ON THE ASYMPTOTIC BEHAVIOR OF DECISION PROCEDURES'?

By Jack LADERMAN?

Columbia University

0. Summary and introduction. In this paper, the asymptotic behavior of de-
cision procedures will be studied for a particular class of multiple decision prob-
lems. The study will throw some light on the desirability of the minimax decision
procedure when the number of observations is large, and it will be seen that
decision procedures frequently exist which are superior to the minimax decision
procedure for large samples. The fact that the minimax decision procedure may
be desirable in certain problems for small samples but undesirable for large
samples was revealed by Hodges and Lehmann [1] in connection with estima-
tion problems. Robbins [2] suggested the term ‘‘asymptotically subminimax”’
for the type of superior procedures which may then exist. A definition of this
term which will be useful for an investigation of the asymptotic behavior of
decision procedures, will be given in Section 1. A major part of this paper will
be concerned with certain sequences of decision procedures called asymptotically
admissible which have desirable properties similar to those of admissible de-
cision procedures for the case of some fixed sample size. These asymptotically
admissible decision procedures include a subclass of the asymptotically submini-
max procedures, and the sequences of minimax procedures for those problems
for which asymptotically subminimax procedures do not exist.

The problems to be considered are those in which a random variable, X, is
known to have a distribution function belonging to the distribution space,
Q= {Fiz)},7=1,2, ---, k, and it is desired to select the true distribution
function based on a sample of n independent observations of X. It will be as-
sumed that all F;(z) are absolutely continuous distribution functions having
density functions, f;(z), and that for every constant K, the set of points for which
fi@)/fix) = K (i # j) is a set of probability measure zero under every F and
all possible 7 and j. A simple loss function, W(F;, d;), where d; is the decision to
select F;, will be used with W(F;, d;) = 1if an incorrect decision is made (i.e.
t # 7), and W(F;, d;) = 0 if a correct decision is made (i.e. ¢ = j). For such a
loss function, the expected loss is simply the probability of making an incorrect
decision.

Section 1 will be concerned with asymptotically minimax sequences of de-
cision procedures and Section 2 will be concerned with asymptotic admissibility.
It will be seen that the asymptotic behavior of the minimax decision procedure
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depends on the limits of the components in the sequence of least favorable a
priori distributions. Theorem 2.2 gives a sufficient condition, in terms of these
limit values, for the minimax procedure to be asymptotically admissible.

In Section 3, a detailed study will be made of the class of problems where
Q@ consists of & univariate normal distributions having the same variance but
different means. Let the means be denoted by 6; (: = 1, 2, ---, k) with 6; <
6, < +++ < 6 ,and let min;(6,41 — 6;) = v. Then Theorems 3.1 and 3.6 will show
that the minimax procedure is asymptotically admissible when the means can
be put into sets, each set containing the same number, 7 = 2, of consecutive
means, with a difference of v between any two consecutive means of a set, and a
difference greater than y between any two means not belonging to the same set.
Theorems 3.2 and 3.3 will show that in all other cases the minimax procedure is
asymptotically inadmissible, and asymptotically subminimax procedures will be
constructed for all these cases. Although a complete study of the asymptotic
admissibility of asymptotically subminimax procedures will not be made in this
paper, Theorem 3.7 will show that a certain asymptotically subminimax pro-
cedure is asymptotically admissible for all the cases covered by Theorem 3.3
and for some of the cases covered by Theorem 3.2. On the other hand, for those
cases covered by Theorem 3.2 with an Q@ consisting of only 3 means, it will be
shown that every asymptotically subminimax procedure is asymptotically inad-
missible.

1. Asymptotically minimax decision procedures. Consider an @ consisting of
only two distribution functions, F,(x) and Fi(z), having density functions fi(x)
and fa(x) respectively, and let the observed values be x;, z2, - -+, z, . Using a
simple loss function and denoting the least favorable a priori distribution by
§i™ and 1 — §{™, the minimax decision procedure, 3, , is as follows:

Select F\(x) if

i 5@ > @ - 6 I e,
and select Fa(z) if
i i) < 0 - 6 T e
Throughout this paper we shall ignore the possibility of equality in the above

expressions because by the previous assumption the probability of such an event
is zero. The risks associated with the minimax procedure are

rn@) = Pr [éf") fI filz) < (1 — ™) fI fa(z;) /f1(z) is true d. f.]
(L]) ]jl ]:1
ry(5.) = Pr l:éi") I;Ilﬁ(xj) > (1 - §") I_];fz(xj)/ﬁ(x) is true d. f-]-

For the minimax procedure, the two risks are equal, and their common value
will be denoted by r(5,).
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Let us suppose that the sequence §i°, g1, ---, 4™, - - - is a null sequence,
and consider the sequence of Bayes procedures, {§,}, corresponding to a sequence
of a priori distributions, {g{™, 1 — gi™}, where the gi" satisfy the following two
conditions:

(A) ¢i™ = §i™ except for a finite number of values of n.

(B) The sequence, {gi™}, is a null sequence.
It then follows from (1.1) and (A) that there exists an integer, N, such that if

n 2 N, the risks, r;(5,), satisfy
(1.2) n(3.) = r(.) = 6.

Since a Bayes procedure minimizes the average risk for the corresponding a priori
distribution, we have

(1.3) gir() + (1 — gi™)r(s,) < ().
By dividing (1.3) by r(3,) and using (1.2) and (B), we obtain
. T?(én)
14 lim —— =
(14 nl—I-Iolo r(3,)

Thus, {6} is a sequence of Bayes procedures with the ratio of its maximum
risk to the common minimax risk approaching 1 as n approaches infinity. Clearly,
for large n, {8,.}, can not be much worse than the minimax procedure when Fq(x)
is the true distribution, but when Fi(x) is the true distribution {s,} may con-
ceivably be much better than the minimax procedure. For this reason it seemed
desirable to study the class of decision procedures having such properties in the
more general case when Q contains & distributions.

