ON TRANSIENT MARKOV PROCESSES WITH A COUNTABLE
NUMBER OF STATES AND STATIONARY
TRANSITION PROBABILITIES!

By Davip BLACKWELL
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1. Summary. We consider a Markov process zo, x1, - - - with a countable set
S of states and stationary transition probabilities p(¢ | s) = P{@p1 = t | 2, = s}.
Call a set C of states almost closed if (a) P{z, ¢ C for an infinite number of n} > 0
and (b) z, ¢ C infinitely often implies x, ¢ C' for all sufficiently large n, with
probability one. It is shown that there is a set (C;, C:, - -- ) essentially unique,
of disjoint almost closed sets such that (a) all except at most one of the C, are
atomic, that is, C; does not contain two disjoint almost closed subsets, (b) the
non-atomic C;, if present, contains no atomic subsets, (¢) the process is certain
to enter and remain in some set C;. A relation between the sets C; and the
bounded solutions of the system of equations

(1) a(s) = 2iat)p(t]s)

is obtained; in particular there is only one atomic ('; and no non-atomic C, if
and only if the only bounded solution of (1) is @(f) = constant. This condition
is shown to hold if the process is the sum of independent identical (numerical
or vector) variables; whence, for such a process, the probability of entering a
set J infinitely often is zero or one. The results are new only if the process has
transient components. The main tool is the martingale convergence theorem.

2. The structure theorem.

TuEOREM 1. Let 2, 1, - - be a Markov process with a countable set S of states
(we restrict S to those states with a positive probability of being entered) and station-
ary transition probabilities. For any subset I of S, denote by L(I), U(I) the events
lim inf {z, £ I}, lim sup {z, & I} respectively, by M the class of I with P(U(I)) = 0,
and by @ the class of I with L(I) = U(1) a.e. If C & € and C g9, C will be called
almost closed.

(1) Call a Borel measurable function f on the space  of all infinite sequences
w = (o, T1, ), Tne S, tnvariant if for every w, f(w) = f(Tw), where
T(xo, 1, -+ ) = (X1, X2, - ), and call an event invariant if ils characteristic
function is invariant (so that, for any J < S, L(J) and U(J) are invariant). For
any itnvariant event V there is a C ¢ @ such that U(C) = V a.e., so that the Borel
field of invariant events ts identical, up to evenis of probability zero, with the (Borel)
field D of events of the form D = U(J) ae., J < 8.
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(2) There is a finite or countable collection {Cy, Cy, -+ } of disjoint almost
closed sets with the following properties:

(a) every C; except at most one is atomic, that is, does not contain two disjoint
almost closed subsets,

(b) the non-atomic C; , if present, contains no atomic subsets,

() 22 P(L(C)) = 1.
The collection {Cy, Ca, -+ } is essentially unique, that is, if {Ci,Csy, ---} has
properties (a), (b), (c), then each C differs from some C; by a set in 9.

The C; may be chosen so that all states in a given C; are of the same type: either
all states s in C; are transient, that 1s, {s} & M or all states in C; are recurrent, that
18, nontransient. The non-atomic C; , if present, consists entirely of transient states.

Proor. We represent z,, z; , **+, as usual, as coordinate variables on the
space Q. For any bounded measurable f on Q, we have
4) E(Tf |20 = S0, -+, %n = 8,) = E(f| 20 = sa),

where T"f denotes the function ¢ defined by g(w) = f(T"w). For, since T"f de-
pends only on 2, , &n41, - - - , the left side of (4) equals E(T"f |z, = s,) which,
because of the stationarity of transition probabilities, is easily shown to equal
E(f|xo = s,). Thus if f is invariant,

(5) E(f |00 =80, , 2, = 8,) = E(f |70 = s,).

For any invariant event V and any state s, define ¢(s) = E(v | xo = s), where
v is the characteristic function of V. From the forward martingale convergence
theorem ([2], p. 319) and (5), ¢(x,) — v with probability one as n — . Thus
if I is the set of all states s with ¢(s) > %, w ¢ V implies w &£ L(I) with probability
one, while w £ V implies w £ U(I) with probability one, that is, U(I) € V < L)
a.e. Since always U(I) D L(I), we have I ¢ @ and U(I) = V a.e. This estab-
lishes part (1) of the theorem.

