LINEAR ESTIMATION FROM CENSORED DATA

By R. L. PLACKETT
University of Liverpool

1. Introduction. Suppose that a sample of n random variables is taken from
a continuous probability distribution, whose density function is f [(y — u)/¢]/,
where u and ¢ are unknown. Arrange the variables in order of magnitude, and
denote them by 41, %2, + -+ , ¥» , Where

N<y:< -+ < Y.

We shall discuss the problem of estimating u and ¢ from the k successive variables
Yus Yut1, " ** , Yo, Where v = u + k — 1. This problem arises, for example, in
life-testing, and some applications are described by Gupta [7].

When using the principal results derived here, the expected values of ordered
variables are essential, but tables of these quantities for normal samples are,
at present somewhat limited. However, recent studies by Berkson [1] have shown
the importance of the logistic distribution, which closely resembles the normal,
and some properties of ordered logistic variables are given in Section 2. We now
turn to the main problem. If u and v are fixed, the best linear unbiased estimates
of u and o can be calculated by least squares, given the expected value and
dispersion matrix of the vector of ordered variables (Godwin [6], Lloyd [11],
Gupta [7]. In general, special tables become necessary, and it seems desirable to
obtain simple formulae when samples are moderate or large in size. This is
achieved in Section 3, where asymptotic values of the coefficients of
Yu, Yus1, ***, Yo are derived. An examination of the conditions involved is
supplied in Section 4, by considering the limiting form of the maximum likelihood
equations. Several illustrative numerical tables complete the paper.

2. Ordered logistic variables. The logistic distribution is defined by

(1) L = log{p/(1 — p)},

where p is the probability of a value less than L. Suppose that L(¢; n) is the

ith variable in ascending order in a sample of size n from this distribution. Then

. n! ‘(p )"’ 1y nei

" & exp {wL(z; n)} T=Dm = 'i)!-£ (1 ey (1 —-p""dp
_G=14+w!n—17—w!
- @ = Dlin — 9!

Take logarithms, differentiate with respect to w, and put w = 0. The cumulants
of L(¢; n) are

®) Gm) = L log (i = D1+ (=1L log (n — )1
sz,n—d—wiogz— : mogn 1)
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132 R. L. PLACKETT

and are thus expressible in terms of polygamma functions, tabulated for j = 1,
2,3,4in [2]. For { — 1) > (n — 1), we obtain

o 1 1 ORI S

4) Kl(";n)_(n_i+1)+(n—i+2)+ +(i—1)’
. T 11 1
Kz(i;n)=§_{1+§§+§+"‘+(i_1)2}

® 1 1 1
_{1+§§+§+"’+ - -)2}’

(n—1

o 1 1 RTINS
6)  w@;n) = 2{(n_ TF T m—it T T (¢ - 1)’}’
o 1,1 1
K4(z,n)_ﬁ—6{1+52+§2+-..+(i_1)4}
) 1,1 1
—o{td gt gt iy

Suppose that z(7; n) is the sth variable in ascending order in a sample of size
n from the probability distribution whose density function is f(z) and distribu-
tion function F(z). Let o be fixed, 0 < a < 1, and define ¢ by

8) a = F(1).

We require the two following results. As n — ©, with ¢ = [ra]
9) &x(i;n) = ¢ + O(n™)

and

(10) Fl{ez(i + 1;n)} — F{ex(s; n)} = 1/n + O(n™>).

The proofs are based on the Taylor expansion of z, considered as a function of
L, about the value L = ki (z; n). This, after expectation, gives

(11) gz(i;n) = 20 + 2% + 32 k5 + 22 (kg + 362) + -+,

where 27 is the value at L = «,(¢; n) of the Jth derivative of x with respect to L.
Now

(12) x(i;n) = Hog{(d — 1)i/(n — 9)(n — 7 + 1)} 4+ O(n™)
whence

(13) owi;n) =)+ 0@™),

where

(14) A = log{a/(1 — a)}.

