CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS—
THE TWO-SAMPLE CASE

By I. RICHARD SAVAGE

National Bureau of Standm%ls and Stanford University

1, Introduction. The idea of a statistical test of a hypothesis and the related
concepts introduced by Neyman and Pearson have served as a model for much
of modern statistics. In nonparametric work it is seldom possible to apply all of
these concepts. This results from the fact that for most of the alternatives that
have been considered there do not exist optimum critical regions or analytic tools
for finding power functions. The sign test gives an illustration where it is possible
to find the exact power function; on the other hand, this procedure is seldom op-
timum. The ¢, test [11] has optimum limiting properties but little is known about
its power function for small samples. The Kolmogorov and Smirnov tests [6]
have a certain intuitive appeal but their only justification is consistency. The
Wilcoxon test [9] is justified on the basis that it is analogous to a good parametric
procedure but has little direct justification.

In the course of this paper we will consider several nonparametric hypotheses
that have been treated previously. In Section 5 it will be indicated that for the
two-sample problem with such alternatives as slippage, there do not exist op-
timum nonparametric tests. In particular, we show that the class of admissible
tests is too large to be of use. In Section 6 alternatives are considered involving
monotone likelihood ratios and a necessary criterion for admissibility is given.
In particular, two normal populations differing only in mean value are considered.
It is shown that several of the previously proposed tests of this hypothesis sat-
isfy this criterion. Section 7 deals with a special subclass of the alternatives used
in Section 6. Members of this subclass are the extreme-value distribution and the
exponential distribution. For these alternatives we not only have the results of
the previous section on the construction of admissible tests, but also are able to
carry out the construction of optimum nonparametric tests for small samples and
to evaluate the operating characteristics of these tests. These small-sample tests
are uniformly most powerful rank order tests and most stringent rank order
tests. Also the limiting optimum test is given.

2. Notation. The main concern in the following will be the situation where
there are random variables X, , -- -, X,, independently distributed, each with
continuous distribution function F(z), and random variables Yi,---, Y,
which are independent of the X’s and are independently distributed, each with
continuous distribution G(z), i.e., two independent samples.

The observed values 21, -+, @n of the random variables X;, --- , X,, will
be called the first sample and the observed values y;, - -+, ¥ of the random
variables Y, .-+, ¥, will be called the second sample. When all of the ob-
served values are ordered from smallest to largest, they form a sequence which
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will be denoted by w;, « -« , Wmyn . A new sequence z; , * - - , Zmin can be formed
from the w sequence by letting z; = 0 if w; comes from the first sample and by
letting 2; = 1 if w; comes from the second sample (z = 1, --- , m + n). From

the z sequence two other sequences are defined by the following formulas:

v
v = sz

(2.1) =1 (i = 1, e ,m _l_ n).
U; = 7 — Vs

The ranks of the observations from the first (second) sample, denoted by ry, - - -,
Tm (81, ** + , 8s), are the subscripts of those z; = 0(1) arranged in increasing order.
Corresponding to the observed values w;, 2;, u;, vi, r;, and s; are the random
variables W, Z;, Uy, V;, R;, and S;. An entire sequence such as u;, -+,
Umsn Will be denoted by the corresponding letter w without a subscript. It
should be noted that any one of z, u, v, r, or s determines the others, and, in
general, these sequences will be referred to as rank orders. All of the above
quantities are uniquely defined with probability one as a result of the assump-
tion of continuity of the original distribution functions.
The following symbols will be used to denote special rank orders:

I < II: To be read as “Sample I is less than Sample I1,” ie., all of the
2’s are less than all of the y’s.
T a< II: To be read as “Sample I is almost less than Sample I1,” i.e., all
of the x’s are less than all of the y’s, except that there is one z
larger than one y.

The symbols IT < I and IT a< I are defined analogously. Thus, when m = n =
3, there are among others the following representations for some of the rank
orders:

2 v
I <1II 000111 000123
ITa< II 001011 001123
ITe<1I 110100 122333

11 <1 111000 123333

When a distribution function F(z) has a density function, it will be denoted
by the corresponding lower case letter f(x).

3. Hypotheses. For all testing situations considered, the following basic as-
sumption will be made.

Basic AssumprioN. The random variables Xy, -+, X, Yy, -+, ¥,
are mutually independent. The X’s have a common continuous cumulative dis-
tribution function F(z) and the Y’s have a common continuous cumulative dis-
tribution function G(x).

The null hypothesis will be

H,: F(2) = G(z).
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The following alternatives will be treated:

Hy (Slippage): F(z) = G(z), where the inequality holds for some z.

H; (Translation): G(z) = F(x — 6), where 6 > 0.

Hzs (Translation and Symmetry)': G(z) = F(z — 6), where § > 0 and
F(x) + F(—z) = 1.

H rgy (Translation, Symmetry, and Unimodal): G(z) = F(x — 6), where
6 >0,F(x) + F(—z) = 1 and where b > a > 0 and ¢ > 0 implies
Fla+c) — F(a) = F(b+¢) — F@®).

H, (Monotone likelihood ratio): F(z) and G(z) have density functions
f(x) = h(z, 6,) and g(x) = h(x, 6), where if z; < 2, and 6; < 6, , then

h(x1 , Bl)h(xz y 0?) d h(xl ) oz)h(xz y 01) g 0.
H, (Lehmann): F(z) = [H(x)]** and G(z) = [H(x)]*?, where Ay > A; > 0

and H(z) is a continuous cumulative distribution function.
H; (Exponential): F(z) = 6(z, A1) and G(z) = O(z, A:), where A, >

Al >0 and
e® <0
O(z, A) = if

1 z = 0.

Hyy (Extreme Value): F(z) = Q(z, A;) and G(z) = Q(z, As), where Ay, >
Al and

Qz, A) = exp [—e V).

Hy (Normal): F(z) and G(x) have the density functions f(z) = N(z, 6;)
and g(z) = N(z, 6;), where 6, > 6, and

N(z,6) = '\'-/l—é—;rexp [—(x — 6)%/2].

The basic assumption of continuity of the distribution functions implies that
the occurrence of equal observations is an event with zero probability. In prac-

tice,

ties will occur and the methods of this paper will need to be modified to

accommodate this situation. The choice of the constants in the alternative hy-
potheses is made so that we need only consider one-sided tests. However, the
methods of this paper can be adapted to consider the two-sided cases.

The distribution of rank orders under H, is not affected by the underlying dis-
tribution function. Therefore, from the distribution theory standpoint, as far
as rank order tests are concerned H, may be considered a simple hypothesis.
The alternative hypotheses can be thought of as either simple or composite.

The interpretation used will be clear from the text. Thus, in the alternative Hr

1 The point of symmetry has been picked as the origin simply as a matter of convenience.
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we have a simple hypothesis if F(z) and 6 are held fixed; a composite hypothesis
if F(x) is held fixed and all § > 0 are considered; a composite hypothesis if we
consider arbitrary F(z) and all § > 0. '

The alternative hypotheses are related in the following ways:

1. All of the alternatives are special cases of Hg .

2. Hrgy is a special case of Hrs which is a special case of Hr.

3. When H(z) in H; has a density function, H, is a special case of H, .

4. Hy and Hyy are special cases of Hy, and of H,, .

5. Hy is a special case of Hy .

Nonparametric tests of H against Ho will be introduced in Section 7. As a
basis for determining the effectiveness of these procedures, their operating
characteristics will be compared with those of the best parametric test of Hy
against H, . Since H, is a nonparametric alternative, there is no best parametric
procedure. However, if H(z) is known and an observation z is replaced by
In H(z), the testing situation becomes the parametric one just described. Thus
the parametric situation serves as a basis of comparison.