For part (2), we decompose the measure P on the Borel field of invariant sets
into atoms and a completely non-atomic part (see for instance [1], p. 565). Let
Vi, Va, -+ be the sets of this decomposition, and choose I, ¢ @ such that
U(I.) = V, a.e. Since V;, V; are disjoint for ¢ # j, I, n I, ¢ M for 7 % j, so
that, with C, = I, — U, I;, C. e @ U(C,) = V,ae., and C;, Cs, - - - are dis-
joint. Properties (a), (b), (¢) of part (2) and the essential uniqueness are immedi-
ate. The final assertion of part (1) is a consequence of the known ([3], p. 322)
facts that if {s} £9m, that is, if it is possible for the process to enter s infinitely
often, then if the system ever cnters s it is certain to enter infinitely often s and
all states which can be entered from s. The latter class C of states is almost closed
(in fact is closed, that is, if the system ever enters C it remains in C), consists
entirely of recurrent states, and has no almost closed proper subsets. This com-
pletes the proof of the theorem.

Any collection of sets {C:, C;, ---} of the form described in part (2) of
Theorem 1 will be called a decomposition of the Markov process. A process will
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be called simple if its decomposition consists of a single set C;, and a simple
process will be called non-atomic or atomic according to the type of C, .

3. The equation a(s) = _ a(t)p(t|s). For a process of the type considered
in Section 1, write p(t|s) = P{x.;1 = t|z, = s}, so that p(t|s) = 0,
>.p(t|s) = 1 for all s. The structure of the process is closely related to the
nature of the bounded solutions of the equation

(6) a(s) = 2o a®)p(t] ).

This relation is most simply stated in terms of the bounded invariant functions
of the process, as follows:

THEOREM 2. For any bounded invariant function f, a(s) = E(f | o = s) satisfies
(6), and every bounded solution of (6) may be represented in this form.

Proor. That any a(s) = E(f|xze = s) satisfies (6) is clear, since
E(f |20 = s, 21 = t) = a(t) from (5), and (6) then follows from the formula
E(f|z0) = E(E(f|zo, 1) | x0). Conversely if a(t) is any bounded solution of
(6), the sequence z, = a(x,) is a bounded martingale and hence converges to a
limiting bounded f. Since 2z,(Tw) = z,11(w), f(Tw) = (fw) a.e., that is, f is in-
variant. The martingale convergence theorem also yields E(f | o) = 20 = a(xo),
so that the solution «(f) has the required form.

The inequality

(6") a(s) 2 2 at)p(t|s)

has been studied by Kendall [7] and Foster [4], who related the existence of
solutions of (6’) such that a(j) — « as j — o« (enumerating the states by the
positive integers) to the existence of a finite closed set of states.

CoroLLARY. The process is simple and atomic if and only if the only bounded
solution of (6) is a(t) = constant.

Proor. If the only bounded solution of (6) is constant, then any bounded
invariant f is constant, since, with a(s) = E(f|zy = s), a(z,) — fa.e.asn — o,
Thus any invariant set has probability zero or one, and the process is simple
and atomic. Conversely, if the process is simple and atomic, every invariant set
has probability zero or one, every bounded invariant function f, being measura-
ble with respect to the class of invariant sets, is constant a.e., so that every
solution of (6), having the form E(f | zo = s), is constant.

As an application of the corollary, we consider processes which are sums of
independent identically distributed variables.

TuEOREM 3. Let V be a finite or countable set of vectors vy, vs, - -+ tn N-space,
and let py, P2, + + - be positive numbers with sum one. Let S constst of the origin and
all vectors representable as wy + +++ 4+ w,, n = 1, 2, .-+, w;e V. The only
bounded solution of the equation

™ a(8) = 2jals + v)p;, sef
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18 afs) = constant. Consequently if y,, yz, + - - are independent variables with
Ply. = v;} = p;, the Markov process . = 11 + +++ + yi, 20 = (0, -+-, 0) 7
stmple and atomic. ‘ >

Proor. Repeated use of (7) yields
a(s) = 2 als+ovy+ -+ +03) piy - Di

(8) jlr' L )%
= 2; als + roy + vy + - )q(),
reRE
where Ej, consists of all sequencesr = (r1, 2, - - ) of nonnegative integers whose

sum is &, and
a(r) = KL @5/ i ).
Replacing s by s + v, and k by £ — 1 in (8) yields
als+v) = 25 als + o1+ ron + - )qear)

(9) TERL_1 .