Also

(15) k(35 n) = O(n'™) (G=238,--).
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Assuming 2® to be bounded, we can substitute (13) and (15) in (11) to obtain
(9). As regards (10), we suppose that z® and z® are bounded, in which case

(16) &z(i + 1;n) — &x(3;n) = {1. + L Lo 4 o).
i (n—1)
On the further assumption that df/dz is bounded, (10) results.

‘We shall now consider the standard normal distribution in more detail. Denote
its density function by ¢(z) and distribution function by ®(z). Here

a7 2 = a1 — @)/,
(18) 2@ = {2z — (28 — 1)},
(19) 'x("') = (2P)° + 22292 + 2P0 — 20) — 22PB(1 — ®),
20) ¥ = 5@")’z® + ®{222® — (20 — 1)}
+ 22P{2z® — 20(1 — 3)} + 22028 — 1)3(1 — ¥).

These derivatives are all bounded, their maximum absolute values being given
below.

E10) z® x® x®)

0.62666 0.07376 0.06724 0.04597

The absolute value of the remainder after (j — 1) terms of the series (11) is
at most B;max | z'” |/j!, where 8; is the jth absolute moment about the mean
of the ¢th ordered logistic variable in a sample of n. Since 8; is known when j
is even and the inequality (8,)"" < (8j41)"“*™ is available when j is odd, we
can thus assign bounds to &z(7; n) for all values of j. As an illustration, take
&z(19; 25).

i Series (11) to j terms Absolute maximum error
1 0.642835 0.007656
2 0.636781 0.002521
3 0.636656 0.000262

David and Johnson [5] express z as a function of ®, and the value for &2(19; 25)
from the first four terms of the series on p. 236 of their paper is 0.636904. How-
ever, their formula is arranged as a power series in (n -+ 2)7, and a similar
rearrangement of (11) would be necessary before a full comparison of the two
approaches can be made. This will be undertaken on another occasion.

3. Least squares estimation. Let ¢; denote the expectation of (y; — u)/e.
Write

(21) fo= 1),
(22) pi = F(t),
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and

(23) ¢gi=1-—p; C=uu+1,---,0).
Let m be the vector of (y; — u)/o fori = w,u + 1, --- , v and put

(24) t=8&m

and

(25) V =59om = &{(m — &m)(m — &m)'}.

In principle, ¢ and V can be computed from the known function f(x). The esti-
mate of

(26) 6 = [5]

given by generalized least squares is

@7 g% = (A'V7A)TA'V Yy,
where
(28) A= 1.

As V is difficult to handle analytically, we replace it by W, a-symmetric matrix
whose elements are {a;b;} for ¢ < j, where

(29) a: = pi/f: C=uu+ 1,0
and

(30) b; = ¢;/f; G=uu+1,--,0)
Since Dy ~ Wo’/n, the unbiased estimate

(31) 6" = (AWA) AWy

may be presumed to have the same asymptotic properties as 6*. We therefore
consider the limiting form of *.
The inverse of W has been given by Hammersley and Morton [9]. Put

(32) Ay = 0, Qyy1 = l, b“—l = 1’ b'+l _ 0,
Then
Cu du 0 O 0 _I
du Cut1 du+l 0 e 0
(33) W/"_1 — 0 du+1 Cut2 du+2 cee 0
R )
0 O e Co—1 d,_l
0 0 e dv—l Cy
where

(34) C; = (ai+1bi—1 — @iibiy1) / (a.'b.-.,_l - ai+1bi)(ai—lbi - aibs‘—l)
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and

(35) di = 1/(abiys — aipabi).