We start out with the following definition:

A sequence of decision procedures, {4,}, where n corresponds to the number of
observations, will be said to be asympiotically minimazx if
(1.5) lim P70

G ’

where 7;(8,) denotes the risk associated with 4, when F,(z) is the true distribu-
tion function, and r(5,) denotes the minimax risk.

In Section 3, examples will be given for which asymptotically minimax de-
cision procedures exist with the ratio of one of its risks to the common minimax
risk approaching zero! For sufficiently large n, such a procedure would be more
desirable than the minimax procedure for most problems arising in practice.

A lemma will now be given which will be used in the proof of Theorem 1.1.

LeMMa 1.1. If & vs a Bayes procedure relalive to an a priort distribution, g, and
5 is the minimaz procedure, then

(1.6) min 7;(8) < r(d) = max r(8).

Proor. From the definition of a minimax procedure, we have that r(§) <



554 JACK LADERMAN

max; 7;(8). To prove the other inequality assume min; r;(8) > r(3); it then follows
that

(L.7) ;1 giri(8) > Z_‘i gir:(8).

Since the Bayes procedure, §, minimizes the average risk when g is the a priori
distribution, (1.7) is impossible. This contradiction completes the proof.

TarEOREM 1.1. A sufficient condition for a sequence of Bayes procedures, {8,},
to be asymptotically minimax s

(18 lim 29 = 1 oralli,j=1,2,-- k.
) n—oo TJ(B,.) f J
Proor. Equation (1.8) implies
max 7;(5,)

1.9 lim -— =
(19) n—o min 74(8,)

From Lemma 1.1 we have for all n

max ri(3,)  max ri(3,)

(1.10) 1= - = = .
r(8.) min 7:(3,)
Hence
max r;(3,)
(111 lim ——— =1,
n—0 T(an)

which completes the proof.
TaEOREM 1.2. A necessary condition for a sequence of Bayes procedures, {5,},
corresponding to the a priori distributions, {g™}, to be asymptotically minimaz is

lim Taldn) _ 1

(1.12) hm )

for all « and B belonging to T, where T 1is the set of integers, j, for which lim inf,..
g;" > 0. i
Proor. Since the minimax procedure, 4, , is the Bayes procedure corresponding

A

to ¢, we have
k ‘k

(1.13) 2 §7riea) Z 2 4GS,
=1 =1

and consequently

& i 87;
(1.14) > g ) 5y,
i=1 7‘(5")
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Since for any j & T', lim inf,.., ;™ > 0, there exists a > 0 and an integer, N,
such that §§” > & for alln > N. Now for {8,} to be asymptotically minimax, for
any given e > 0 there must exist an integer, M, such that for all 7 and alln > M,

ri(an)

(1.15) N+ e
7(0)
Hence for n > M,
(1.]6) Z 57‘)(] + 5) + A(") J(an) 1
e r(3.)
from which it follows that
(117) _ {/5”)_’__ 5-}- A(n) 1(6") L
r(3,)

Thus, for » > max (N, M)
i) _ G — e

(1.18) == - > 1 — e
SO I ‘
Butl since 8 < 1, from (1.15) we have
7i(0n
(1.19) -'L-(;—)- < 1+e
7(6n)
and therefore
. 1i(6n)
1.20 lim = 1.
( ) n—0 7'(5")
It then follows that if both @ and 8 belong to I', we have
(81)
(1.21) lim "% = .,
n—oo 7'/3(6 )

Theorem 1.2 is useful in proving that certain sequences of Bayes procedures
can not be asymptotically minimax. For example, suppose @ consists of k uni-
variate normal distributions N(8; , ¢°), 7 = 1,2, -+ , k, with 6; = 6, + (¢ — 1)y,
for some ¥ > 0. In Section 3 it will be seen that for such a class of distribution
functions, lim inf,.. §¢™ > 0 for all 7. Now consider the sequence of Bayes
procedures, {3,}, where 8, corresponds to the a priori distribution ¢{® = 1/k

for all 7. According to the decision procedure 4, one selects
NG, i X <6+ by
N@:, o) if 6.—Ww<X<bi+dy i=23--,k—1,
N@i,o) if X > 6 — i,

where X = > I zi/n. Tor I > 2 it is easily seen that 72(8,)/r1(8,) = 2 for all n.
Therefore {8.} can not be asymptotically minimax.
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The following theorem is of interest in connection with the construction of
asymptotically minimax procedures. It includes the special case that if only one
component of §' approaches zero, say §5” — 0, and none of the sequences of
the other components has zero as a limit, then given any null sequence, {1™},
such that A = §5* from some n on, it is always possible to construct an
asymptotically minimax sequence of Bayes procedures with A as the ath
component of ¢'™.

TureoreM 1.3. If {§\} is a null sequence and {35 /G is bounded for al! i ¢ T,
where T is the set of integers, i, for which {§i™} is a null sequence, and if lim inf,..,
G" > 0 for all i 2 7, then an asymptotwally minimazx sequence of Bayes procedures
can be found with any given sequence, {h'™}, as the ath components of {g'™},
provided {h'™} is a null sequence and k" = §5* except for at most a finite number
of values of n.

Proor. Let {8,] be the sequence of Bayes procedures relative to the sequence of
a priori distributions, {g™}, given by

h@w
95'") = 2 65" forier
Ja
(1.22) L S
) - A(ﬂ) Z ™
3 - Joa = jer a(n .
i _——2- g L for ¢ ¢ 7.
2s 9;
ifr

It can easily be verified that from some n on, each g™ defined by (1.22) is a
probability distribution, and its ath component is 1. Also, for all j

n)/g(n) > (n)/ﬂ(n) forier
= ’t

(1.23)
9" /gsm < §im /g5 fori g 7.
Hence
ri6,) < T(S.,.) forzer
(1.24)

r:(6) 2 r(,)  forigr.

