NOTES

A NOTE ON WEIGHTED RANDOMIZATION!
By D. R. Cox?

Princeton University

Summary. It is shown that in simple statistical designs in which a covariance
adjustment is made for concomitant variation, an unbiased between-treatment
mean square can be produced by weighted randomization, i.e., by selecting an
arrangement at random from a set of arrangements, giving different arrange-
ments in the set unequal chances of selection.

1. Introduction. Randomization is one of the key elements in the statistical
aspects of experimental design [2]. It has as its object the conversion, under
rather weak assumptions, of uncontrolled variation of whatever form into
effectively random variation. It thus makes the conclusions drawn from the
experiment more objective and avoids the introduction of strong, and quite
often unrealistic, assumptions about the uncontrolled variation. The methods of
randomization in practical use depend on selecting one arrangement from a set
giving each arrangement in the set equal chance of selection. For example in a
randomized block design, the set would usually be that of all randomized block
designs obtained by permuting the treatments within the chosen grouping of units
into blocks. An arrangement for use would be one such design selected at random
out of the set. The purpose of the present note is to point out the theoretical
advantage in certain cases of choosing from the set with unequal probabilities.
No recommendation is made about what should be done in practice in such
gituations.

The following assumption will be made throughout. We have N experimental
units (plots, animals, etc.) and r alternative treatments to be compared, one
treatment being applied to each unit. Suppose that there is a quantity z; as-
sociated with the 7th unit and a constant a, associated with the uth treatment,
such that if the uth treatment is applied to the ith unit, the resulting observa-
tion will be

(1) 2z + o,

independently of the particular allocation of treatments to the other units.
The 2;, a, are indeterminate to within a constant. The object of the experiment
is considered to be the estimation, and possibly significance-testing, of linear
contrasts among the a,. Assumption (1) can easily be generalized without
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affecting the arguments that follow; for example a completely random term of
constant mean and variance can be added to (1), but this will not be done here.

The essential points of (1) are that we are measuring on a scale on which
treatment and unit terms are additive, that the treatment effects are constant,
and that there is no competition or interference between different units.

The design is called unbiased [6] if it is possible to calculate from the observa-
tions the following:

(1) unbiased estimates of the linear contrasts among the a, , for example of
the differences, a, — a, ;

(ii) unbiased estimates of the variances of the estimates in (i);

(iii) a mean square between treatments, s , and the mean square for residual,
sy, such that the expectation of sj is greater than or equal to that of s’ , with
equality if and only if @; - -+ = a,.

It is well known that most of the standard designs are unbiased under Assump-
tion (1); the quantities in (i)—(iii) are calculated by the usual analysis of variance
methods, and expectations are taken over the set of arrangements from which
the one actually used has been selected at random. We shall assume for the
purpose of this paper that one requirement for a design to be satisfactory is
that it should be unbiased.

Four examples of methods of design that are not unbiased in this sense under
simple randomization are

(a) a completely randomized, or other simple design, in which adjustments
for a concomitant variable are made by analysis of covariance [5];

(b) the so-called semi-Latin square [6];

(¢) a Latin square type cross-over design in which Assumption (1) is extended
to allow:for simple carry-over of treatment effects from one period to the next
(5], [6];

(d) certain designs in which for some practical reason there is a severe restric-
tion on the treatment arrangements that are admissible. An example is [1].

This note is concerned with (a).

2. Adjustment for a concomitant variable. Suppose that on each experimental
unit, a concomitant variable is measured, giving a value x; for the 7th unit,
and that z, , - - - , zy are fixed and independent of the allocation of treatments to
units. ‘Nething is assumed in the randomization analysis about the relation
between the z’s and the 2’s.

