (Cases in which the time of testing is de-
termined by a sample are treated in (1], [3], [4], and [6], p. 416.)

Before proceeding with the estimation in truncated and censored cases let
us consider estimation® of ¢ in (2.2) on the basis of a sample Z;, Z,, --- , Zy
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! For estimation of o (= ¢"1/2) when the observations are grouped see [5].
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of values of Z. The likelihood function, L(c), of ¢ is

(2.3) L(c) = [ce )"
where z is the sample mean. The value, say é, of ¢ for which L(c) assumes its
maximum value is

(24) ¢ = (2)7!, the maximum likelihood estimator of c.

The estimator ¢ has a finite mean if N = 2, and a finite variance if N = 3.

It is well known that 2N¢/¢ has a chi-square distribution with 2N degrees of
freedom. Equation (2.4) is equivalent to the well-known result that the maxi-
mum likelihood estimator, say &°, of ¢ is

N

(2.5) & =D ri/2N.

t=1
The asymptotic variance of (N)"? (¢ — ¢) is
[— E(8° log h(z)/oc")]".
From (2.2) we have that this equals ¢’; therefore, for large N
(2.6) Variance [(N)"* (¢ — ¢)] = ¢’

Derivations of the asymptotic variance of a maximum likelihood estimator are
given in [6], pp. 208-212, and [7], pp. 136-139.

When the distribution is truncated or censored, we shall replace Z by X and
denote by xz, the maximum value of X that can be observed. It is assumed
that x, is known in advance. The two cases will now be described.

Case A (Censored® Distribution). Here the number of observations greater than
Zo is known. When Z = z,, X = Z; when Z > =z, the only information ob-
tained about X is simply that X > z,. X can be regarded as having a density,
say g(z), when X = x, ; thus

cT

g(x) = ce”, 0<z =,
Pr (X > ) = ¢ .

Case B (Truncated Dristribution). Here the number of observations greater
than z, is unknown. X has a density, say f(x), which is the conditional density of
Z given that Z < x, ; thus

(2.8) flx) = ce= (1 — e 7, 0<z=a.

2.7

The maximum likelihood estimator of ¢ will be derived for Case A and for
Case B. It is noteworthy that in each case no maximum likelihood estimator of
o’ (= ¢ ) exists and the bias of any estimator of o* tends to — « as ¢* tends
to -+ . For this reason the quantity c instead of ¢ ' is chosen as the parameter
to be estimated.

2 For further discussion of censored and truncated distributions see [2], p. 144.
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3. Maximum-likelihood estimators. For Case A let n be the number of ob-
servations of X such that X = z, and let m be the number of observations
such that X > x,. Let N = m + n. The likelihood function, say L, (c), of ¢ is
(see (2.7)),

(

[ n
Ntm!nl™ " exp [—c D z; — mex] n>0
(3.1) L. = l i ’
' e~ Vero, n =0,
(It should be noted that this is the likelihood function of a chance quantity
having the density given in (2.7) and a probability e “° of taking the value
2o . Halperin (3], pp. 4-9, has proved that the maximum likelihood estimator
of ¢ in this mixed continuous discrete case has the properties of consistency,
asymptotic normality, and minimum asymptotic variance.)

The maximum-likelihood estimator, say ¢, , of ¢ is

r n
(3.2) ¢4 = nl_mxo + ; xi:"‘.

¢4 has a finite mean if N = 2 and a finite variance if N = 3.
For Case B let the sample be X, ---, X, . The likelihood function, say
Lx(c), is (see (2.8)),

n

Ls(c) = (1 — ¢ ™)™ exp [—c > :c,]
1

— [ce—ci(l _ e—ca:o)-l]n',
where Z is the sample mean. It follows that
(3.4) d log Ls(c)/dc = n'[c™" — moe (1 — ¢ ™)' — 7).

It can be shown that the function ¢ — 2 ° (1 — ¢ “°)™ is monotonic de-
creasing in c; as ¢ tends to 0 the function tends to 4z, , and as ¢ tends to infinity
the function tends to 0. When 0 < & < iz, there exists a solution, say ¢/, of the
equation formed by setting 9 log Lzs(c)/dc equal to O (see (3.4)). Clearly ¢’ is the
maximum likelihood estimator of ¢ when 0 < £ < 3z, . When & = }x, the func-
tion Ls(c) assumes its maximum value for ¢ = 0. The maximum likelihood
estimator, say és , of ¢ can be described as follows:

(3.3)

c, when 0 < & < 3o
(3.5) éB =
0, when & =

[N

o .

A table of £/z, as a function of ¢'zo is given in Table 1.

The estimator és is less than n/(D_7 z;)™", which is the estimator ¢ when
n’ = N (see (2.4)). This follows from the fact that when n’ = N, Lg(c) =
L(c)(1 — €)™ (see (2.3), (3.3)). The estimator ¢ , therefore, has finite mean
for n’ = 2 and finite variance for n’ = 3.
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TABLE 1
z _ 1 1
To Ccxy e’F—1
%o 0 1 2 3 4 5 6 g s 9
0. .4916 | .4832 | .4750 .4668 .4584 .4504 .4422 .4340 .4260
1. .4180 | .4102 | .4024 | .3946 .3870 .3794 .3720 .3648 .3576 .3504
2. .3434 | .3366 | .3300 | .3234 .3168 .3106 .3044 .2984 .2924 . 2866
3. L2810 | .2754 | .2700 | .2648 .2596 .2546 .2496 .2450 .2402 .2358
4. .2314 | .2270 | .2228 | .2188 .2148 .2110 .2072 .2036 .2000 .1966
5. .1932 | .1900 | .1868 | .1836 .1806 L1778 .1748 .1720 .1694 .1668
6. .1642 | .1616 | .1592 | .1568 .1546 .1524 .1502 .1480 .1460 .1440
7. .1420 | .1400 | .1382 | .1364 .1346 .1328 1310, 1204 .1278 .1262
8. L1246 | L1232 | 1216 | .1202 .1188 1174 .1160 } L1148 L1134 L1122