Therefore we need only prove that

. 1,(8n)
lim =
ns>w I 6»)
forallj ¢ 7.
Since ¢ maximizes the average risk, we have
(1.25) Z gi"ri(5,) < Z (6 = r(5.).
Therefore

(n) Z’_(_al).
(1'26) ‘;g’ T(Sn) =
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Consider a particular j £ 7. In view of (1.24), we can replace r;(5,)/ r(8,) in (1.26)
by 1 for all 7 # j, yielding

1 - Z!]E‘") (n) (n)
(1.27) L) E O 20

r6) T g g5”
But since ¢{™/g5™ — 0 for all 7 € 7, we have the desired result.
We now define a sequence of decision procedures, {4,}, to be asymptotically
subminimaz, if {6,} is asymptotically minimax and satisfies
7;(8x)

(1.28 limsup 5 < 1
) n—+x0 P 7'(5,,)

for at least one value of j.

2. Asymptotically admissible decision procedures. In view of the existence
of sequences of decision procedures which are asymptotically subminimax, it is
desirable to set up some criterion for distinguishing the more desirable asymp-
totically subminimax procedures. In this connection, a sequence of decision
procedures, {8,}, will be said to be asymplotically admissible if there does not
exist another sequence of decision procedures, {8,}, such that

. 7:(87)
(2.1) lm:f:lp ) <1
for all 7, and the strict inequality holds for at least one value of <. When such a
{87, exists, {8,] will be said to be asymptotically inadmissible.

As a consequence of the above definition, if no asymptotically subminimax
procedure exists, then the minimax procedure and all asymptotically minimax
procedures are asymptotically admissible. On the other hand, when an asymp-
totically subminimax procedure does exist, the minimax procedure is asymptot-
ically inadmissible. An asymptotically subminimax procedure may or may not
be asymptotically admissible.

For large values of n it seems reasonable to require that the procedure selected
should be asymptotically admissible when such a procedure exists. For this
reason, it is of interest to know when the minimax procedure is asymptotically
admissible.

The following theorem will be helpful in determining the asymptotic behavior
of sequences of decision procedures.

TuroreMm 2.1. If the sequence of Bayes decision procedures, {8,}, ts asymptot-
ically mindmaz and lim inf, .. §™ > 0, where §i™ is the sth component of the
least favorable a priori distribution for n observations, then

) _
22) l:_rf:o 7(8,) h

1.

Proor. The integer s belongs to the set T defined in Theorem 1.2, and the proof
of that theorem up to (1.20) proves (2.2).
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From Theorem 2.1 it is seen that if lim inf,., §.” > 0, then it is impossible to
construct an asymptotically subminimax procedure with the strict inequality
holding for the sth risk. Hence a necessary condition for the existence of an
asymptotically subminimax procedure is that lim inf,.. §i’ = 0 for at least one
value of ¢. Thus we have the following sufficient condition for the minimax
procedure to be asymptotically admissible.

TaEoREM 2.2. If lim inf..., 48 > 0 for all i, then the minimaz procedure s
asymptotically admissible.

In order to determine the asymptotic behavior of the minimax procedure, it
becomes essential to know whether any of the §¢™ have zero as a lower limit in
a given problem. If none of them has a zero limit, then the minimax procedure is
asymptotically admissible and would appear to be a good decision procedure
even for large values of n. When some of the g™ do have a zero limit, we would
like to know which ones, and whether the minimax procedure is then asymptot-
ically inadmissible. If this should be the case, we would then like to know if
there is an asymptotically admissible asymptotically subminimax procedure,
and how to find it.

In the next section, a detailed study will be made of the limits of the §i”
when Q consists of & univariate normal distributions, all having the same vari-
ance but different means. The questions raised in the above paragraph on the
lower limits of the §{™, and on the asymptotic admissibility of the minimax
procedure are completely resolved for the decision problems under consideration.
Results are also obtained on the construction of asymptotically subminimax
procedures and on their asymptotic admissibility.

3. Asymptotic theory for normal distributions. Throughout this section it
will be assumed that Q consists of k univariate normal distributions, N(6; , %),
t=1,2, ---  k, all having the same known variance. Without loss in generality
it will be assumed that the k& means are labeled so that 6; < 6, < -+ < 6.
Wald [3] showed that the minimax decision procedure for selecting the true mean
for any fixed sample size, n, can then be obtained by determining k£ — 1 points,
ti <t < -++ < ty_1 which divide the sample space of X = Y i z;/n, where z,
is the 7th observation, into k intervals in such a way that the minimax decision
rule is given by selecting 6; if X liesin (f;_1, £;), where to = — and §;, = + .
These k — 1 points can be found from the system of equations:

t
f_ m@) dy =\

to i
]: pa(y) dy = N
(3.1) :
tpa
j; pk—l(y) dy = A

k-2

k-1
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where

p(y) — \/7—';' e—n(y—ﬂi)2/2¢2
o\ 2r

The value of  obtained from (3.1) is the probability of making a correct decision.
If we let

(3.2) ¢ = [ ’ \/#2_# g,

then (3.1) can be written as
GlVnlts — 61)/0] = X
GVn (t — 62)/0] — GIVn(ts — 62)/0] =
(3.3) :
GVt — 0i-1)/0] — GINVn(tioz — 8i1)/0] = A
1 — GIVnlbey — 6)/0] = A

A(n)

The least favorable a priori distribution, §°™, can then be obtained from

(34) log %:';j = (01 i1 — 0:) (2t — 041 — 6;)
41
and
k
(3.5) >4 = 1.

t=1

If the transformations, z; = /o and ¢; = 0,/ are applied to the observations
and distribution functions respectively, the minimax procedure would yield
decision intervals having end points é; = ¢;/e, with the same minimax risk and
least favorable a priori distribution as in the original problem. Thus, we need only
investigate the behavior of the minimax decision procedure for @ = {N(e;, 1)},
and then interpret the results obtained in terms of the ¢’s and ¢’s into equivalent
results in terms of the ’s and ¢’s. For this reason we shall from now on consider
the distribution space to be {N(¢;, 1)}, without any loss in generality.