4. Construction of rank order tests for small samples. In the two-sample rank
order case the sample space consists of the J = (m : n) points or rank orders

2'. A test consists of a sequence of numbers a; , - - - , @, and the rule that if the
rank order z° occurs the null hypothesis should be rejected with probability
a; . Since the rank orders are equally likely under the null hypothesis, the size
of the critical region will be D a;/J. If for each alternative hypothesis under
consideration the rank order z* is at least as probable as the rank order 2°, then
a necessary condition for a test to be admissible is that a; = a; . Using this as a
criterion, it is often possible to ascertain the values of at least some of the a.’s
in a specific problem. Unfortunately, the probabilities of the rank orders are
seldom uniformly ordered and hence uniformly most powerful rank order tests
seldom occur. However, the following situation does occur in practice, and we
shall see examples of it in Sections 6 and 7.

Let us assume that a test with level of significance K/J (where for the sake
of simplicity we shall assume that K is an integer) is desired. Then, it is clear
that the following rules must be followed in constructing admissible tests: If
there are K or more rank orders always more probable than 2, then a; = 0.
If there are J — K or more rank orders always less probable than z°, then a; = 1.
In general, it is not possible to determine from the criterion of admissibility
alone the values of the remaining a’s.

5. Slippage alternatives. In this section we consider the alternatives Hg, Hr,
Hys, and Hrgy introduced in Section 3. Admissible and other optimum tests
will not be constructed. Instead, several examples will be given indicating that
the class of admissible tests is so large it is unlikely that uniformly most powerful
or related optimum tests exist. This does not mean that there do not exist tests
of these hypotheses with some optimum properties. For instance, there exist
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unbiased tests of these hypotheses (L.ehmann [7]). However, there is no evi-
dence that Lehmann’s procedure is the best unbiased test.

A reasonable conjecture appears to be that I < II (the first sample is less
than the second) is the most probable rank order under Hy : F(z) = G(zx). In
Section 6 it will be shown that I < IT is the most probable rank order when two
samples are taken from normal populations which are the same except that the
mean of the second is larger than that of the first. Other statistically important
examples will be given showing that Hg is compatible with I < I being the
most probable rank order.

However, Hg is not sufficient to insure that I < II is the most probable rank
order. In fact, it will be shown by Example 1 that even under Hrspy , I < I1
need not be the most probable rank order. Here it should be recalled that H rsy
is G(z) = F(x — 0), where 8 > 0, F(z) + F(—z) = 1,and F(a + ¢) — F(a) =
Fb + ¢) — F(b), where b > a > 0 and ¢ > 0.

ExampLE 1. Let

0, x < —3,
7/2) —% é r < _%,
(6.1) f@)=41—-2y, —-3=s2<3 (ry <%,
v/2, isa2<i,
0, $=a

and g(x) = f(z — 1).

Let A be the rank order in which all of the observations from the first sample
are less than all of the observations from the second sample, except that there
is one observation from the first sample larger than all of the other observations.
Thus, in the case that m = 4, n = 2, A is the rank order 000110. The result will
be proved by showing that for some v, m, and n,

(5.2) . P(4) > P(I < II).

Let B be the event that all of the observations from the second sample are
in the interval (3, 2), and let B be the complement of this event. Let C; be the
event that m — 7 observations from the first sample are less than 3 and the re-
maining ¢ observations from the first sample are in the interval (3, 3). Let D, be
the event that m — 7 observations from. the first sample are less than %, that 7 — 1
observations from the first sample are in the interval (3, 2), and that one ob-

servation from the first sample is in the interval (3, ). Then,
PA) — PU < II)
P(B)[P(A | B) — P(I < II | B)] + P(B)[P(A | B) — P(I <II|B)]

It

(53)  _ P(B) {2 [P(AC; | B) + P(AD; | B)] — io P(I < II-C;| B)}

+ P(B)[P(A | B) — P(I < II | B)].
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It is clear that
(a) P(B) = (1 — 27)",
(b) P(B) =1— (1 — 2v)",
(¢) P(AC:|B) = PI < II-C;|B),i =1, ,m,
(d) P(I < II-Coy|B) = (1 — )",
(e) P(ADy|B) = my(1 — »)™/2,
() P(AD;|B) > 0,i=2,--,m.

Hence,

PA) = PU <D > (1 = 2" W1 = )" = (1 = "]

(5.4)

+[1— @@ —=2PA|B) — P < II| B).
Let v = k/m, hold n and k fixed, and let m — o, then for sufficiently large m
and &k > 2,
(5.5) PM)—PU<Hnn*@—1)

Hence the desired result is obtained.

‘While the above example is for the most restricted of the slippage alternatives
it is only for large m. A counter example against Hg which holds for small m
and n is

ExampLE 2. Let

0, z <0,
1, 0=z <e

(5.6) flx) = <0, eSr<20<e<l),
1, 2e< 2 <1+ ¢
0) 1 + € é X,

and
0, T < e

(5.7) glz) = 41, esav <1+ g
0, 1+ ¢<a

Then, so long as e < 1 — m ™",

(5.8) P a< II) — P < II) = "(m[l — ¢" — 1) > 0.

When n = 1, this difference is maximized if ¢ = (m — 1)/(m + 1), in which case

m+1
(5.9) Paa<1D-Pa<:U)=<ﬁ:J> )
m +
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(Note: Theorem 5.1.A; states that this last result is actually the best possible.)
Using the same distributions and letting m = n = 2, the following complete
set of probabilities of rank orders is obtained:

P(I <II) =P001l) = € 4+ 21 — ¢ + €(1 — ¢° + R.,
P(I a< II) = P(0101) = 2 (1 — ¢)* + R.,

P(0110) 2601 — e + 2601 — o + R,

P(1001) = R.,

P(IT a< I) = P(1010) = R.,

P(II <I) = P(1100) = €(1 — ¢® + R.,

where R, = 2¢(1 — ¢)°/3 + (1 — €)*/6.

Now then, for all ¢, the intuitively least probable rank order II < I has a
greater probability than the rank orders 1001 and 1010. However, each rank
order beginning with 1 is less probable than any rank order beginning with 0.
Also P(0110) > P(0101) for all e. Finally,

P(0110) — P(0011) = (1 — 2e¢),

I

(5.10)

(5.11)
P(0101) — P(0011) = €(2€ — 4e + 1).

The first of these differences is greater than 0, provided ¢ < %, and the second
difference is greater than 0, provided ¢ < 1 — 1/4/2.

As a result of the preceding examples it is clear that under alternatives such
as slippage the probabilities of the rank orders will not be uniformly ordered.
The following theorem summarizes the information regarding uniform ordering
for these alternatives. The results are meager since they are mostly for sample
sizes that do not occur in practice.

THEOREM 5.1.

Ay: If n = 1and Hs , then P(Ia < II) — P(I <II) £ [(m — 1)/ (m + 1)]"*.
-1
As: If Hs , then P( < IT) > (m : ") .