Consider to begin with a completely randomized experiment with n units
for each treatment, N = nr. Denote the main observations, given by (1), by
Y1, *++, Y~ . These are random variables depending on the particular arrange-
ment of treatments selected. Let D, denote summation over those units re-
ceiving the uth treatment. In the usual way define

(2) Yu = Z#yi/nr Ty = ani /'n,
?7=Zya/N, j- =in/N’
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and set up the analysis of covariance table

x? Ty i d.f
Between treatments B, B, B,, rT—1
3) Residual R.. R., R, (n — 1)
Total T.x T., T, ™m—1
where, for example,
) Roy = 2° 2 (2 — %) (yi — G
p=1 p
Let b, = R.,/ R.. and define the adjusted treatment means
(5) ﬁn = Pu — br(in - 3’-3)
Also define an estimate of the variance of 9, — g), by
(6) c(gﬂ_?/v) “'sr{ + —xV)}y
with
2 2 B,.
7 1}':7 Vc(yn - ?Jv) = sr{ + ——= n(‘r ) Rzz}
where
2 _ 1 _ p2
(8) 8y = m (Rw R/ R.:)

is the residual mean square of y adjusting for regression on z. Finally the mean
square for treatments adjusting for regression on z is

2 1 TS R2)
(9) 8 = (r:T) (Tyy T R + Rzz

The definition of these quantities is based on the least-squares theory of
analysis of covariance; we now consider the randomization theory.

3. A method for calculating expectations under randomization. To investigate
randomization expectations an elegant and powerful method due to Grundy
and Healy [3] will be used. Denote the expectation under simple (unweighted)
randomization of any function, f, of the observations by Ex(f),

1
: X .
(no. of possible arrangements) = sll arrsngements

(10) Ex(f) =

Consider, as an example of the method, the calculation of Eg(R,,), when
the design is completely randomized. It is easily seen from (1) that this expecta-
tion is independent of @, - - - , @, and is a homogeneous completely symmetric
function of 2;, ---, 2y of degree two, invariant.under translation of the 2’s.
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Therefore
N
(11) E:x(Ry) = a Z:l (2: — 2)%,
identicallyinz; , - - - , 2y , where a is a constant. If 2, , - -, 2y is a random sample
from a population of variance ¢*, the expectations of the left- and right-hand
sides of (11) are respectively 7(n — 1) and .a(#n — 1), whence a =
r(n — 1) / (rn — 1). Thus
’ -1
12) Er(y) = =D 5 o -
The choice of 21, - - - , 2y as a random sample in the last step of the argument

has no physical significance and is purely a mathematical device to exploit
knowledge of the behavior of R,, under the usual hypotheses of least-squares
theory; see also [4].

In general the method is to establish the general form of the expectation by
considerations of symmetry and invariance and then to find the precise expres-
sion by special choice of the 2’s, exploiting our knowledge of what happens
under the conditions of least-squares theory. Thus suppose that we require to
show that for a Latin square the expectations of the mean squares for treatments
and residual are equal, when there are no treatment effects. Consideration of
symmetry and invariance show that both expectations are multiples of the
residual sum of squares of the 2’s, considered as a row X column arrangement.
Equality of the two expectations under least-squares theory then proves this
equality under general randomization theory.

The result (12) is well known and can be obtained directly without difficulty.
The point of Grundy and Healy’s method is that it avoids enumerative calcula-
tions, and its advantage is consequently greater in the more complicated situa-
tions, such as, for example, in the proofs that Latin squares, balanced incom-
plete blocks, and so on are unbiased under (1).

4. The application to covariance adjustments. If we try to calculate the
randomization expectations of s? , s , defined in (8) and (9), there is the difficulty
that R, / R.. is a ratio of random variables so that no simple exact expression
for the form of its expectation can be written down. Whenay = ++- = o, T4z,
T.y = Tz, Ty, = T.. are constant and it follows from (8), (9), and (12) that
E»(s?) = Es(s3) if and only if E p(R2, / Ras) is linearly related in a particular way
to T, and T2 / T, . Consideration of the form of Ep(Rz, / R..) shows that no
such relation can hold identically in the z’s and the 2’s. Hence there is, in general,
bias, although we always have

(13) Er(@u — %) = 0w — a5 )

