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ON STOCHASTIC APPROXIMATION METHODS!
By J. WoLrowiITz
Cornell University

In [1] A. Dvoretzky proved the theorem quoted below, which implies all
previous results on the convergence to a limit of stochastic approximation
methods. (For a description of these results see [1].) In the present note we give
a simple and, we think, perspicuous proof of this theorem which may be of help
in further work. The present note is entirely self-contained and may be read
without reference to [1].

Tuareorem. (Dvoretzky) Let a, , 8, and ya(n = 1, 2, - - +) be non-negative real
numbers satisfying

1) lim &, = 0,
@) ’;B» < ,
and

(3) ’; Yn = 0.

Let 6 be a real number and T,(n = 1,2, --+) be measurable transformations
satisfying :
(4) |To(ry, =+, 1) — 6] < maxfas, (1 + Ba)|ra — 6] — 7va)
for all real 11, -+ ,r,. Let Xy and Yo.(n = 1,2, ---) be random variables and
define? .
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2 In the proof of the theorem we will, for the sake of brevity, write T (X,) for

Tn(Xl y "t Xn)r
just as is done in [1]. No ambiguity will be caused by this.
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&) Xnn(w) = Tu(Xi(w), - -+, Xa(w)) + Ya(

forn = 1.
Then the conditions E{X}} < =,

0

) 2 E(YL} < =
and

7 E{Yn| Xy, ,Xa} =0
with probability 1 for all n, imply

(8) lim E{(X, — 0)’} =0
and

9 P{lim X, = 6} = 1.

ExTENSION. The theorem remains valid if a. and B, in (4) are replaced by non-
negative functions an(r1, -+, 1) and Ba(r, - -+, Ta) respectively, provided:
The functions an(ri, --- ,r.) are uniformly bounded and
(10) lim a,(ry, ~--,7r2) =0
uniformly for all sequences ri, ---, Tn, - --; the functions B,(ri, ---, r.) are
measurable and
(11) 2 Balry, -5 1)

18 uniformly bounded and uniformly convergent for all sequences ry, «+ , Ty, -+ ;
and for any L > 0 there exist non-negative functions vy.(r1, -+ , ra) satisfying
(4), and
(12) Zl 7”(71! ] Tn) = ®
holds uniformly for all sequences 1, -+ ,Tu, + -+ for which
(13) sup |r.| < L.

ne=1,2,e00

Proor: Without loss of generality we may take 6 = 0.

I. From (4) and (6) it follows readily that EX% < « for any n.

II. Define s(n) to be the sign of [T.(X,)][X,] if neither factor is zero, and
s(n) = 1 if either factor is zero. Define #(m, n) = [[1om sG), Yo = 7(1, n)Y, .
The series Y7 Y% converges w.p.1, by Logve ([2], p. 387, D) and (6) and (7).
Let

Z(m,m) = 2. Y;

J=m
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For any & and e both >0, there exists M’(5, ¢) such that

(14) P{ sup |Z(m,n)| > %} < -26

m,n
M'SmEn

III. Letd(m, m — 1) = 1 and, forn = m,
e, m) = T (1 + ).
Consider the sum
Sl m) = 324, Wb,

which is equal to

n—1

15) g; Z((m — 2), (j — 1))d(G, n) — d(G + 1, n)]

— Y2 d(m,n) + Z((m — 2), (0 — 1)) d(n, n) + ¥,*
Since d(j, n) = d(j + 1, n) we have that the absolute value of (15) is not
greater than
J
m—-1<j<n

Hence, from (11) and (14) it follows that, for 6 and ¢ both >0, there exists an
M”"(5, € = M'(5, ¢) such that d(m, ») < § for m = M” and

6 6 €
(16) P{ sup | Z(m, n) | <;1§» iu}? | S(m, n) | <§}> 1 — 3

"
M'’smZn M'’"<mEn

Proof of (9) under the conditions of the extension. Let ¢ and é be positive and
arbitrary. It is sufficient to prove that

17 P{|X,| < &for all »n sufficiently large} > 1 — e.

Let M = M”(3, €) be so large that, for n = M, a, < §/8. Let L be so large
that L > 6 and

2 L’
(18) 122:; EX; < R
We take this to be the L for which (12) holds. Tt also follows that
(19) P{ max |X,-|§‘3}>1—f.
15isM 4 2

Suppose that the following four conditions are fulfilled:
(20) The relations in curly brackets in (16);
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(21) |Xm|§£ for some m = M;
) .

(22) IXm+j|>Z’ 1=sj=k

23) | Xniasa| S 5.

Herel = k < «.Incasek = =, (22)is to hold for all j = 1 and (23) is vacu-
ous. (It will be clear by the time the proof is finished that k¥ cannot = «.)
Because a, < §/8 for n = M and because of (20), (21), and (22) it follows that

(24) Tt i(Xmi)] > amyi, O0Sj=k-—1,

(25) sign Xmyjp1 = 8igh Ty i(Xmes)y O0Sj=<k—1
Applying (4) (with the y’s zero) we obtain that X, lies between zero and
(26) ‘ s(m)(1 + Bm)Xm + ¥m.