B:Ifm=2,n=1,and Hys, then P < II) > P(Ia < II) > P(II < I).
C:Ifm =3,n=1,and Hrsy , then PI < II) > P(Ia < II) > P(IIa < I)
> P(I < I).

Proor. These results are obtained by elementary manipulation from the
definitions of the probabilities involved. The fact that all of the probabilities
can be expressed as single integrals involving the c.d.f.’s is the unifying and
simplifying feature of the statement and proof of the theorem.

Example 3 below illustrates a situation under Hy allowing a uniform ordering
of the probabilities of the rank orders and thus the construction of uniformly
most powerful rank order tests is possible for all combinations of sample sizes.

Exampie 3. Let X;, .-+, X, be a sample from the rectangular distribution
with range from 0 to 1, and let Y5, --- , ¥, be an independent sample from a
rectangular distribution with range from 0 to L (where L > 1). Then,
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1. The probability of a rank order depends on the length of the last run of
1’s only.

2. The longer the last run of 1’s the more probable is the rank order.

Let A stand for a specific rank order. Then,

P(A) = D P(A | i of the Y’s > 1) P(i of the ¥’s > 1)
=0

- z:()] (f) L — 1)f (m - Z'>—l G:(4),

where G;(4) = 1if A can occur when there are as many as 7 of the Y’s > than
all of the X’s, and otherwise G;(4) = 0. From this the results are immediate.

Example 2, with Theorem 5.1.4,, shows that Hj is sufficient for I < IT to
be the most probable rank order only when m = n = 1. Also, in this example,
when m = n = 2, we have further evidence that for these alternatives the
criterion of Section 4 for constructing optimum tests is inadequate.

Example 1, with Theorem 5.1.C, shows that H sy implies that I < I is the
most probable rank order only for certain m and n. The example could also be
used for showing that there are rank orders, other than the one treated, that are
sometimes more probable than I < II. Thus, even for this more restrictive
alternative, it does not appear possible to apply the methods of Section 4.

Example 3 is a situation under slippage where it is actually possible to con-
struct the best test. The more common statistical situations will be discussed
in the next two sections. For these cases, it will turn out that the hypotheses in-
duce a partial ordering of the probabilities of rank orders which are intermediate
between the orderings given by the examples of this section. For the alternatives
discussed in these latter sections, the partial ordering will be adequate to give a
useful criterion for the construction of admissible tests. Finally, in Section 7 a
case is treated where it is possible to construct various types of best tests and
their operating characteristics are given.

(5.12)

6. Monotone likelihood ratio alternatives. In the following theorem it is shown
that for alternatives of the monotone likelihood ratio type it is possible to give an
easily applied necessary criterion for the admissibility of rank order tests.

TraEOREM 6.1. If the random variables Xy, -+ , Xm, Y1, -+ , Y. are mu-
tually independent and the X’s have the density function h(x, 61) and the Y’s have
the density function h(z, 62), where h(x; , 61)h(x2, 62) — h(x1, O2)h(x2, 61) = O of
X2 > X1, then the rank order z is more probable than 2’ when the two rank orders are
identical except for their ith and jih elemenis (¢ < j), which are (0, 1) for z and
1, 0) for 2.

Proor. We have

m4n
P(Z =2) — P(Z =2) =mn! f f H h(zk Bipey)
o< gm0 iR

(6.1)

m+n

X [h(zs , 0)h(z; , 8;) — h(z:, 0)h(z; , 01)] H dzxy, .
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By assumption (remember, z; < ;) the integrand is nonnegative and actually
positive on a set of positive measure (except for the case h(z, ;) = h(z, 6s)
almost everywhere). Hence, the desired result is obtained.

Thus, when m = n = 2, the rank order z = (0101) must be put into the
critical region with probability one before the rank order 2z’ = (1001) is put into
the critical region with nonzero probability. In the equal sample case, the one-
sided Smirnov test [6] is based on large values of the statistic
(6.2) max (7 — 2v;),

1gigsm4-n
where it should be recalled that v; = D i 2, . However, for the two rank orders
just mentioned the Smirnov statistic has the same value, i.e., 1. Thus, the Smir-
nov procedure could lead to the use of inadmissible tests of Hy against Hy .

Many procedures proposed for testing H, against H, are based on statistics

of the form
m4-n
(6.3) z; CiZi,
where the c¢;’s are an increasing (decreasing) sequence and large (small) values
of (6.3) are critical. Some typical examples of this are

1. The Wilcoxon statistic [9], where ¢; = 7 is an increasing sequence.

2. The ¢, statistic [11], where the coefficients ¢; = the expected value of the 7th
order statistic in a sample of m + n observations from the standardized normal
distribution form an increasing sequence.

3. The T statistic (introduced in Section 7), where ¢; = D o3 1/7 is a de-

creasing sequence.
Statistics of the form (6.3) satisfy the admissibility criterion of Theorem 6.1, for
if rank orders z and 2’ are in the desired relationship, the difference in the cor-
responding values of the statistic will be ¢; — ¢; which is positive (negative)
when large (small) values are critical. It should be noted that (6.3) is not a suf-
ficient condition for admissibility.

7. Lehmann alternatives. Alternatives of the form H, were introduced by
Lehmann [8] in order to study nonparametric procedures when the alternatives
themselves are given in a nonparametric form. In this section we continue the
study of these alternatives and show that for them it is possible to construct
optimum critical regions of various types. The H, alternatives are of statistical
interest since they include the extreme-value and exponential distributions as
was pointed out in Section 3. ‘

7. a. General formulas. One of the reasons why the nonparametric treatment of
the H;, alternatives can be so complete from the Neyman-Pearson point of view
is that it is possible to give in explicit form the probabilities of the rank orders.
This will be done in Corollary 7.a.1.

TrEOREM 7.a.1. If the random variables X1, - - - , Xy are mutually independent
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and X; has the cumulative distribution function [H(x)]*t, where A; > 0 and H(z)
28 a continuous distribution function, then

N N 7
P(X1§X2§---éXN_1§XN)=<HIAi> H(ZA,).
i= =1 \j=1

By a proper numbering of the X’s the probability of any ordering can be found.
Proor. Let

(7al) P=PXi£Xe <+ £ Xya < Xu).
Then,
(7.8.2) P = f f 1L airr @))°

—0Z 1S Say<o
Making the change of variables
(7.2.3) yi = H(zy) (¢=1,--+,N),

we have

INI dly:)™

=1

P

I

ns--

(7.2.4) (IZI j ~ H (yi*™" dys)

1=1
05y1< SyN<l

N N 7

([)/B(E)
7=1 i=1 \j=1

The following corollary is equivalent to Equation (4.5) of Lehmann [8].

COROLLARY 7.a.1. Under Hj, the probability of a rank order z is

m+n 1
mwiatar / 11 (Z [(1 = 2)A + 2 A2]>

i=1 i=1

or

m+n
mms" / TI (i + v:96),

=1
where 8 = Ay [ Ay.