Since we shall be interested in the behavior of the ¢, with increasing n, we shall
usually write ¢ instead of é;. Then, for the distribution space {N(e:, 1)},
(3.3) becomes

G[\/n(c(") — )] =
GIVn@E” — @)l — @ \/_(c("’ — )] =
(3.6)
[\/_(f/cl"w )] — \/n(c,fq——q:, Dl =\
I = GIVn@E2 — el =\,
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and (3.4) becomes
é('”)
(3.7) log %,5 = n(pir1 — @:) (265"") — Qi1 — @0).
gi+1
The solution of (3.6) for any given n can be accomplished by various iterative
procedures. We shall not consider these methods in this paper because we shall
be concerned only with the limits of the sequences of the é™ and of the §i™
It will be convenient first to prove several lemmas from which the theorems
concerning the asymptotic behavior of the minimax procedure for all possible
sets of values for the ¢; will follow easily.
LemMma 3.1. If {A,} and {B,} are sequences of real numbers such that lim, .o A,
< limg.e B, < 0, then

(3.8) lim M—A—") = (.
n—00 G(van)
Proor. The conclusion is obvious except when there exists an infinite subse-

quence of B, for which /nB, — — «. In that case, by applying the first term
of the asymptotic expansion for G'(¢) for negative values of ¢, namely

1 ¢
(3.9) 60 ~ 5=,
to the left member of (3.8), it becomes
3 Bn 1 2 2
(3.10) lim =" exp {—in(ds — Bu)}.
But since
. B
< —n
0= },13.1 1 <1

and

lim (4% — B%) > 0,
the value of (3.10) is zero.

Lemma 3.2. If we denote by v the value of min; (pir1 — i), then the &™ which
determine the minimax decision iniervals, salisfy

(3.11) lim inf (p; — &™) = v
and
(3.12) lim inf (& — ;) = v,

n—00

and at least one of the above holds as an equality.
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Proor. Let j be the smallest integer for which v = ¢;1 — ¢;. Now consider
the decision procedure determined by
ci = @i+ 3y for7i =j
(3.13) ’ o
¢ = ¢ipn— 3y fori>j,
where we select ¢; if X <a,eif cia< X <ciforl <1<k and ¢ if
X > c¢1. This is the Bayes procedure corresponding to the a priori distribu-

tion gi", g8, ---, gi” given by

)
logg%,,—, = nlpizn — @) (20 — i1 —@i), ©=1,2,--- k=1
i+1

k

DM = 1.

=1
For any n, the minimum risk is G(—+/7 v/2) and the maximum risk does not
exceed 2G(—~/n v/2). By Lemma 1.1 the minimax risk must lie between these
two values. Hence

| < GV — )] + Glv/nle: — &™) <9
- G(—Vnv/2) h

If (3.11) or (3.12) were false, then, by Lemma 3.1, for a sufficiently large n the
fraction in (3.15) would become greater than 2, contradicting (3.15). If neither
(3.11) nor (3.12) held as an equality, the fraction would become smaller than 1,
again contradicting (3.15).

LemMA 3.3. The minimaz decision interval end points, &, and the components

(3.14)

(3.15)

of the least favorable a priori distributions, §i™, satisfy
A('ﬂ) — L A(n)
(3.16) lim inf 9531 = Jim inf G1V/7(e: = &7)]

new 3" noo GV/NE" — pi)]’

and (3.16) also holds if the lower limits are replaced by upper limats.

Proor. For any given 7 and n, the &™, §{™, §{1 satisfy

A('ﬂ,) ; .
(3.17) “f}—;')‘ =exp {— Y — 0)" — (" — o).
Since the minimax risk approaches zero as n approaches infinity, the ¢ must
eventually satisfy ¢; <. & < @iy.
Now by using (3.9) the right member of (3.16) becomes
ACREN

(3.18) lim inf exp {—inllp; — ¢i™)* — (™ — i)’} - CL————«?';T—I

n->w Pi i
Since both factors in (3.18) approach their lower limits through the same subse-

quences, it can be written as
5
(3.19) lim inf 22 1,

s G
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where
NN
(3.20) L = lim inf 2" %41,

>0 Yi — C;

Now if L = 1, then we have (3.16). If L < 1, then from (3.18) we see that the
right member of (3.16) is zero, and by (3.17) the left member of (3.16) is also
zero. If L > 1, then from (3.17) and (3.18) it follows that both members of
(3.16) become infinite. The remainder of the theorem is proved in exactly the
same manner by replacing lower limits by upper limits throughout the above.

In several of the lemmas and theorems to follow, it will be convenient to refer
to those ¢; which belong to a set of means of  satisfying Condition A given below.
In stating the condition and in the remainder of this section except when other-
wise stated, the value of min; (p:11 — ¢:) will be denoted by v.

Condition A. A set of means of @ with consecutive subscripts, say ¢s, @st1,
-+, @.pe Will be said to satisfy Condition A if ;41 — @i = yfori = s, s 4 1,
cer, 84+t — 1. ’

LemMa 3.4. If ¢, belongs to a set of means satisfying Condition A, then

(321) lim (& — @) = 3y s<i<s+t
and
(3.22) lim (p; - &™) = 3y s<iZ s+t

Proor. Suppose that
(3.23) lim sup (65 — ¢a) > 3y

n-»0

for some « satisfying s £ a@ < s + ¢. Then from

(324) (¢a+l - éfxn)) + (éfxn) - ¢a)= Y
we get
(3.25) lim inf (pas1 — 657) < 3v.