Denote A’'W" by @, and define

(36) he = 3@Dess — po-1)  (s=u+ Lu+2,---,0-1),
(37 hu = Pus1 — Pu,

and

(38) ho = Do — Dot

If the elements of G are considered as functions of ‘p, , Put1, -+, s then gi,

depends on p, and pu41 ; g1 ON Py, D5, and Dy ; and gy, o0 Py and p, . In
1w, PUt Pup1 = Du + hu ; in gy, , replace po—; by . — ke and p.y1 by ps + ks ;
and in g1, , put po—1 = P, — hy . The first and third substitutions are exact; the
second one is approximate, but if n — o with u = [na] and » = [ng], the values
of p; tend to become equally spaced between « and 8, as (10) shows. The elements
in the second row of @ are treated similarly, so that both elements in the sth
column are now expressed as functions of p; and &; . Expanding by Taylor series
as far as A? in the numerators of gy, and gs, and as far as h’ elsewhere, the elements
of G finally reduce, after a good deal of straightforward algebra, to the expres-
sions given below. The primes signify differentiation with respect to p, so that

) o dloss
z
and
s _ dlogf
(40) " = ot

In calculating the elements of A’W ™A, we pass from sums involving h to in-
tegrals involving dp.

4. Maximum likelihood estimation. The likelihood of y. , Yuty1, *** , Yo iS

et O T o)

Denote by 4 and ¢ the maximum likelihood estimates of u and o, respectively.
They satisfy the equations

(41)

(42) — N f(yu _'“) GZdIng<-—,—)+

nF <yu ;— I.l,) N i=mu g
[
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TABLE 1

Asymptotic value of A’ W

Row—Column

General Dénsity

Normal Density

(A, u) Ti/pu — fufu — $hufuft fiu/pu + tufu + by
(1, 8) _’%Of'fil hn
1, v fﬁ/qf + fofs — %hufvfé' fo/@ — tfo + %R,
(2y :u/) tuf?t/pu - tufufu _’fu - %’hu(fu + fuf:lttu) tufﬁ/pu + t?;fu - fu + hutu
(2, 3) _,ha(fa + f{f;,ta) , 2hat:
(27 P) tqffr/Qv + tvafv + fv - %hv(fv + fufz’r’tv) tufﬁ/Qv - t:fv + fa + hvtv
TABLE 2
Asymptotic value of A’ W A
gcﬁ::v;n General Density Normal Density
A, 1) | =J50ff" dp + fi/ae + fuf o + Fi/Pu — fuf v |f3/@r— tefot Do+ 2/ Du+ tufu— Du
A,2) | =[50 51" dp + tofs /00 + tufufu + tuf 4/ Du— tfuf | tofo/Q0 — Gofo — fo + tufi/Pu
+ tafu + fu
and g
2, 1)
@2) | =JoLeff" dp + Gfe/as + Lfufs + Py tofo/ Qv — tafo — tofo + 2P0+ tifu/Pu
+ tffﬁ/p« - tﬁfufu — Pu + tifu + tufu - 2pu
A Yu — ﬁ
~ (u—l)(yu—u)f< 7 )_@_li (e — ,)dlogf<y,~—ﬁ)‘
nF(yu—ﬁ> n ne YT TR )
&
(43) "
A yv i 4
(n - v)(yv - I»‘)f( P )
+ A = 0’
)
g
where

d log f
dz

<yi - ﬁ)
&

means the value at (y; — 4)/é of the function d log f/dz. The direct solution
of (42) and (43) for normal samples has been described by Cohen [3], who used

successive approximation; and, when

1, by

Gupta [7], who calculated a

special table which shortens the work. Halperin [8] has indicated conditions

under which
(a) the maximum likelihood equations have a consistent set of solutions

i; é;
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(®) Vol — ») and Vn(é — o) have a bivariate normal limit distribution;
(c) the dispersion matrix of the limit distribution is best in the sense of
Cramér [4], §32.6.
The necessary assumptions involve derivatives of f[(y — r)/cl/e with respect
to u and o, and we shall suppose henceforth that they are satisfied.
We expand (y; — fi)/é in a Taylor series about #; and obtain