The quantity [17" (u: + 6v:) occurring in Corollary 7.a.1 is a polynomial
in 8, whose coefficients depend on the rank order z. For convenience, denote this
polynomial by £.(5). The nonzero coefficients of f,(8) are positive integers. Using
_u; 4+ v; = 7 and setting § = 1, the sum of the coefficients is found to be (m -+ n)!.
If t = min(r, -+, 7m), 1.6, if © is the rank of the smallest observation from
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the first sample, then the smallest power of § with a nonzero coefficient is t — 1.
In particular, if z; = 0 the polynomial has a constant term. If

8 = min (s, - , Sn),

i.e., if 8 is the rank of the smallest observation from the second sample, then the
largest power of & with a nonzero coefficient is m + n — 8 + 1. In particular,
if 2, = 1, the polynomial is of degree m + n. If I = max (t, 8), the coefficient
of 6" is (I — 1)! ]I u. and the coefficient of 6™ ** is (I — 1)t [ v; .
All of the nonzero coefficients of f,(3) are = m!.

Let z be a rank order for sample sizes m and n, and let 2°(z") be a rank order
for sample sizes m + 1 and n(m and n + 1) such that the first m 4 n elements
of 2°(2") are the same as the elements of z and the (m + n + 1)-st element of
2'(2") is a 0(1). Then,

{fz“(a) = [(m + 1) + M]fz(5),
(7.a.5)
(le(a) = [m + (n + 1)6]&(6))

When two rank orders z and 2’ are identical except in their kth and k 4+ 1-st
elements, which are (0, 1) for z and (1, 0) for 2/, then we have the following rela-
tionship between their probabilities:

(i + vs + 6 — 1) o

(ui -+ ov:) P@ =z2),
where u; and v; are computed for z. The probability of I < II, all of the first
sample less than the second, is

(7.a.6) P(Z =2) =

(7.2.7) P(I < II) = nl" II1 (m + 48)
. and the probability of II < I, all of the second sample less than the first, is

(7.2.8) PUII <) = m! H1 (i + né).

7.b. Composite alternatives. In this section optimum tests of H, against H ,
where A; and A, are restricted only by 6 = A; / A; > 1, are considered. Theorem
6.1 gives an easily applied necessary criterion for admissibility. It will be possible
in this section to go farther and find more details about the structure of optimal
tests than was possible in Section 4.

The statistic T'(z), or simply T, defined as

m4n
(7.b.1) T(z) = Zl v/t
will be used in the next theorem. T'(z) will be the center of discussion of the re-

maining subsections.
TaEOREM 7.b.1. Under Hy, , if T'(2) < T'(2'), then there exists a 8, say 6%, such
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that 8* > 1 and for & in the interval (1, 6%) the probability of z is greater than the
probability of 2’. In fact, the §* may be chosen independently of z and 2.
Proor. From Corollary 7.a.1, we have

7h2) P(Z=2) = @%@W £ — (6 — DTE) + 06 — 1)7.
Hence,

P(Z =2 —PZ=2)
(7.b.3) min!

= m 5n(5 - 1)[T(2/) - T(z) + 0(5 - 1)]
Thus, for any z and 2’ such that T'(2) < T(2’), there exists a 6* > 1 such that
P(Z =2) > P(Z = 2) for1 < § < &*; and since the number of rank orders is
finite, 6* can be chosen independently of z and 2’. This implies the theorem.

TueoreM 7.b.2. Under Hy, , the rank order z will be more probable than the rank
order 2’ for sufficiently large 6 if 8 > 8 or if 8 = 8’ and

m+n m+-n
(=Dt T v < (@ = D1 I ok
= i=I'

Proor. The conclusion follows immediately from the discussion after Corollary
7.a.1, since the coefficient of the term of highest degree of a polynomial dominates
its behavior for large values of the argument.

Thus, in order for the rank order z to be always more probable than the rank
order 2’ under H, , it is necessary that 8 and 8’ satisfy the conditions of Theorem
7.b.2. When this is the case, the necessary and sufficient condition for z to be
more probable than 2’ is that the polynomial

(7.b.4) fz,z’(a) = fz’(a) - fz(a)

has no (real) roots larger than 1. This results from the fact that the condition on
(7.b.4) is equivalent to the denominator of the formula for the probability of z
being less than the denominator of the formula for the probability of 2/, where
these formulas are given in Corollary 7.a.1.

Figure 1 gives relationships between probabilities of rank orders. The numbers
in the figure are the numbers assigned to the rank orders in Table I, printed at
the end of the text. If for + < 7 it is possible to connect ¢ and j by a sequence
of ascending segments, i.e., segments connecting a smaller number to a larger,
then the rank order with number 7 is always (under H;) more probable than the
rank order with the number j. If this is not possible, rank order ¢ is more prob-
able than j for some &’s, and rank order 7 is less probable than j for other &’s.

The diagrams in the figure were drawn using the criteria given by Theorem 6.1
and (7.b.4).

When the diagram corresponding to a particular combination of sample sizes
is in the form of a simple chain, it is possible to construct a uniformly most
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m=3,n=3

10, 16
1---2---3---4.--5---6-.-7---8---9:. :12...13...14...15:' :13...19...20
1t Rt
m=3n=2=5
Beeeens 7
1...2...3...4: 9...10
. Geoveeen 8'.

Bevioann 7.8
1..2..-3 6 9
.
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1.-42---3 6 9---10
5 8
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1-4.2...3 Geverenn 9 12+.+.15---16
'5:...7...8' 117 ‘14" 18veeens
Fia. 1

powerful rank order test for every level of significance. Whenm = 1, or m = 2,
and n = 2, 3, 4, or 5, uniformly most powerful rank order tests of H, against
H_, can be formed for every level of significance. Not all cases with m = 2 give a
simple ordering, for instance, m = 2,n = 6.

The diagram for m = n = 3 is the least complicated one where there is not
a simple ordering. In this case it would not be possible to construct uniformly
most powerful rank order procedures for levels of significance in the intervals
(0.45, 0.55) and (0.75, 0.85). Since these are unusual levels, there would be no
practical difficulty. The diagram for m = 3 and n = 4 is like the above in that
there does not exist a simple ordering, and for all of the usual levels of significance
there are uniformly most powerful procedures.

The case of m = 3, n = 5 illustrates where the lack of simple ordering causes
difficulty in finding optimum procedures for a reasonable level of significance,
i.e., 0.10. Since there are 56 rank orders, a randomized test procedure at the 0.10
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level involves the choice of probabilities a; , - - , as such that their sum is 5.6.
Using the results of Section 4, we have g = - = =1, ;s =y = -+ =
a56—0a5+a6+a,3 160<a,51 Ifaa—-015a5—-1a3—-045the
most stringent rank order test is obtained. The maximum difference between the
envelope power function of all rank order tests and this test, which has been
minimized, is 0.0021. This maximum difference occurs when 6 = 2.2 or 16. The
numerical work to carry out such an analysis is so large as to make it prohibitive
except for very small samples.

When m = n = 4 it is possible to construct uniformly most powerful rank
order tests with levels of significance in the intervals (0, 0.043) and (0.086, 0.129).
To obtain a test at the exact 0.05 level, we use the criterion of Section 4. We have

then
a = a =qa =1, ag = -+ = ay = 0, as + as = 0.5, 0=a; =2 1.

The most stringent procedure is given by a; = 0.00156, and a; = 0.49844. The
maximum deviation from the envelope power function is 0.00005, which occurs
at 6 = 15.