The bias arises from the factor 1/R., in (8) and so it is natural to try to
remove the bias by weighting each arrangement of treatments proportionally
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to R,.. This is the general idea behind the following considerations. Suppose
that the values z;, - - -, zx are available to the experimenter prior to the allo-
cation of treatments to units. Let w by any non-negative function of z; , - - - ,zw,
defined for each arrangement of treatments within the set in which each treat-
ment occurs n times. Let an arrangement be selected for use giving each design
in. the set a probability of selection proportional to w; we shall call this a process
of weighted randomization using w as weight function. If f is any function of
the observations y and =z, its eéxpectation under weighted randomization is
Ew(f), where

(19 Ew(f) = Er(wf)/Ep(w).

Let w = R.. and consider E w(s}). By (15) we need to know Ep(R..R,, — R%,).
This is independent of @;, ---, a. and is homogeneous and of degree two in
Z1, *++, xy and in 2;, -- -, 2y separately, and is unaffected by interchanging
the z’s with the 2’s. Hence ’

Epx(R..R,, —R%) = AZ*3’
+ ¢B(i,2 Tg. + 2.2 TZI)
+CT.:T.. + DT:,

(15) + E il (z: — £)'(zi — 2)°
+ F£.2. T
0{5. 36— 2)e - 20" + 2.3 e — 20— 2],

where 4, -+, @ are constants. The simplest way of verifying (15) from first
prineiples is to note that

Satd, X e+ zadd), X (@ + mwdd),
2xxRZ;, D ITRZ, D TR

are the seven types of sum with the requisite degree of symmetry and that the
right-hand side of (15) hias seven arbitary constants. R..R,, — R2, is unaffected
by changing z; to z; 4+ a and 2; to 2,4+ b, ¢ = 1, ---, N. Since this is true
identically in the z’s and 2’s, A = B = F = G = 0. Next, if 2; = \v;;7 =
1, -+, N, R.,R,, — R%, is identically zero, so that

N
(16) 0= {CT:, + DT:.. + E 21 (2 — az,)*},
whence E = 0. C = —D. If we combine this result with the expression for

Ep(R.;) corresponding to (12), we have
(17) EW(S:) = H(Tn - T:l/ Tzz),
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where H is a constant. Finally let «;, ---, z» be arbitrary but fixed and let
the z; be uncorrelated random variables with means 8z; and constant variance
o’. If E denotes expectation over their distribution,

E(Tor— T/ Tex) = (n7 — 2)d°,
E(s)) = o,

by the ordinary theory of regression. Finally, since EEw(st) = EwE(sl), (17)
leads to H = 1/(nt — 2), so that

. 2\ . 1 — T:z) - 2
(18) EN(r) = m (Tzz 7—,; = 0Or,
say.
Similarly if a; = --+ = a,,
(19) Ew(s;) = o7,

the unbiased property. When the a’s are not all equal, a multiple of their cor-
rected sum of squares is added to (19); details will not be given.

We now investigate the corresponding theory for the variance and estimated
variance of the difference between two adjusted treatment means, 4, — 4, ,
say. It does not seem possible to obtain exact results corresponding to those for
st and s; and we shall need to use the following asymptotic results. If, as N
tends to infinity, f and g are random variables, functions of the y’s and the 2’s
with fixed means and with variance of order 1/N, then

(20) E(fg) = E(f)E(g) + O(1/N),
and, under weak conditions on g,
(21) E(f/9) = E(f) / E(9) + O(1/N).

These will be used with E standing for Er or Ew as convenient. The expectation
on the left of (21) is to be taken as referring to the asymptotic distribution

of f/g.
Now we have from (7), (18), and (20) that

. g ry 207 B. 1
@ Balay Vi — 3] = 24 2% (B (140 (3)

n(r

gy (o)

If 7 is fixed and n tends to infinity, the relative error in (20) is of order 1/N*.
In obtaining (22) we have assumed that the z’s and the 2’s are such as to make
the variances of s> and B., / R.. of order 1/N.