Since (3.25) contradicts Lemma 3.2, we have
(3.26) lim sup (65 — ¢.) £ L.

n—->o
By Lemma 3.2 we have also

(3.27) lim inf (65 — ¢a)2 3v,

n-»>w

and (3.21) follows. Then from (3.21) and (3.24) we get (3.22).
LemMa 3.5. If ¢; and ¢:11 belong to a set of means satisfying Condition A, then

: G[V'nlp: — éf’n))]
(3.28) lim su a < 4,
nes! GG = gin)]
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and

‘ S G[W(«o, = &)
(329) ln'r‘l"inf G[\/ﬁ(cf - ¢H~l)]

Proovr. As in the proof of Lemma 3.2, we have

G[Vnle: — &™)] + G[VnE™ — )] <o
G(—=vnv/2) B

v
e

(3.30)

Therefore

GlVnlp: — &™)] <2
G(—=v'nv/2)

By applying (3.9) to (3.31) we obtain

2 —1
(3.32) lim sup exp{—%n [(% — M) — %:I} . ;i(n‘) < 2.

n-»>0 ’

(3.31)

For any i satisfying s < 4 < s + ¢, from Lemma 3.4 we have that & — ¢; —
1v. Therefore

(3.33) lim sup exp {iny(p: — & + 3v)} < 2

and finally

(3.34) lim sup exp {%n'y (—éﬁ"’ + ‘i’_+2_“‘.'_"'_‘3)} < 2.

Again from (3.9) the left hand member of (3.28) can be written as

A( —
(335)  lim sup exp {—3nllpi —&™) — ™ — o)} - ccp. — :(’:3‘1
and by Lemma 3.4, (3.35) becomes
(3.36) lim sup exp {ny (_.éf.") + & ‘;«¢i+l>} .

n-»>w

Then from (3.34) we get

~ . G[‘\/"_'L(iﬂ - cs ))]
(837 b S SVl = pr)] =

From (3.30) we also have

(3.38) lim sup [?;/( 7@(@\/_ -~ 7;;1)] <2

and in exactly the same way we obtain

: G[\/"—%(CS ¢1+1)]
(3.39) lim sup . <4,
n->0 G['\/ﬁ(ﬁoi - cl ))]
from which (3.29) follows.
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LeEmMA 3.6. If ¢; belongs to a set of means satisfying Condition A, and s < © <
s 4 t, then

[\/—(‘Ps ‘(n))] 4

(3.40) lim sup -
noo G[VR(ED — @) T
and
_ -
(3.41) lim inf GLV/le: = &7 > 1

n->® G[‘\/’I’L(C._..l - ¢1)]

Proor. Since for any given T < 0, the function G(y) + G(T — y) takes on its
minimum value when y = T/2, we have

(342) 26(—vnv/2) £ GlVnles — &) + GIVn(E” — i)l

for s £ 1 < s + t. Now as in the proof of Lemma 3.2, we have that r(8,) <
2G(—+/n v/2). Hence

s [\/—(‘pt é.n))] G['\/_(¢s - c‘n))]
G4 SV = vl = nr GV = )]

Then by Lemma 3.5, the last expression is equal to or greater than 1. Similarly
we obtain

. G[’\/—(ﬁﬁz - ¢ n))] G[‘\/—(ﬁoz—l - Ct—-l)]
(B44) i sp G — o] = el GG =) =

Lemma 3.7. If {a,} and {b,} are two sequences of real numbers such that lim, e
a, = —v/2, and

o G(v/nan) _
(3.45) lim 2O =1,

then

- dlv/a(—a— )] _
(346) o V(b =]

Proor. By applying (3.9) to the left member of (3.45), we get

lim exp {—%n(a) - b2)} - g’-’ = 1.

This implies that
lim n(a; — b3) = 0,

n->00
and

(347) lim @, = lim b, = —%v,

n-»>0 n->0
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from which we get

(3.48) lim n(a, — b,) = 0.
By applying (3.9) to (3.46) we must show that
. ba
(349)  limexp {—dnlla. + )’ — Gu + V)Y - a_jrt;f =1,
which can be written as
(3.50) lim exp {—2in(a, — b,)(a, + b, + 27)} - bty _ 1.
n-»>00 an + ‘Y

But this last line follows from (3.47) and (3.48).

Tueorewm 3.1. If all the means are equally spaced, that s, if ;41 — @i = ¥
fori=1,2 -,k — 1, then lim inf, . ™ > 0 for all i, and the minsmaz pro-
cedure s asymptotically admissible.

Proor. By Lemmas 3.3 and 3.5 we get that

A(n)
(3.51) 1 < lim inf £ < 4, i=12 - ,k— 1

n->0 g gn)

Since Y 5 §¢¥ = 1, it follows that lim inf, .. §i™ > 0 for all values of 7. Then
by Theorem 2.2 we have that the minimax procedure is asymptotically admis-
sible.

THEOREM 3.2. If Q has a mean, ¢, , such that min {(¢e — @a_1), (Pat1 — ¢€a)} >

v, then lim inf, .. §$ = 0, and the minimax procedure is asymptotically inadmis-
sible. (For a = 1 take gy = — o and for a« = k take 141 = + ).
Proor. By Lemma 3.2, we have that
(3.52) lim inf (o — &%) = 3y
or
(3.53) lim inf (65 — ¢a) = 3.

n-—»>0

If (3.52) holds, then since (po — @a-1) > v, by Lemmas 3.1 and 3.3, we have
lim inf, . §47/G%) = 0. Hence lim inf, .., §&” = 0. Similarly if (3.53) holds,
we get that lim sup, .. §sr1/§s = e, and therefore lim inf, .. 5 = 0.
To show that the minimax procedure is asymptotically inadmissible, consider
the decision procedure, 8, , having decision interval end points ¢{™, where
&” =" fori=1,2-,a—2a+1 -, k—1
(3.54) o .
&™ = 3(pi + @iy1) fori = a— 1, a.

Clearly r:(3,) = r(8,) fori < .a — 1 and fori > a + 1.Since r(3,) = G(—/nv/2)
by Lemma 3.1 we get

_am
(3.55) fi SLV/nes = 8]

A 0) 7: = a — 1 [+ 4
n->o0 7‘(5,.) ’



566 JACK LADERMAN

and
GlVn@E” — o
(3.56) fim Y/ ¢mn=m i=a-—1,e
n> 7’(3,.)
Hence
r:(5,) .
hlfbl-»seoupr(ﬁ,.) =1, t=a—1la+1
and
(8
(3.57) tim 7% _ o
n-»>0 'r( ”)

which completes the proof.