When m = 4, n = 5, it is possible to construct uniformly most powerful rank
order tests for levels of significance in the intervals (0, 0.024) and (0.063, 0.079).
If a test at the exact 0.05 level is desired, we have, using the results of Section 4,
=G =G=006=0e6=1 6= - =as=0, as+a+a=13 0=
a; é 1.

When m = n = 5, there exist uniformly most powerful rank order tests with
levels of significance in the intervals (0, 0.012) and (0.032, 0.036). If a test at the
0.05 level is desired, we have from Section 4, a1 = -+ = @y = an = a2 = 1,
Qg =+ = Qe = 0, 010+ s + o + a5 = 1.6,0 = a; = 1.

It is interesting to note that we can obtain a test near the 0.05 level which
would have only half as many rank orders, whose a,’s are not determined by the
criterion of admissibility alone, as a test exactly at the 0.05 level. Thus, in order
to construct a test at the 11/252 = 0.044 level, wehavea; = -+ = @y = an =
lag= - =ae=0,a0+02=1,0=0a; = 1.

This, then, completes the discussion of the construction of exact optimum rank
order tests of Hy against H; . We have seen that for small sample sizes it is pos-
sible to construct the uniformly most powerful rank order tests or most stringent
rank order tests. However, the amount of computing becomes much larger as the
sample sizes increase, and these exact methods will not be applicable for most of
the situations arising in practice. The fact (see Table II) that most stringent
tests for the cases examined are never much more powerful than any admissible
test would lead to the conjecture that it is not necessary to find the best test but
some reasonable substitute. In the next subsections we develop the theory of
such a test.

7.c. Exact distribution of the limiting statistic. Using the notation

N
(7.0.1) D)vi = Zj—l

i=i
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we have the following methods for expressing the statistic introduced before
Theorem 7.b.1:

m+4n N n
(7..2) T() = 2 vi/i =2 2:Dyi = 2 Ds, .
7=1 =1 1=1

A reinterpretation of Theorem 7.b.1 shows that the locally most powerful rank
order test of Ho against H, is based on small values of T'(z). Using this as a moti-
vation, the exact distribution of 7'(z) under H, will be examined in this subsec-
tion. In the next subsection we shall examine its limiting distribution for large

samples.
LemMa 7.c.l. Let U = D72 a:Z; and V = D 13" biZ; . Then, under H,,
EU = n/NY_ ¥ ia; and

cov (U, V) = N2(N <E aib; — ; o 2 b’)

7=l N

Proor. The proof is routine, using the facts that

N

cov (U, V) = Z a;b; var (Zz) =+ Z Z aibj cov (Z. Zj)
=1 i%7
and that under H,,
c=E72 =0 = Ty = — T
EZ; = EZ; o ovar Z; o and cov Z;Z; NV =)
TrEOREM 7.c.1. Under Hy the mean and variance of T are ET = n,
o> =mn/N — 11 — Dy / N).

Proor. In Lemma 7.c.1, let a; = b; = Dy; and note that D 1wy Dy; = N
and D1y Dyi = 2N — Dy, .
The Wilcoxon statistic [9], which can be written as

N
(7.¢.3) W =2,
R i=1

is used as a test of the hypothesis that two samples come from populations dif-
fering only in location. Hgy , a special case of H, is a hypothesis of this type.
Thus T and W will sometimes be used for the same purpose. Therefore, it is
interesting to have some information about their joint distribution.

THEOREM 7.¢.2. Under Hy , the covariance of T and W is —mn / 4.

Proor. In Lemma 7.c.1, let a; = Dy; and b; = ¢ and note that le-v:l 1Dy; =
NN +3) /4.

COROLLARY 7.c.2. Under Hy , the correlation between T and W s

3V — 1)
(N+1)A —Dm/N)’

or approximately —~/3/2 = —0.8660 - - -

-1
2
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The above work is similar to the study made by Terry ([11], Section 9), where
he gives the correlation between W and ¢; . The limiting correlation in the case
considered by Terry is /3/x (=0.9772) which is somewhat larger (in absolute
value) than —+/3/2(= —0.8660) found in the above case.

For each rank order 2, we can form its complement rank order 2°, i.e., if an
element of 2 is 0(1), the corresponding element of z° is 1(0). Using Y, Dy; = N,
we obtain T'(z) + T(2°) = N. Also available are the recursion formulas

(7.c.4) T = T@) +n/@m+n+1)
and
(7.c.5) T@E) =TeE + 0+ 1)/ (m+n+ 1)

The rank orders z” and z' (used at the end of Section 7.a) are formed from z by
placing an additional element, 0 for 2 and 1 for 2', at the extreme right of 2.
These results are useful in preparing tables of the distribution of 7' under the null
hypothesis.

7.d. Large sample distribution of the limiting statistic. We first show that under
H, the statistic T has a limiting normal distribution and then indicate that under
H it also has a normal distribution and is asymptotically most powerful.

We need the result of Epstein and Sobel ([4], Appendix A) thatif X;, --- , Xy
are independently distributed, and each X has the density function

_J0 .2 <0,
(7.d.1) flx) = {e_x if 220
then
N
(7.d.2) EXyi= 2§ = Dyir, ¢! =N—-i+1,

j=2’

where Xy, is the ¢th order statistic in a sample of N and Dy; was introduced in
(7.c.1). This result, combined with a theorem of Dwass [2], yields
TuarorEM 7.d.1. Under Hy , when N — o in such a way that n / (m + n) tends
o a constant \ different from 0 or 1, the random variable
T — AN
b= VA1 = NN
has a distribution which approaches a normal distribution with zero mean and unit
variance.

A rigorous treatment of the limiting distribution of 7’ under H, would be com-
plicated and will not be given here in view of the fact that we are primarily in-
terested in exact, instead of limiting, properties. However, it is reasonable to
conjecture (see Dwass [1], Hoeffding [5] and Lehmann [7]) that T, when properly
normalized, has a limiting distribution which is Gaussian and yields an asymp-
totically most powerful test under alternatives of the form Hy, .

8. Acknowledgment., For the continuing encouragement and guidance of Pro-
fessor Howard Levene of Columbia University from the initiation to the com-
pletion of this research, I wish to express sincere appreciation.



TABLE 1

Distribution of Rank Orders under H,

This table gives the probabilities of some of the rank orders (see Section 2)
for all combinations of sample sizes1 £ m < n < 5 and alternatives of the form
H (see Section 3). The rank orders have been arranged in order of increasing
values of the statistic 7' and, hence, for values of & slightly greater than 1, the
rank orders are arranged from most probable toward least probable. The value
of § in the column headed Pjg is that value required to obtain a test with power
1 — B at the « level of significance when the best similar region test of Hg is used
(see Eisenhart [3], Chapter 8, Sections 4 and 6.2., and Tables 8.3 and 8.4). The
values of the probabilities of the rank orders were computed using (7.a.5),
(7.a.6) and (7.2.7).

It should be noted that this table is not symmetric in m and n, but see the
remarks at the end of Section 7.c. It was decided to present the results forn = m,
since in this situation the rank order procedures make a more favorable compari-
son to the parametric procedures for comparable alternatives (see Table 2).