= ZR als + rog 4+ r0, + - ')qk(r)(rl/kpl)~
Subtracting (9) from (8) yields
(10) a(s) — als +v) = 2 fOa@A — (n/kpy),

rERE

where f(r) is for fixed s and k a bounded function of r and is uniformly bounded
in s, k as well, say [f(r)| < M for all s, k, . For fixed ¢ > 0, let T} denote that
subset of Ry for which |1 — (r/kp1)| < e. Then

210 [ a0 |1 = (n/kp) | £ Mpy 2 (),

rZTE rZ Ty
and the sum on the right, being the probability that, in & independent trials
with an event of probability p;, the actual success ratio differs from p; by at
least ep; , approaches zero as : — < by the law of large numbers. Since

2 1fO] @) |1 = (ri/kp)| < Me,

we find from (10), summing separately for r ¢ T and r £ T, and letting k — «,
that |a(s) — a(8 + v)| = Me. Since e is arbitrary, a(s) = a(s + ). Clearly
the same proof yields a(s) = a(s + v;) for any j, and a(s) = constant.

CoroLLARY. If Y1, ¥z, - - are independent identically distributed (vector or
scalar) variables with a finste or countable set of values, for any set J the probability
that an infinite number of sums y1 + - -+ + yr = a1 are in J is zero or one.

An example of a simple nonatomic processis z, = } + D1 ¢/ 2'", where
&, &, -+ arc independent and assume the values =1 with probability % each.
The states are all rational numbers m/2", m = 1,3, --- ,2" — 1,n = 1,2, ---.
Writing m/2" = (m, n), the system (7) becomes

11 a(m,n) = a@m — 1,n + 1) + «@m + 1, n + 1)).
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If z* = limz,, z* is a.e. invariant and has a uniform distribution on (0, 1).
Each z, is a function of z* a.e., so that every function of 2y, 2;, 22, -+ - is a.e. 2
function of z* and hence invariant a.e. For any bounded function f(z*),

(m41) /2n

E(f| 20 = (m,m) = 2™ f( o J0 d = atm,w.
It is easily verified by substitution that a(m, n) satisfies (11).

The Corollary actually holds without the restriction to random variables with
a finite or countable set of values; this is an immediate consequence of an un-
published theorem of Edwin Hewitt and 1. J. Savage, which they communicated
to the writer. The Hewitt-Savage Theorem, an improved version of the zero-one
law, asserts that any event depending on a sequence of independent identically
distributed random variables which is invariant under all permutations of every
finite set of the random variables has probability zero or one; the event that an
infinite number of sums 3 + - -+ =+ y; are in J is clearly of this type. The con-
clusion of the Corollary, under different hypotheses on the 7, has also been
obtained by Chung and Derman in an unpublished manuseript which they com-
municated to the writer.

As a second application of the Corollary of Theorem 2, we obtain an interesting
result of Foster [4], Harris [5], and Hodges and Rosenblatt [6] concerning the
random walk on the nonnegative integers, with p(G0) = 1, p(z + 1]?¢) = p.,
pt—1]|2) =qi=1—p;,0 < p; < 1,7 > 0. The equation (6) becomes

(12) a(8) = pals + 1) + qa(s — 1), s > 0.

The general solution of (12) is a(s) = A + Bz,, where zo = 0, 2z, = 1, 2, =
¢+ -+ ¢y fors > 1, wheree, = 1/p1,¢; = (qu--- q;/p1 -+ - p,) for j > 1.
Thus (12) has a bounded nonconstant solution if and only if the series

Ei(ql"'(]j)/(Pl“‘pf)

converges, which is the condition obtained in [4], [5], and [6] for passage to the
origin to be uncertain.
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