Theorems 3.1 and 3.2 cover all possible positions of the £ means except when
they can be put into two or more sets, such that, each set contains two or more
consecutive means, the consecutive means in each set differ by v, and all the
differences between consecutive means not belonging to the same set are greater
than ~. Throughout the remainder of this section, except when otherwise stated,
only those cases when the means of @ fall into such sets will be considered. The
number of such sets will be denoted by r and the number of means in the ¢th
set will be denoted by n; . Thus Y ieyn; = k. The jth mean in the sth set will
be denoted by ¢, ; and the component of the least favorable a priori distribution
corresponding to this mean for samples of n will be denoted by §¢77. The right
end point of the minimax decision interval for selecting ¢;,; for samples of n
will be denoted by &7 .

TraeoreM 3.3. If r = 2 and all the sets do not contain the same number of means,
say n; < max;(n;), then lim inf, . 457" = O for all t, and the minimaz procedure
s asymplotically inadmissible.

Proor. Suppose

(358) lim sup ['\/—(01—1 nji-1 ¢f.l)] > 0’
n->00 T(t?,.)

then since (pj1 — @j-1,_,) > v, by Lemmas 3.1 and 3.3 we get that
lim inf, . 53 = 0, and by Lemmas 3.3 and 3.5 we get that lim inf, .., §57 =

for all ¢.
If 7 = 1, or if the upper limit in (3.58) is zero, then

: [\/ﬁ(ﬂoq 11— Cq 1))]
(3.59) lmnl»swup el — o) = <1,

for any ¢ such that n, = max;(n;). Since ¢, — @41 = ¢;2 — @j1 = v, with
the use of Lemmas 3.4 and 3.7, we get

G[\/—(qu — @q, 2)]
(3.60) hx:l*;nf VT o 2 > 1.
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Then since

(3.61) () = GlVn(ER — )] + CVnlpon — &3]
= GVn(ET — ein)] + GlVnleia — &),
it follows that

. Glvnlees — &3]
(3.62) lim su 2 e -
et GV/nlpia — 65)]

In the case when j < r, by continuing in this manner we finally reach

: G[ﬁ({ﬁ nj — é(’:'))]
(3.63) lim sup LR AL <.
n>o G[\/ﬁ(%‘m,' - Cg‘.n),')]

But by Lemma 3.6

A
Jim ing SV@an; = &)1 o -
n->00 r(sﬂ)

(3.64)

Hence

. — .(jx)
(3.65) lim sup G[‘\/ﬁ(‘olt(”j) cl.ﬂj)] > 0.
n->w r 6»

Then as in the earlier part of this proof, we get that lim inf, .. ﬁﬁ;’:) = 0 for

all ¢.
If j = r, then when we reach

lim inf G['\/;L(é;,r;;)l—l - ¢q,n,~)] ; 1

(3.66) (n )
n-»>w G['\/;L(C;‘,n)i—l - ¢j,n,-)]

it follows that

. GlV1pgm; — &)
(3.67) lim g =0,
n->0 G[W(cﬂ(b”)i_l - ¢q.n,~)]

contrary to Lemma 3.6. Hence when j = r, we must have the previous case
with (3.58) being satisfied.

To prove that the minimax procedure is asymptotically inadmissible, first
consider the problems P;, P;, -+, P,, where Q; for P; consists only of the
distribution functions corresponding to the means ¢;,; of the ¢th set. Now de-
fine the decision procedure §, for the original problem by taking for
&% (1 £ j <'ny), the right end point of the minimax decision interval for select-
ing ¢;,; for P; and taking éﬁ,’i.)'. = LYpin; + @ir11) fori =12 ., r — 1. When
some of the means of Q are deleted, the minimax risk for such a sub-problem is
clearly smaller than the minimax risk for the original problem. Therefore

ri i(8,) < r(8,) foralland 1 < j < m; . But for all 4,

oy — B
lim G[\/ﬁ(ﬁos,z; Cing ] =0
B> r(an)

)
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and
tim SVAER = o] _
n-+0 r(aﬂ)
Hence
. r:‘,j(sn)
limsup—— =1
idad P 7(5,.)
for all <, 7.

Now since n; < ng, the minimax risk for P; is less than the minimax risk
for P, , and we have

L= g
.69 im sup SV 262 = 81
n>o G[\/;l(ﬁoq.l — Cg1 )]
If this upper limit is 1, then there exists an infinite subsequence of these ratios

which converges to this limit. Let the sequence of values of n corresponding to
this subsequence be denoted by {¢}. Then by Lemmas 3.4 and 3.7, we have

. GVIED — ¢ _
(3.69) bim CViGER = oo -

Then since’

. G[\/t_ (pj1 — ('?;tl) )] . G[\/f(ﬁﬁ',? - ¢i.2)] + G[\/t_ (pj.s — égtz))]
3.70 ll = h )
B Vit — 2]~ R GV = ped] + Gl lens = 2D)]

by use of Lemma 3.6, we have

- GVi (s — E3)]
37 lim o) e
( 1) t->c0 G['\/t—(ﬂaq.z - éé.t‘z))]

Continuing in this manner we finally reach

1.

o
(372) im G[\/t_(‘p]:ﬂj ?z.;)t,)] =1.
to G[w‘(¢q-ni - cq,nj ]
But since (pgn; — Con;) — — v and for all ¢,

~(¢)
(‘pj.ﬂj - c;’.tnj) = %(ﬁol‘m; — ¢ip1) < -3

(3.72) contradicts Lemma 3.1. In the case when j = r, the contradiction is ob-
tained by replacing ‘), by «. Thus we have shown that

: Glvnlejn — &y ]
(3.73) lim su L s < 1.
meo” G[v/n(per — D))

But since the minimax risk for P, is the maximum of the minimax risks for the
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sub-problems, we have

(3.74) lim FV/nlear = &2)] _
e 7(5n)

Now, in view of

(3.75) lim G[\/ﬁ(égii'ni—l - %’.l)] =0

nosoo r(5.)
we get
(3.76) lim sup 222 75.130n) 1(8")
e 1 (3)

The existence of this a~vmptotically subminimax decision procedure proves
that the minimax procedure is asymptotically inadmissible.