Repeating this argument, we obtain that, for 1 < j < k, X,u1; lies between 0
and

stm+j— stm+j—2)---s(m)ydim,m +j — 1)Xn
@27 +stm+j—1)---s(m+1)dm+1,m+j—1)Vn+ ---
+sm+j—Ddm+j—1,m+j— DYuijs+ Yy,
The absolute value of (27) is not greater than

(28) |Xm| dim, m +j — 1) + [S(m + 1, m 4+ j — 1)].
Hence
(29) [Xmisl <8 1=j=k

To prove (17) it remains only to show that the following conditions cannot
both hold:

(30) the relations in curly brackets in (16) and (19);
(31) | X.| > g forall n = M.

Applying the argument of the previous paragraph with & replaced by L we obtain
that

(32) |Xa| < Lforalln = 1.
Hence (12) holds. In view of (30) and (31) it follows that
(33) |T(X.)| > anforalln 2 M — 1,

(34) sign T»(X,) = sign Xy foralln = M — 1.
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We may now, and do, apply the argument which led to (28), but with the v’s
which satisfy (12). We conclude that, for all » > M, the absolute value of
|Xa| is not greater than

n—1

(35) |XM|d(M,n—1)+|S(M+1,n—1)|—?_:,ly,~
For n sufficiently large this becomes negative, contradicting (33) and hence (31).
This completes the proof of (9).
The fact that EX; < o is used in the above proof only in order that EX2 <
o for all n, and this latter fact is needed only for (8), and not for (9). For in the
proof above we used the fact that EX3 < « only to obtain explicitly an L
for which (19) holds. Such an L obviously exists whether or not EX3 < .
Proof of (8) under the conditions of the extension. Let K = maxigjcw ;.
Let N be an integer to be chosen later. In view of (9) we have only to prove that
lim,,» B{(| X, — K)*}® = 0. Let P denote probability measure and 4 be
any set in the sample space which can be defined in terms of X;, --- , X,,.
We use the inequality

Hond) = [ ((Xis| = D' dP = [ (I TulXa) + Y| = K aP
(36) s [ I7h+ ( TulX) | = K P

< f (V2 + KBl + KBu) + (1 + Bu)'(L + KBn)((| X | — K)] dP

which is in [1] and can be deduced from (4) and (7). Let B(j) be the set {|Xx4;| <
K, |Xy4il > K for 0 = ¢ < j}, D(j) the complement of
B(0) + B(1) + --- + B())-

Iterate the inequality (36) to obtain an upper bound on H.(4), n > N, begin-
ning the iteration at m = N, N 4+ 1, --- ; n — 1, respectively, and using as 4
the sets B(0), B(1), --- , B(n — N — 1), respectively. In each case the last
term of the integrand of the right member of (36) vanishes. Adding, we obtain
that H,(B(0) 4+ .-+ + B(n — N)) can be made arbitrarily small by making N
sufficiently large.

It remains only to consider H,(D(n — N)). For any point in D(n — N) we
have, as in (27), that ©
37 |Xa| £ [#(1, N = 1)d(N,n — 1)Xy + S(N + 1, n — 1)
Hence, by Minkowski’s inequality

(07 ar)

(38) < (L, )] < fD oy X dp>* + [d(1, «)] (g EY§>5
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The second term on the right of (38) can be made arbitrarily small by making N
sufficiently large. The first term can be made arbitrarily small by making » suffi-
ciently large, since P{D(n — N)} — 0 as n — «. This completes the proof of

(8.
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ON THE DERIVATIVES OF A CHARACTERISTIC FUNCTION
AT THE ORIGIN

By E. J. G. PrrmaN
University of Tasmania

1. Introduction. Let F(z), —® < z < «, be a distribution function, and
o(t) = f ¢ dF (z)

its characteristic function, defined and continuous for all real ¢. Let &k be a positive
integer. If the kth moment of F(x),

e =f_ z* dF(z),

exists and is finite (integral absolutely convergent), ¢(¢) has a finite kth deriva-
tive for all real ¢ given by

P = f z'e'*® dF (z).

In particular,
¢®(0) = T .

The existence and finiteness of u is a sufficient condition for the existence and
finiteness of *°(0). It can be shown (see [1]) that when k is even, this condition
is also necessary; but when % is odd this is not so. Zygmund [2] has given a
necessary and sufficient condition for the existence of ¢’(0) and also one for the
existence of a symmetric derivative of higher odd order at ¢ = 0; but he imposes a
certain condition (smoothness) on the characteristic function. In the following
theorem the conditions are on the distribution function only.
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