N=2m=1n=1

rPy Py Py P
i R.O. T 5
9.0000 27.0000 57.0000 361.0000
1 01 0.5000 .9000 .9643 .9828 .9972
2 10 1.5000 .1000 .0357 .0172 .0048
N=3m=1,n=
5
7.6575 18.4868 38.4940 133.6569
1 011 1.1667 .8303 .9237 .9622 .9889
2 101 2.1667 .1084 .0500 .0250 .0074
3 110 2.6667 .0613 .0264 .0128 .0037
N=4m=1,n=3
3
7.2117 16.4334 34,0633 99.4200
1 0111 1.9167 .7865 .8966 .9482 .9818
2 1011 2.9167 .1082 .0546 .0278 .0101
3 1101 3.4167 .0615 .0290 .0143 .0051
4 1110 3.7500 .0438 .0199 .0097 .0034
N=4,m=2,n=2
3
4.1073 8.4783 13.1867 40.8104
1 0011 .8333 .5408 .7238 .8071 .9305
2 0101 1.3333 .2118 .1527 .1138 .0445
3 0110 1.6667 .1404 .0891 .0631 .0231
4 1001 2.3333 .0516 .0180 .0086 .0011
5 1010 2.6667 .0342 .0105 .0048 .0006
6 1100 3.1667 .0213 .0059 .0026 .0003
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TABLE I—Continued
N=5m=1n=4

Lt Py P Py
i R.O. T

7.0891 15.5199 32,0958 86.3753
1 01111 2.7167 .7552 .8769 .9378 .9763
2 10111 3.7167 .1065 .0565 .0292 .0113
3 11011 4.2167 .0608 .0301 .0151 .0057
4 11101 4.5500 .0434 .0208 .0104 .0038
5 11110 4.8000 .0341 .0159 .0079 .0029

N=5m=2n=
3.7769 7.1663 11,0147 27.9416
1 00111 1.4333 .4394 .6277 7316 .8800
2 01011 1.9333 .1840 .1537 .1218 .0608
3 01101 2.2667 1242 .0919 .0688 .0320
4 01110 2.5167 .0963 .0667 .0486 .0218
5 10011 2.9333 .0487 .0214 .0111 .0022
6 10101 3.2667 .0329 .0128 .0063 .0011
7 10110 3.5167 .0255 .0093 .0044 .0008
8 11001 3.7667 .0208 .0073 .0034 .0006
9 11010 4.0167 .0161 .0054 .0024 .0004
10 11100 4.3500 .0122 .0038 .0017 .0003

N=6m=1,n=
6.9826 15.0031 30.9851 79.57719
1 011111 3.5500 L7312 .8615 .9297 9718
2 101111 4.5500 .1047 .0574 .0300 .0122
3 110111 5.0500 .0598 .0306 .0155 .0062
4 111011 5.3833 .0428 .0211 .0105 .0041
5 111101 5.6333 0336 .0162 .0080 .0031
6 111110 5.8333 .0278 .0132 .0064 .0025

N=6,m=2n=
3.6173 6.5817 10.0534 23.1841
1 001111 2.1000 .3743 .5619 6777 .8397
2 010111 2.6000 .1621 .1482 .1226 .0694
3 011011 2.9333 .1106 .0898 .0700 .0369
4 011101 3.1833 .0862 .0656 .0497 .0253
5 011110 3.3833 .0716 .0522 .0388 .0193
6 100111 3.6000 .0448 .0225 .0122 .0030
7 101011 3.9333 .0305 .0136 .0070 .0016
8 101101 4.1833 .0238 .0100 .0050 .0011
9 101110 4.3833 0198 .0079 .0039 .0008
10 110011 4.4333 .0195 .0078 .0038 .0008
11 110101 4.6833 0152 .0058 .0027 .0006
12 110110 4.8833 0126 .0046 .0021 .0004
13 111001 5.0167 .0115 .0042 .0019 .0004
14 111010 5.2167 .0096 .0033 .0015 .0003
111100 5.4667 .0078 .0026 .0011 .0002




TABLE I—Continued
N=6m=3mn=23

Py Py Py | P

i R.O. 1 s -
3.0546 5.4436 76343 | 18.3518

. .|

|
1 000111 1.1500 .2549 .4270 .5305 .7535
2 001011 1.4833 .1513 L1721 .1652 (1111
3 001101 1.7333 .1130 L1128 .1017 .0613
4 001110 1.9333 .0922 .0854 .0746 .0426
5 010011 1.9833 .0746 .0534 .0383 L0115
6 010101 2.2333 L0557 .0350 .0236 .0063
7 010110 2.4333 .0455 .0265 .0173 .0044
8 011001 2.5667 .0396 .0219 .0140 .0034
9 011010 2.7667 .0324 .0166 .0102 .0024
10 100011 2.9833 .0244 .0098 .0050 .0006
11 011100 3.0167 .0259 .0123 .0074 .0017
12 100101 3.2333 .0182 .0064 .0031 .0003
13 100110 3.4333 .0149 .0049 .0023 .0002
14 101001 3.5667 .0129 .0040 .0018 .0002
15 101010 3.7667 .0106 .0031 .0014 .0001
16 101100 4.0167 .0085 .0023 .0010 .0001
17 110001 4.0667 .0086 .0024 .0010 .0001
18 110010 4.2667 .0070 .0018 .0007 .0001
19 110100 4.5167 .0656 .0013 .0005 .0001
20 111000 4.8500 .0043 .0010 .0004 .0000

N=7m=2n=25
s

3.5233 6.2518 9.5126 20,7442
1 0011111 2.8143 .3286 .5136 .6370 .8076
2 0101111 3.3143 .1453 .1416 L1212 .0743
3 0110111 3.6476 .0997 .0865 .0697 .0398
4 0111011 3.8976 .0780 .0635 .0496 .0274
5 0111101 4.0976 .0650 .0507 .0388 .0210
6 0111110 4.2643 .0562 L0424 .0320 .0170
7 1001111 4.3143 L0412 .0226 L0127 .0036
8 1010111 4.6476 .0283 .0138 .0073 .0019
9 1011011 4.8976 .0221 .0102 .0052 .0013
10 1011101 . 5.0976 .0184 .0081 .0041 .0010
11 1100111 5.1476 .0182 .0080 .0040 l .0010
12 1011110 5.2643 .0160 .0068 .0034 .0008
13 1101011 5.3976 .0142 .0059 .0029 .0007
14 1101101 5.5976 .0118 .0047 .0023 .0005
15 1110011 5.7310 .0108 .0042 .0020 .0005
16 1101110 5.7643 .0103 .0039 .0019 .0004
17 1110101 5.9310 .0090 .0034 .0016 .0003
18 1110110 6.0976 .0078 .0028 .0013 .0003
19 1111001 6.1810 .0074 .0027 .0012 .0002
20 1111010 6.3476 .0064 .0023 .0010° .0002
21 1111100 6.5476 .0055 .0019 & .0008 .0002

608
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TABLE I—Continued
N=7m=3,n=414

Py Py P3% P
i R.O. T
L)