_<u—1)a{f_,, (yu—ﬁ_ )(Jj_f__[_) 1(yu—ﬁ_ )}
— o + e tu e ) + 5 p t.) C

A Y ! A A 2
) -3 R+ (1;" — t.-)fifé’ +1 (y —F - t.) D,}
n =u 6’ 2 3’
A A / 2 A 2
+ u{ﬁq_ (y”_:'_‘_‘ - tv)(f”f".pf_;)_pl(y” A_ M—&;) E}:(),
n 0o P ¢ q 2 F
A A / 2
_ = m{@ + (_.y — B _ tu) fo g Whufu _ t__f_)
n Du a u Du Du

+1 y"——f‘—tyR _k_ty t:fi
2 6’ * n N i=u v

A u . ~ .
+ (y———" - t.-) tfif! + 19 + %(y_—e _ ti) S,} L =0
g g

n

tnv v_A v tvv; tvz? 1 v_A 2
{——f-+(y—A—“—t.,)(]i+—f—f—+——£;>+—<y . "—%) T} = 0.

9 o g e Qo 2 g
Here C, D;, E, R, S; and T are second-order derivatives with respect to z evalu-
ated at points intermediate between (y; — £)& and #; ; and the primes have
their previous meaning.

We assume that the second-order derivatives of
dlog f xdlogf 7 o o

’ ) ) ’

dz ’ dt ’ p’ ¢ p’ ¢

(45)

with respect to z, are functions of bounded variation. This condition is not
satisfied if F(z) = 0 at a finite value of z, sihce then

Z(@)|--
@ \p

at the lower terminus of the distribution; nor if F(x) = 1 for finite z, since

i () -
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there. However, all is well for the normal é.nd_ logistic distributions, as the follow-
ing table shows.

Maximum absolute values of second-order derivatives

Distribution l _:.;B_ , E:’Tﬂf L’ ! % %f_ | _5;1
Normal............. 0 2.00 0.30 0.30 2.00 2.00
‘Logistic............ 0.19 1.00 0.10 0.10 0.50 .50

Let « and B be fixed such that 0 < & < 8 < 1. We assume that f(#) = ¢ > 0
wherever F'(a) < ¢t < F'(8). For any such ¢, let f, p and ¢ be defined in
accordance with (21), (22), and (23). Then

(46) 2 = pg/f’

has a finite maximum, which we denote by 2 . We proceed to derive the form
taken by the maximum likelihood equations when » = [na], v = [n8l. and
n— o,

Consider the variable

(7) (yi&_ﬁ_ti)=(yi_ﬂ_ti”)_(ﬁ_ﬂ)_ti(&_a’)

A

[

Given.eg > 0, &2 > 0, and ¢ such that ¢ > ¢ > 0,

pe{ Bt i) > 4 (g = - tol > o)
o g — €,

(48)
+ Pr{[(f = u) + ti(¢ — 0)| > &} + Pr{l¢ — ol > &}.

‘\/;1. (yt

g
with zero mean and unit variance (Cramér [4], §28.5). According to (9), (¢; — )
is O(n™") and so \;— (y. —a - t;) has the same limit distribution. Hence

Typically, ¢ = [np], and as n — o, - t) is asymptotically normal

49) Pr{lyi — u — lio| > a} ~ 28(— na/0z) ~ 2(oz/na)p(n*e1/0z).

Similarly, by the asymptotic properties of 4 and ¢, there exist finite quantities
2, and z; such that

(50)  Pr{|(d — u) + (e — o) > a} ~ 2(ca/n"a)é(n

and

”262/0'22)

1/2

(51) Pr ”3‘ - ¢r| > 63} ~ 2(023/nl/2€3)¢(n 63/0'23).

Consequently, as n — «,

v A 3 .
(62) X Pr{ y"__&__“ - t,.l >at 62} <208 - o:)n”"’crj‘_zl (2i/¢))p(n'%¢;/a2;).
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Thus, given ¢ > 0 and § > 0, arbitrarily small, we can find N such that

(53) i Pr{

g—/—‘r—“—t.-

[ o

>e}<8 for n = N.