4. Asymptotic variances of the estimators. With regard to Case A we have
from results of Halperin 3], pp. 4-9, that the asymptotic variance of (N YR
(¢4 — c¢) is the reciprocal of

4.1 fo K [a—lo—;"’;—c——m]z 9(x) dz + ¢ [a—lggg—q]z,
where ¢ = Pr(X > z) = ¢ “° (see (2.7)).
The expression in (4.1) equals
(4.2) (1 — ),
accordingly, for large N
(4.3) Variance [(N)*(és — ¢)] = (1 — ¢ ™)™

N

Note that this is always greater than the asymptotic variance of (N YWiE — ¢)
(see (2.6)).
The asymptotic variance of (n')"*(és — c¢) is the reciprocal of
—E(3" log f(x)/ac),
where f(x) is given in (2.8). Thus for large n’
(4.4) Variance [(n)'*(és — ¢)] = €7 — zoe ™1 — )7L
Having obtained the asymptotic variances of ¢4 and ép let us compare them.

The comparison will be made for n’ = N, which is the most favorable situation
for Case B, Let.

__ Variance ()" (&5 — ¢)]
(4.5) R = Variance [(n')'2 (¢, — ¢)]’

From (4.3) and (4.4) it follows that
(4.6) R = (1 — /[l — (o)’ (1 — e 7.

n' large.
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TABLE 2
Ratio of the Variances of ¢g and é,

= ¢xp R(2) t = cxo R(t)
0.01 1194 1.1 7.02
0.02 594 1.2 6.25
0.04 294 1.3 5.61
0.06 194 1.4 5.07
0.08 144 1.5 4.62
0.1 113 1.6 4.23
0.2 54.6 1.7 3.90
0.3 34.8 1.8 3.61
0.4 24.9 1.9 3.36
0.5 19.1 2.0 3.13
0.6 15.3 3.0 1.89
0.7 12.6 4.0 1.41
0.8 10.7 5.0 1.20
0.9 9.15 10.0 1.00
1.0 7.97

R can be considered as a function of czy = ¢, say. A table of R as a function
of t is given in Table 2. (R({) > 1for¢ > 0, and R(t) — « as¢— 0.)

b. Interval estimation of c. Approximate 100(1 — g) per cent confidence
limits for ¢ in (2.7) can be obtained by means of the following approximation
when the sample size is large:

(6.1) Pr(—y, <y <yg = q,

where y, is the 100(1 — %¢) per cent point of the standard normal distribu-
tion and

(5.2) y = Nm(éA — &)/le(1 — e—czo)—1/2].

Similarly, when the sample size is large, 100(1 — ¢) per cent confidence limits
for c in (2.8) can be obtained by means of (5.1), where

(5:3) y = @) — O = a1 — ),

The procedure given in [6], Section 11.7, for constructing confidence limits
could be used in the cases discussed above.

6. Synthetic sampling experiment. To throw some light on the rapidity of
approach of the distributions of ¢, and éz to their limiting normal distributions
we have carried out a synthetic sampling experiment. With regard to ¢ the
rapidity of approach can be determined by analytic methods since the exact
distribution of ¢ is known (see Section 2).

A random sample of 140,000 cases was drawn from a rectangular distribu-
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TABLE 3
Synthetic sampling experiment
P is the probability that values of x2 as large or larger than that obtained would
have béen obtained under the null hypothesis.*

Serial No. of set| Number of Number of ¢ A ‘8
of 20,000 cases |cases per sample samples
x? P x? P x? P

1 100 200 20.2 .38 15.8 | .67 18.0 .52
2 100 200 21.6 .31 24.2 .19 29.2 .063
3 100 200 25.6 .14 21.4 .32 14.0 .78
4 200 100 17.6 .55 20.0 .39 20.4 .32
5 200 100 19.2 .44 46.8 .00040 33.2 .023
6 200 100 24.4 .18 26.4 .12 27.2 .10
7 200 100 21.2 .33 12.8 .85 15.2 .71

* Equi-probability intervals (.05) were used throughout; thus there are 19 degrees of
freedom.

tion and randomly divided into seven sets of 20,000 cases each. Three of these
seven sets were divided into 200 samples of 100 cases each; the other four sets
were divided into 100 samples of 200 cases each. The variable with the rectangu-
lar distribution was then converted (a) to a variable with density function as
given in (2.2) with ¢ = 1, and (b) to a variable with density function as given
in (2.8) with ¢ = 1 and 2y = 1. The variable of (a) was used to calculate ¢ for
each sample (600 samples of 100 cases each; 400 samples of 200 cases each);
this distribution was then censored at 2o = 1 and é, was calculated for each of
the 1000 samples. The variable of (b) was used to calculate éz for each of the
1000 samples. The goodness of fit of the limiting normal distributions to the
observed distributions of ¢, and éz was tested by chi-square. The goodness of
fit of the exact distribution of ¢ to the observed distribution was tested simi-
larly. The chi-square probabilities are given in Table 3. Each of the seven
lines of Table 3 represents one of the seven independent sets of 20,000 cases.
The three values of the chi-square probability, P, on a given line are not inde-
pendent because they are based on the same samples.

The results suggest that when cxz, is as small as 1 and the sample size is as
small as 100, the distributions of the estimators are fairly well approximated
by the limiting distributions. With less severe limitations (i.e., czo > 1) the
approximation would be better.
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