Similarly to find the actual variance of 4§, — 9, we have that

AV {(Gu — D) — (@ — @)}* = Av {—lﬁ Cuz — ,2) — %’(E,.x - 2,9:)}’

™

(24)

2 2R..B.. , R, B..
- ’n('r - 1) (B” - Rzz T R;z ).
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If we apply the operator Ew to (24), we get the required variance. The expecta-
tion can be evaluated in a way similar to (23), dealing with the last term by
(21). The final answer is the right-hand side of (23). That is, to the order indi-
cated above, (7) is an unbiased estimate of the average variance of g, — ¢, .

6. Extensions. The calculations in Section 4 have, for simplicity, been made
for the completely randomized design. However the results can be extended to
designs such as randomized blocks and Latin squares; weighting proportional
to the residual sum of squares of z again gives an unbiased treatment mean
square. Another generalization is to multiple analysis of covariance, in which
the treatment means are adjusted for &k concomitant variables z;, -, 2.
The appropriate weighting function is then the residual generalized variance,
i.e., the determinant |R;;|, where R;; is the residual sum of products of z; and z; .

6. Discussion. The idea of weighted randomization discussed above is probably
solely of theoretical interest, at any rate in the context considered here. A full
discussion of possible practical applications would require further work, but the
following points are worth making.

(1) The bias in unweighted randomization is probably small, except possibly
when N is very small and the correlation between the 2’s and the z’s very non-
linear. Further work is needed, however, to find the likely magnitude of the
bias in typical cases.

(ii) Weighted randomization is perhaps most likely to be of practlcal value
when a series of similar experiments are planned, each with a small value of N.
Another possible application is to Latin square designs in which it is desired to
control variations diagonally across the square, in addition to row and column
variation. This can be done by inserting a suitable concomitant variable, for
example the product of row number and column number suitably coded. Weighted
randomization would justify such a method in the same way that ordinary
randomization justifies the conventional use of the Latin square. ‘

(iii) Arrangements with a large value of R,, will have a small value for B,
and conversely. Hence the weighting proportional to R, attaches greater
chance of selection to those arrangements in which the treatment groups are
balanced with respect to the mean value of x.

(iv) If weighted randomization is to be done in practice with N not very
small, some short-cut method is needed for selecting an arrangement, since
the enumeration of all arrangements and the calculation of R, for each would
usually be too tedious. Professor J. W. Tukey has pointed out that weighted
randomization can be done reasonably simply as follows. Let M be the maximum
over-all arrangement of R, . Select an arrangement by unweighted randomiza-
tion and calculate R,. for it. Reject the arrangement with probability
1 — R../ M. Continue until an arrangement is accepted.

(v) Weighted randomization is, of course, restricted to cases in which the
concomitant variable is available prior to the allocation of treatments to units.
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ON STOCHASTIC APPROXIMATION METHODS!
By J. WoLrowiTz
Cornell University

In [1] A. Dvoretzky proved the theorem quoted below, which implies all
previous results on the convergence to a limit of stochastic approximation
methods. (For a description of these results see [1].) In the present note we give
a simple and, we think, perspicuous proof of this theorem which may be of help
in further work. The present note is entirely self-contained and may be read
without reference to [1].

Tuarorem. (Dvoretzky) Let an , 8, and ya(n = 1, 2, - - +) be non-negative real
numbers satisfying

1) lim e, = 0,
2 ﬂ;ﬁn < ,
and

(3) ,; Yn = X,

Let 6 be a real number and T,(n = 1,2, ---) be measurable transformations
satisfying :

4) [Ta(ryy -+, ) — 6| < max{an, (1 + Ba)lra — 6] — 7l

for all real 11, -+ ,7r,. Let X; and Yo.(n = 1,2, ---) be random variables and
define? .
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2 In the proof of the theorem we will, for the sake of brevity, write T (X,) for

Tn(Xl y " Xn)r
just as is done in [1]. No ambiguity will be caused by this.