Therefore, by Boole’s inequality,

Pr{
(54)

il

I\

e for i=u,u+1,---,v}
=21—46 for n=N.

When this event occurs, the terms in (44) and (45) which involve (g-/-';—"‘ -t

are negligible compared with the remaining terms, because C, D;, E, R, S; and
T are all bounded. We therefore omit the squared terms, and replace sums by
integrals as before (cf. Hoeffding [10]), at the same time making an Euler-
Maclaurin adjustment on the coefficients of y. and ¥, , so as to correct for bias
in the estimates and bring the results into line with those previously obtained.
The linearized form taken asymptotically by the maximum likelihood equations
is then given by the coefficients in Tables 1 and 2 on replacing k; by 1/n through-
out. We shall use x° and ¢° to denote the corresponding linearized estimates.
The asymptotic dispersion matrix of the maximum likelihood estimates is a/n
times the inverse of the equations for x’ and o°.

These results show, not only that the maximum likelihood estimates of u
and ¢ are asymptotically linear, but also that the best linear unbiased estimates

TABLE 3A
Coefficients of ordered variables when estimating the mean. 6* above, 6° below

k N 2 s " Y5 Yo » ¥ » Yo

2 |—1.8634 | 2.8634
—2.1547 | 3.0554 |
3 |—0.6596 [—0.2138 | 1.8734
—0.7487 |—0.2248 | 1.9309
4 |—0.2923 [—0.0709 | 0.0305 | 1.3327
—0.3304 |—0.0780 | 0.0362 | 1.3543
5 |—0.1240 (—0.0016 | 0.0549 | 0.0990 | 0.9718
—0.1418 |—0.0055 | 0.0567 | 0.1071 | 0.9797
6 |—0.0316 | 0.0383 | 0.0707 | 0.0962 | 0.1185 | 0.7078
—0.0394 | 0.0366 | 0.0718 | 0.1003 | 0.1261 | 0.7100
7| 0.0244 | 0.0636 | 0.0818 | 0.0962 | 0.1089 | 0.1207 | 0.5045
0.0222 | 0.0633 | 0.0829 | 0.0988 | 0.1131 | 0.1270 | 0.5045
8| 0.0605 | 0.0804 | 0.0898 | 0.0972 | 0.1037 | 0.1099 | 0.1161] 0.3424
0.0616 | 0.0812 | 0.0911 | 0.0992 | 0.1066 | 0.1137 | 0.1210| 0.3423
9| 0.0843 | 0.0921 | 0.0957 | 0.0986 | 0.1011 | 0.1036 | 0.1060| 0.1085 0.2101
0.0877 | 0.0934 | 0.0973 | 0.1004 | 0.1033 | 0.1060 | 0.1089| 0.1120| 0.2113
10| 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000| 0.1000| 0.1000| 0.1000
©0.1048 | 0.1018 | 0.1018 | 0.1018 | 0.1018 | 0.1018 | 0.1018| 0.1018| 0.1018| 0.1048
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are asymptotically normal and efficient. In order to compute the coefficients of
the ordered variables, only tables of f(x), F(z) and ¢ are necessary. For normal
samples, Teichroew [14] gives #; to 10 D for n < 20, and an extension to n < 100
with 24 D is being prepared (Ruben [12]). For logistic samples, explicit formulae
have already been given.