It will be seen in the proof of Theorem 3.7 that {3,} is also asymptotically
admissible.

TaEOREM 3.4. If there are only two sets of means with the same number of means
in each set, then all the components of the least favorable a priori distribution have
positive lower limits, and the minimax procedure s asymplotically admissible.

Proor. Let n; = n, = 7. Since the minimax risks are equal, we have for all n,

3.77) o1, — éi’:') = cg';)_, — @oq-itl, 1A —1,
and finally

(3.78) e — 85 = &2 — e

Hence

(3.79) 8% = 3eus + 1),

and from (3.7) we get that §i% = G55 . It then follows from Lemmas 3.3 and
3.5 that all the components of §‘ have lower limits greater than zero. Then
by Theorem 2.2 the minimax procedure is asymptotically admissible.

TaeoreM 3.5. If all the sets have the same number of means but the means are
not symmetrical with respect to the point, 3(e1,1 + @.s,), then all the §i7 of ai least
one set have zero as their lower limits.

Proor. Let the number of means in each set be 7 and let vi = @iy1,1 — @i, -
Let j be the smallest integer for which v; # v,_; . The hypothesis assures the
existence of such a j. Since all the minimax risks are equal, we have

A(n) A(n)
Y11 — 613 = cr?&-—l - ©Yra

a(n) aln)
f12 — C12 = Cr’y‘»—z Pr,i—1

(3.80)

a(n)
@is — Cii = Cr—ji — @r—jt+1.1 -
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a(n) aA(n)

Now in order for §%7% , 4511, ¢"2., and §{"),1.1 to have lower limits greater
than zero, Lemmas 3.1 and 3.3 require that

(3.81) lim (p;,5 — &%) = —%v;
and
(3.82) lim (625 — @rojprn) = —3vry.

n->0

In view of the last line of (3.80), and since v; > ~v,_;, (8.81) and (3.82) can not
both hold. Finally, since at least one component of §‘™, say §¢% has zero for its
lower limit, all the components of §' corresponding to means of the ath set
also have zero for their lower limits.

Although under the conditions of Theorem 3.5 the lower limits of some of
the components of §'™ are zero, nevertheless the following theorem shows that
the minimax procedure is asymptotically admissible. -

TuroreM 3.6. If all the sets contain the same number of means, 71, then the min-
imax procedure 1s asymptotically admissible.

Proor. Consider the sequence of decision procedures, {5,}, defined as in the
proof of Theorem 3.3. Since all the sets contain the same number of means, the
7:,i(8a), (1 £ 7 £ r,1 < j < @) are equal for all n. Denote its value by r(3,).
We have

n)
(3.83) lim GlVnlpis — &% )] 0,
n>e 7‘(5,,)
and
(G .
(3.84) lim G[\/n(c,,n_ ei11)] _ 0.
ne 7(3a)
Hence
. 6n)
3.85 lim Tm( w1
( ) n->0 7'(5.,,)
for all 7, j, and consequently
r(én)
3.86 =1.
( ) n->00 7‘(6 )
Now suppose {5,} is an asymptotically subminimax procedure with
(3.87) lim sup ag(a;) <1,

where 7,,4(3,) is the risk associated with the gth mean of the ath set. Consider
the sub-problem, P, , with @, = {N(¢.,;, 1)}, (j = 1, 2, --- , 7). The min-
imax risk for P, is r(3,). In view of (3.86), the procedure derived from &, by
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using only the end points ¢4 (j = 1,2, --- , 7 — 1) would be an asymptotically
subminimax procedure for P, . This is in contradiction to Theorem 3.1 which
completes the proof.

By Theorems 3.2 and 3.3 we see that the minimax procedure is undesirable
for large values of » when Q consists of ¥ normal distributions with a known
common variance and different means, except for the special cases covered by
Theorems 3.1 and 3.6.

In order to compare the minimax procedure with an asymptotically submin-
imax procedure for some specific values of n, consider the decision problem where
&= {N@©, 1), N(.2, 1), N(1, 1)}. It is easily seen that for n = 100, the min-
imax risk satisfies the inequality

(3.88) G(—1) < r(w) < G(—1) + G(="T).
(n)

Now consider the asymptotically subminimax procedure, {8,}, given by ¢, =

&™) o™ = L(ps + ¢3) = .6. For n = 100, we get

r1(100) = 7(5100)
(3.89) ra(Bu0) < r(S10) + G(—4)
73(8100) = G(—4).
Hence
71(8100)/7(B100) = 1
(3.90) r2(8100)/7Gr0) < 1 + G(—4)/G(—1) < 1.0002
73(8100)/r(B100) < G(—4)/G(—1) < .0002.

Clearly 8100 is a more desirable decision procedure than the minimax procedure.
Even for n as small as 25 it is similarly found that

71(825)/7(325) =1
(3.91) ra(825)/r(8s) < 1.08
rs(325)/r(35) < .08,

which shows that the minimax procedure might be undesirable even for mod-
erately small values of n.