2.8968 4,9243 6.8455 14.8480
1 0001111 1.7214 .1911 .3436 .4485 .6739
2 0010111 2.0548 L1171 .1489 .1521 .1200
3 0011011 2.3048 .0886 .0996 .0954 .0676
4 0011101 2.5048 .0729 .0763 .0707 .0475
5 0100111 2.5548 .0601 .0503 .0388 .0151
6 0011110 2.6714 .0627 .0626 .0566 .0368
7 0101011 2.8048 .0455 .0336 .0243 .0085
8 0101101 3.0048 .0374 .0258 .0180 .0060
9 0110011 3.1381 .0328 .0214 .0146 .0046
10 0101110 3.1714 .0322 .0211 .0144 .0046
11 0110101 3.3381 .0270 .0165 .0108 .0033
12 0110110 3.5048 .0232 .0135 .0087 .0025
13 1000111 3.5548 .0207 .0102 .0057 .0010
14 | 0111001 3.5881 .0217 0124 .0079 .0023
15 0111010 3.7548 .0187 .0102 .0063 .0018
16 1001011 3.8048 .0157 .0068 .0035 .0006
17 0111100 3.9548 .0159 .0083 .0050 .0014
18 1001101 4.0048 0120 | .0052 .0026 .0004
19 1010011 4.1381 .0113 .0043 .0021 .0003
20 1001110 4.1714 .0112 .0043 .0021 .0003
21 1010101 4.3381 .0093 .0033 .0016 .0002
22 1010110 4.5048 .0080 .0027 .0013 .0002
23 1011001 4.5881 .0075 .0025 .0012 .0001
24 1100011 4.6381 .0076 .0026 .0012 .0002
25 1011010 4.7548 .0065 .0020 .0010 .0001
26 1100101 4.8381 .0063 .0020 .0009 .0001
27 1011100 4.9548 .0055 .0016 .0006 .0001
28 1100110 5.0048 .0054 .0016 .0007 .0001
29 1101001 5.0881 .0051 .0015 .0007 .0001
30 1101010 5.2548 .0044 .0012 .0006 .0001
31 1110001 5.4214 .0040 .0011 .0005 .0001
32 1101100 5.4548 .0037 .0010 .0003 .0001
33 1110010- 5.5881 .0034 .0009 .0004 .0001
34 1110100 5.7881 .0029 .0007 .0003 .0001
35 1111000 6.0381 .0024 .0006 .0002 .0000




TABLE I—Continued
N=8m=3,n=25§

Py Py P Py

i R.O. T
2.8029 4.6300 6.4006 13.0618
1 00011111 2.3464 .1507 .2872 .3904 .6126
2 00101111 2.6798 .0941 .1300 .1394 .1220
3 00110111 2.9298 .0718 .0881 .0885 .0697
4 00111011 3.1298 .0594 .0680 .0660 .0493
5 01001111 3.1798 .0495 .0462 .0377 .0174
6 00111101 3.2964 .0513 .0560 .0531 .0383
7 01010111 3.4208 .0378 .0314 .0239 .0099
8 00111110 3.4393 .0455 .0479 .0447 .0314
9 01011011 3.6298 .0312 .0242 .0178 .0070
10 - 01100111 3.7631 .0275 .0203 .0145 .0055
11 01011101 3.7964 .0270 .0199 .0144 .0054
12 01011110 3.9393 .0239 .0170 .0121 .0045
13 01101011 3.9631 .0227 .0156 .0108 .0039
14 01101101 4.1298 .0196 .0129 .0088 .0030
15 10001111 4.1798 0177 .0100 .0059 .0013

N=8 m=4,n

2,5893 4.2454 5.6371 11.8205
1 00001111 1.4619 .1056 .2156 .2966 .5205
2 00010111 1.7119 .0756 .1190 .1374 .1429
3 00011011 1.9119 .0609 .0854 .0928 .0849
4 00100111 2.0452 .0494 .0572 .0540 .0310
5 00011101 2.0786 .0519 .0678 .0712 .0610
6 00011110 2.2214 .0457 .0568 .0583 .0479
7 00101011 2.2452 .0398 .0410 .0365 .0184
8 00101101 2.4119 .0339 .0326 .0280 .0132
9 00110011 2.4952 .0310 .0283 .0237 .0106
10 01000111 2.5452 .0275 .0218 .0163 .0048
11 00101110 2.5548 .0299 .0273 .0229 .0104
12 00110101 2.6619 .0264 .0225 .0182 .0076
13 01001011 2.7452 .0222 .0156 .0110 .0029
14 00110110 2.8048 .0233 .0189 .0149 .0060
15 00111001 2.8619 .0221 .0175 .0137 .0054
16 01001101 2.9119 .0189 .0124 .0084 .0021
17 01010011 2.9952 .0173 .0108 .0071 .0017
18 00111010 3.0048 .0195 .0147 .0112 .0042
19 01001110 3.0548 .0167 .0104 .0069 .0016
20 01010101 3.1619 .0147 .0086 .0054 .0012
21 00111100 3.1714 .0170 .0122 .0091 .0033
22 01010110 3.3048 .0130 .0072 .0045 .0009
23 01100011 3.3286 .0128 .0071 .0044 .0010
24 01011001 3.3619 .0123 .0067 .0041 .0009
25 01100101 3.4952 .0109 .0057 .0034 .0007
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TABLE I—Continued

N =8, m = 4,n = 4—Cont.

Py Py P3 Pg

1 R.O. T
2.5893 4.2454 5.6371 11,8205
26 01011010 3.5048 .0109 .0056 .0034 .0007
27 10000111 3.5452 .0106 .0051 .0029 .0004
28 01100110 3.6381 .0097 .0047 .0028 .0005
29 01011100 3.6714 .0095 .0047 .0027 .0005
30 01101001 - 3.6952 .0091 .0044 .0026 .0005

N=9 m=4n=

2.4942 3.9646 5.2287 10.2816
1 000011111 2.0175 .0751 .1645 .2377 .4511
2 000101111 2.2675 .0547 .0945 1155 .1359
3 000110111 2.4675 .0445 .0689 .0792 .0824
4 001001111 2.6008 .0365 .0475 .0479 .0332
5 000111011 2.6341 .0382 .0552 .0613 .0598
6 000111101 2.7770 .0338 .0465 .0505 .0472
7 001010111 2.8008 .0297 .0347 .0329 .0201
8 000111110 2.9020 .0305 .0452 .0432 .0391
9 001011011 2.9675 .0255 .0278 .0254 .0146
10 001100111 3.0508 .0233 .0243 .0217 .0118
11 010001111 3.1008 .0209 .0191 .0154 .0059
12 001011101 3.1103 .0226 .0234 .0210 .0115
13 001101011 3.2175 .0200 .0195 .0168 .0086
14 001011110 3.2353 .0204 .0227 .0179 .0096
15 010010111 3.3008 .0170 .0140 .0106 .0036
16 001101101 3.3603 .0178 .0164 .0139 .0068
17 001110011 3.4175 .0168 .0153 .0128 .0062
18 010011011 3.4675 .0146 .0112 .0082 .0026
19 001101110 3.4853 .0160 .0159 .0118 .0057
20 010100111 3.5508 .0133 .0098 .0070 .0021
21 001110101 3.5603 .0150 .0129 .0106 .0049
22 010011101 3.6103 .0129 .0094 .0067 .0020
23 001110110 3.6853 .0135 .0125 .0090 .0041
24 010101011 3.7175 .0114 .0079 .0054 .0015
25 001111001 3.7270 .0131 .0108 .0086 .0038
26 010011110 3.7353 .0117 .0091 .0057 .0017
27 001111010 3.8520 .0118 .0104 .0073 .0032
28 010101101 3.8603 .0101 .0066 .0044 .0012
29 011000111 3.8841 .0100 .0065 .0044 .0012
30 010110011 3.9175 .0096 .0062 .0041 .0011
31 010101110 3.9853 .0092 .0064 .0038 .0010
32 001111100 3.9948 .0106 .0090 .0062 .0026
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TABLE I—Continued
N=10,m=5n=25

