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Consequently, p; will be a good approximation to 3 whenever p; is bounded
away from unity and m — » is large.
On substituting back, one obtains for the maximum likelihood estimates of

Aand

5\=(n+m)ﬁ
T+ 17

A nmt+m

'u_ﬁT—I-r

Whenever the approximation of p; for 4 is valid, the following simple approxi-
mations for A and £ result:

Note the difference between these formulas and the formulas n/T and m/r
which would result if the initial distribution was neglected as mentioned in
Sec. 1.
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MOST POWERFUL RANK-TYPE TESTS

By D. A. S. FRASER
University of Toronto

For some non-parametric problems the use of the invariance principle reduces
the class of suitable tests to those based on ranks of ordered observations. To
obtain among these the test that is most powerful from some specified alternative
distribution, it is necessary to have the marginal probability distribution of the
rank statistic under the alternative. Hoeffding [1] gives a method that expresses
the probabilities of such a distribution in terms of an expectation taken with
respect to the hypothesis distribution. Applications have been made to the
" problem of location (Hoeffding [1]) and to the problem of randomness (Lehmann
[2] and Terry [3]). We extend Hoeffding’s method and, for the problem of loca-
tion with symmetry, derive a locally most powerful rank-type test against normal
alternatives.
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RANK-TYPE TESTS 1041

Suppose a point in a sample space X can be given by coordinates r, ¢ in such
a way that 9. X 9, = &, where %, , X, are the sample spaces for r, ¢ respec-
tively. Also, suppose that there are two probability measures on the space X, a
hypothests measure

M, Pr{(r,{) ¢ R} = [R £(r)g(t) du(r) dv(2),

where f(r), g(¢) are, in fact, the marginal densities of », { with respect to the
o-finite measures u, v respectively, and an alfernative measure

M, Pr{(r,t) e R} = /;p(r, t) du(r) dv(t).

We assume that M, is absolutely continuous with respect to M;, that is,
p(r, £)/f(r)g(t) is finite almost everywhere p X .

In the application we have in mind, » will be like a “rank statistic’’ and ¢ will
be like an “order statistic”’. For the problem of randomness, » would be the ranks
(r1, +--, ra) of the n observations (z;, « -+, «,), and ¢ would be the order sta-
tistics (zq) , -+ - , Tmy) Where Zqy * - + Z(ny are the numbers z, , - - - , z, arranged in
order of magnitude. It is of interest to remark in passing that the term order
statistic can be misleading; in calculating the “order statistic”” one loses precisely
the information on the “order’” in which the different values occur in the sample.

TueoreM. The marginal density function for r under M, is
M 08w { 20

f(r)g(®) }

which 1s the hypothesis density adjusted by the expectation of the density ratio taken
with respect to the marginal distribution of ¢ under the hypothests.
Proovr. The proof is trivial. The marginal density function for r is

[ o antty = 10 [ B 600 avt

B p(r, t) }
= [, {f() wl"

This theorem can be of use whenever there is a hypothesis measure for which the
marginal distribution of ¢ is simple enough that the expectation can be evaluated
or approximated easily.

- ExampLE. Consider the problem of location. Let x = (a1, - -+ , x,) be a sample
of n from an absolutely continuous distribution, having density function f(x)
on the real line. For the problem

Hypothesis: Median {f(z)} = 0

2
) Alternative: Median {f(z)} > 0,
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the sign test is uniformly most powerful. Changing the hypothesis, we obtain the
problem of location and symmetry

) Hypothesis: f(z) symmetric about z = 0
Alternative: f(z) nonsymmetric about z = 0.

This problem has a larger class of tests of a given size and the sign test does not
remain uniformly most powerful even with a one-sided alternative. Wilcoxon
[5] has proposed a sign rank test.

We consider the formulation (3). Any topological transformation of the posi-
tive axis coupled with the same transformation of the negative axis obviously
leaves the problem unchanged. It is reasonable then to examine invariant tests

and in particular to find the maximal invariant function. Let |z |w , -+ , | % |m)
designaterespectively thesmallest, - - - , thelargest of then values| 1|, - -+ , |z ].
Also, let s, - - -, s, be thesigns respectively of the 2’s producing |z |qy, = -+ , | 2 |m)-
We take

r=rX) = (s1, ", 8a)

P=1x) = (zlw, -, |z|m).

(r, t) does not provide coordinates on the whole sample space R"; however it
does provide coordinates on the sample space of zq) , * -+ , Z(» Which is a suffi-
cient statistic for the problem (the region having any coordinates equal
Z@ = ¢ has measure zero and is disregarded). r is the maximal invariant
function. ¢ is a sufficient statistic for the measures of the hypothesis in (3). The
sample space of r has 2" points and they have equal probability under the
hypothesis.

To find an invariant test that is most powerful for a specific alternative, we
need the marginal distribution of r under the alternative, and we can obtain
this from the theorem above. An alternative of interest is the normal distribution
with mean p and variance ¢°. A reasonable hypothesis distribution to use with
this for the theorem would be the normal distribution with mean 0 and variance
o’. We evaluate Pr {s;, - - - , s,}. Obviously, this depends only on u/¢. Acccord-
ingly, we set u/¢ = 6 and work with normal distributions having unit variance.

J
n!(?r)—_zn exp{— Z(ﬁ%’———a—)f}

1 f ‘
= Q:& . oo — - .
<< <zn  nl(2m) 2 exp{ - Z(;«xl) }

=z 2
- 2"n1(2r) 2 exp{-— z;x'}vr dx;

1 ., Jalternative density
27 | hypothesis density

PI‘{SI,"',S,;} =
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—nd2

= :
= 21—;;6 2 f[ exp {83 s:x;} 2"nl(2m) ® exp{— Z;‘}vr dz;

0<zl<"'<1n
1 =2 smea
- 2 8Zs;lz] (3)
=5 Efe™ "},

where |2|a), -+, |2/ are the order statistics for a sample of absolute values
from the standardized normal distribution. By applying the fundamental lemma
of hypothesis testing, we find the most powerful test has test statistic

E{eizailzl €) }
’

a function of 8, -+ - , 8, . For & small this can be approximated by

(4) E{l1+ ) siz]w} = 14 62 siB{]z]|w}.
An equivalent statistic is
®) 2 siE{| 2w}

This is the Wilcoxon test statistic, > s, with ranks replaced by expected order
statistics for a sample of absolute values from the standardized normal. The
limiting distribution of (5) under the hypothesis can be shown to be asymptot-
ically normal by the use of the central limit theorem and a result of Hoeffding [6].
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