Now that we have determined the asymptotic behavior of the minimax pro-
cedure for the class of problems for which @ = {N(g;, 1)}, and since we have
seen that the minimax procedure is most frequently asymptotically inadmis-
sible, the question naturally arises whether asymptotically admissible asymp-
totically subminimax procedures exist in those cases. It will be seen that such
procedures do exist for some problems but not for others. For example, con-
sider the problem where @ = {N(¢1, 1), N(e1 + v, 1), N(es + v + 71, 1)} with
41 > v > 0. For this problem we know from Theorem 3.2 that the minimax
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procedure is asymptotically inadmissible, and if {6,} given by {ci™, ¢i™} is an

asymptotically subminimax procedure, then

r1(0s) 79(85)
(3.92) lim gy =lm Gy =1
and
(3.93) lim sup r3(§") < 1.

n->00 r 6”)

It will now be shown that it is always possible to find another asymptotically

subminimax procedure, {5,}, given by {&™, ¢i™} with

. bn)
3.94) lim 728 _
( n->o 7'3(6,.)
Hence no asymptotically admissible asymptotically subminimax procedure
exists for this problem.
For the procedure, 8, , we have

3.95 Jim 71G) _ iy GVl — ""] -1
(3.95) mon 7(8) | nw G /mlor — &)

Consequently, by Lemma 3.7, we have

Gvn(d” — o)) _
0 e

Also

97 li 7‘2(5n) li [\/n(c - 902)] + G[\/ﬁ(?’z - C2n))] 1’
B ) = I V™ = ] + G/l — 6]

and since & — ¢, —> —iyand @ — & — —y1 + Iy < —1v, we have

G[\/_(¢2 - Czn))]
A lim .
(3.8) now GA/n (&P — @) =0

By use of (3.96), (3.97), and (3.98), we get

GlVnle, — &™)
3.99 li = 0.
(8.99) o GlVn(E” — @]

Denoting (&{” — ¢2) — (g2 — cs™) by d. , (3.99) becomes

GV — ¢y — dy)]
. 1 -
(3.100) e G/ — o] ’

Now by use of (3.9) we have

CONE
(3.101) lim exp {— 3n[(&"” — g2 — dn)® — (6" — @)} 21— P2 _ .

nevco &Y — o — da
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Since
(n) -
(3.102) lim inf —2—— %2 _ >0,

now Y — 0y — dy

we get finally

(3.103) lim exp {— 3n(—=d,)2(™ — @) — dJ]} = 0.
But

(3.104) lim (6™ — @) = —3y

and

(3.105) : lim inf d, = 0.

n->00

From (3.103) we then get
(3.106) lim nd, = o

Now consider the sequence of procedures, {3, } defined by
(3.107) g =cl”, #”=c" —ida.
Clearly r:(8,) = r1(3,). Also

llm 72(8n) — l G[‘\/_(C(”) - 902)] + G['\/—(¢2 - c%n) + ’idn)]
ns 79(8,) n->w ['\/_ " — 902)] + G[\/‘(% - Czn))]

14 lim GlvVnle, — ¢t + 3d.)] GVn@E” — ¢, — 3d,)]

= 1+ lim Y
n>w G[\/_ (01 - 902)] B> G[\/ n(C{ - ‘Pz)]
NON
=1+ limexp {— 3nl(6{” — ¢, — 3d.)* — (6™ — 02)]} - L———(u)cl LE
n->0 Y2 — 20y
A(n)
— 1+ limexp {— dnl— 34267 — @) — )} - 2 — 2 = 1,
n->00 C1 — @ — 'Z_dn
and
lim T3(6n) = lim ['\/—-(62 - §03)] = lim [‘\/;L(Cén) — $3 — %dn)]

wori(®) e GV — @] e GVl — )]

(n)
. ¢ —
— lim exp {— 3al(ef” — 3 — 3d.)" — (6§ — 0]} - B
n->0 Co " — @3 — 2Gn
(n) cé") — ¢3
. n
~ limexp {— n[—3dJI2(cS” — go) — Hal} - B =0,
n->00 C: — @3 — Edn

The existence of such a {5,} shows that every asymptotically subminimax pro-
cedure for this problem is asymptotically inadmissible.
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However, asymptotically admissible asymptotically subminimax procedures
do exist for some problems. This will be brought out by the following theorem:

TureorEM 3.7. If the means can be separated into two or more sets, each con-
tatning two or more consecutive means, with a common difference, v; , between the
consecutive means of the ith set witheiy11 — @in; > 3(vi + viy1) for all 4, and

(a) the v are not all equal;
or

(b) all the v; are equal but all the sets do not contain the same number of means;
then there exists an asymptotically subminimazx procedure which is asymptotically
admissible.

Proor. Consider the problems, P, Py, --- , P, defined as in the proof of
Theorem 3.3, and the decision procedure §, defined there, except we shall now
take

(3.108) e = YHoim, + ois1n) + 2vi — vig),

fort: =1,2,---,r— 1.
Suppose (a) is satisfied, then since

~(n)
Gimg — Cimy < — 37i

-(n) 1
Cing — @ir11 < — 3Vis1,

(3.109)

we have for all ¢,

i G[\/ﬁ(m ng = éf":.)-)]
3.110 1 i midl
( ) nl_l;r:o G['\/-;L(ég,':z)g—l - (oi.ﬂ;)]
and
(3.111) i SVRER: — o] _ o

n>o G['\/;'f(ﬁoi+l.l - ('75531)]

Hence if we denote the maximum of the minimax risks for the r sub-problems
by r(5,), we have

. +,3(85)
3.112 lim sup 22 < 1.
(3.112) a3,
But since r(5,) < r(5,), we have

. Ti,j(gn)
3.113 lim su <1
(3.113) nent 18,

for all <, j.
Now denote min;(y;) by v» . In case (a) there must exist a ys > s , and by
(3:111) we have

H _ aln)
lim ru,l(an) — lim G[‘\/"_l(faa,l Ca,1 )]

3.114) — o
( naw 7p.1(8,) n->o G[\/ﬁ(gob,l — 515,1))]
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But by Lemmas 3.1 and 3.4 it follows that the right member of (3.114) is zero
which proves that {§,} is asymptotically subminimax.

In the case when (b) is satisfied, {3,} was shown to be asymptotically sub-
minimax in the proof of Theorem 3.3.

In either case, suppose there exists another sequence of decision procedures,
{8,}, given by {&{%’} such that

(3.115) lim sup ri'j(§") <1
n—>00 Ti,j(an)

for all 7, j, and the strict inequality holds for at least one set of values of %, 7,

say «, 8. Then the procedure derived from &, by using only the end points ") s
(G=1,2 -+, n, — 1), would be an asymptotically subminimax procedure

for P, , contrary to Theorem 3.1.
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