PR Py | PR Py

i R.O. T 5
2.3226 3.6030 4.6201 8.8697
1 0000011111 1.7718 .0404 .0982 .1482 .3308
2 0000101111 1.9718 .0319 .0646 .0860 .1285
3 0000110111 2.1385 .0270 .0496 .0625 .0820
4 0001001111 2.2218 .0240 .0391 .0451 .0433
5 0000111011 2.2813 .0237 .0409 .0498 .0609
6 0001010111 2.3885 .0203 .0300 .0328 .0276
7 0000111101 2.4063 .0213 .0351 .0418 .0488
8 0000111110 2.5175 .0195 .0309 10362 .0409
9 0001011011 2.5313 .0179 .0247 .0262 .0205
10 0010001111 2.5552 .0167 .0209 .0204 .0120
11 0001100111 2.5885 .0168 .0223 10231 .0171
12 0001011101 2.6563 .0161 .0212 .0220 .0164
13 0010010111 2.7218 .0141 .0160 .0148 .0077
14 0001101011 2.7313 .0148 .0184 .0185 .0127
15 0001011110 2.7675 .0147 .0187 .0190 .0138
16 0001101101 2.8563 .0133 .0158 .0155 .0102
17 0010011011 2.8647 .0124 .0132 .0119 .0057
18 0001110011 2.8980 .0128 .0149 .0145 .0093
19 0011000111 2.9218 -.0117 .0119 .0105 .0047
20 0001101110 2.9675 .0122 0139 .0134 .0086
21 0010011101 2.9897 .0112 .0114 .0100 .0045
22 0001110101 3.0230 .0115 .0128 .0122 .0075
23 0100001111 3.0552 .0101 .0091 .0073 .0024
24 0010101011 3.0647 .0103 .0099 .0084 .0035
25 0010011110 3.1008 .0102 .0100 .0086 .0038
26 0001110110 3.1341 .0106 .0113 .0105 .0063
27 0001111001 3.1659 .0103 .0109 .0101 .0060
28 0011001111 3.1718 .0094 .0085 .0071 .0013
29 0010101101 3.1897 .0092 .0085 .0070 .0028
30 0100010111 3.2218 .0085 .0070 .0053 .0016
31 0010110011 3.2313 .0089 .0080 .0060 .0026
32 0001111010 3.2770 .0095 .0096 .0087 .0050
33 0010101110 3.3008 .0085 .0074 .0061 .0024
34 0011001011 3.3147 .0092 .0071 .0057 .0021
35 0010110101 3.3563 .0080 .0069 .0055 .0021
36 0100011011 3.3647 .0075 .0057 .0042 .0012
37 0001111100 3.4020 .0086 .0084 .0075 | .0042
38 0100100111 3.4218 .0070 .0052 .0037 | .0010
39 0011001101 3.4397 .0074 .0061 .0047 .0017
40 0010110110 3.4675 .0074 .0061 .0046 .0017
41 0011010011 3.4813 .0071 .0057 .0045 .0016
42 0100011101 3.4897 .0067 .0050 .0036 .0009
43 0010111001 3.4992 .0071 .0058 0046 | .0017
44 0011001110 3.5508 .0068 .0053 0041 .0014
45 0100101011 3.5647 .0064 .0043 0030 .0007
46 0100011110 3.6008 .0061 .0043 .0031 | .0008
47 0011010101 3.6063 .0064 .0049 .0038 . .0013
48 0010111010 3.6103 .0066 .0051 .0039 | .0014
49 0101000111 3.6718 .0057 .0037 .0025 | .0003

612
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TABLE 1I
Power Functions of Nonparametric Tests
In each case, the first entry gives the power of the test based on T'; the second
entry gives the power of the best rank order test; the third entry gives the power
of the test based on ¢; .
a = .10 B = .50

m

1 2 3 4 5
1 .1800 L2771 .3146 .3776 . 4387
.1800 L2771 .3146 .3776 .4387
.1800 L2771 .3146 3776 - .4387
2 .2624 .3245 .4394 .4553 .4839
.2624 .3245 .4394 .4553 .4839
.2624 .3245 .4394 .4553 .4839
3 .2387 .3667 .4062 .4332 .4563
.2387 .3667 .4062 .4332 .4570
.2387 .3667 .4062 .4268 .4482
4 .2535 .3494 .3917 .4289 .4398
.2535 .3494 .3938 .4289 .4402
.2535 .3494 .3828 .4107 4272
5 .2642 .3513 .3933 .4195 .4370
.2642 .3513 .3933 .4199 .4375
.2642 .3495 .3737 .3948 .4322

m

1 2 3 4 5
1 .1929 .2491 .3586 .4384 .5169
.1929 .2491 .3586 .4384 .5169
.1929 .2491 .3586 .4384 .5169
2 .2169 .4343 .6377 .6360 .6638
.2169 .4343 .6377 .6360 .6638
.2169 .4343 .6377 .6360 .6638
3 .3171 .5604 .5991 .6302 .6531
.3171 .5604 .5991 .6302 .6570
.3171 .5604 .5991 .6173 .6383
4 .3614 .5420 .5933 .6428 .6599
.3614 5420 .6021 .6428 .6635
.3614 .5420 .5738 .6078 .6259
5 .3983 .5585 .6122 .6375 .6558
.3983 .5585 .6180 .6389 .6587
.3983 .5349 .5693 .6264 .6179
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TABLE II—Continued

1 2 3 4 5
1 .0983 .1443 .1896 2344 .2789
.0983 1443 .1896 2344 .2789
.0983 1443 .1896 .2344 .2789
2 1377 .2421 .3658 .5083 .6431
1377 .2421 .3658 .5083 .6431
.1377 .2421 .3658 .5083 .6431
3 .1701 .3270 .5305 .5626 .6006
.1701 .3270 .5305 .5626 .6006
.1701 .3270 .5305 . .5626 .6006
4 .1972 .3996 .5098 .5543 .5823
.1972 .3996 .5098 .5582 .5871
1972 .3996 .5098 .5344 .5791
5 .2204 .4788 .5162 .5650 .6030
.2204 .4788 .5162 .5737 .6055
. 2204 .4788 .4884 .5202 .5612

1 2 3 4 5
1 .0997 .1483 .1964 .2441 .2915
.0997 .1483 .1964 .2441 .2915
.0997 .1483 .1964 .2441 .2015
2 .1478 .2792 .4400 .6298 .8114
.1478 .2792 .4400 .6298 .8114
.1478 .2792 .4400 .6208 .8114
3 1941 .4285 7535 .7639 7904
.1941 .4285 .7535 .7639 .7904
.1941 .4285 .7535 .7639 .7904
4 .2389 .5888 7442 7728 .8140
.2389 .5888 7442 .7878 .8213
.2389 .5888 7442 7458 .7843
5 .2823 .7482 L7718 .8044 .8334
.2823 7482 L7718 .8252 .8382
.2823 .7482 7275 L7528 .7830
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