6. Numerical tables. Tables 3A and 3B refer to the estimation of  from the
smallest k& observations in a sample of size n = 10 from a normal distribution.
They give the coefficients of 1, 2, -+, yx for k < 10 in '

*®
(i) the best linear unbiased estimate, §* = Z* R

(ii) the linearized maximum likelihood estimate, 6° =[L‘o]

Table 4 gives the coefficients of x and ¢ in the expectation of 6°. Suppose in
general that

(55) &6’ = Bo

Then B7'¢" is an unbiased estimate of 6, and the efficiencies of its elements, rela-
tive to u* and o* respectively, have been calculated from the table of Dm in
Sarhan and Greenberg [13] when, as above, n = 10,4 = 1,andv = 2,3, - - - 10.
These efficiencies never fall below 0.9998, a result which suggests that 6°, cor-
rected for bias, can be used in place of 6*, with negligible loss of efficiency, for
all sample sizes of practical importance.

TABLE 3B

Coefficients of ordered variables when estimating the standard
deviation. 6* above, 6° below

k »n 2 3 » ¥ ¥s » s ¥ 10

2 [—1.8608 | 1.8608
—2.1366 | 2.0404
3 [—0.9625 |—0.4357 | 1.3981 -
—1.0767 |—0.4586 | 1.4738
4 (—0.6520 [—0.3150 |—0.1593 | 1.1263
—0.7190 |—0.3330 {—0.1611 | 1.1681
5 (—0.4419 [—0.2491 |—0.1362 |—0.0472 | 0.9243
—0.5374 |—0.2631 (—0.1414 |—0.0425 | 0.9499
6 (—0.3931 {—0.2063 |—0.1192 {—0.0501 | 0.0111 | 0.7576
—0.4266 |—0.2175 |—0.1250 (—0.0498 | 0.0180 | 0.7740
7 1—0.3252 |—0.1758 (—0.1058 |—0.0502 |—0.0006 | 0.0469| 0.6107
—0.3513 (—0.1849 |-0.1114 |—0.0517 | 0.0022'| 0.0545| 0.6218
81—-0.2753 |—0.1523 |—0.0947 |—0.0488 |—0.0077 | 0.0319| 0.0722| 0.4746
—0.2963 |—0.1600 |—0.0998 |—0.0510 |—0.0069 | 0.0358| 0.0799| 0.4830
9 [—0.2364 |—0.1334 |—0.0851 |—0.0465 {—0.0119 | 0.0215| 0.0559| 0.0936/0.3423
—0.2539 {—0.1399 (—0.0897 |—0.0490 |—0.0122 | 0.0234| 0.0602| 0.1009/0.3505
10 {—0.2044 (—0.1172 |—0.0763 |—0.0436 |—0.0142 | 0.0142| 0.0436| 0.0763|0.1172(0.2044
—0.2196 {—0.1231 [—0.0807 |—0.0462 |—0.0151 | 0.0151| 0.0462| 0.0807|0.1231/0.2196
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TABLE 4
Expectation of §°
no o0
k
B» o M o
2 0.9007 0.2560 —0.0962 1.2446
3 0.9574 0.1104 —0.0616 1.1492
4 0.9821 0.0539 —0.0450 1.1066
5 0.9962 0.0260 —0.0346 1.0827
6 1.0054 0.0108 —0.0270 1.0678
7 1.0119 0.0022 —0.0208 1.0583
8 1.0166 —0.0023 —0.0153 1.0529
9 1.0204 —0.0038 —0.0097 1.0523
10 1.0243 0.0000 0.0000 1.0668
TABLE 5
1/n n k2 k3 ha hs
0.5000 0.4274
0.3333 0.3013 0.3013
0.2500 0.2316 0.2326
0.2000 0.1879 0.1888 0.1897
0.1667 0.1580 0.1588 0.1597
0.1429 0.1362 0.1370 0.1378 0.1378
0.1250 0.1198 0.1204 0.1212 0.1212
0.1111 0.1068 0.1074 0.1081 0.1082 0.1082
0.1000 0.0964 0.0970 0.0976 0.0976 0.0976

Table 5 also refers to normal samples. Used in conjunction with the relation
(56) h.' = hn+1-,' )

it gives the values of A, forn = 2,3, --- 10 and 1 < ¢ < n. That there is close
agreement between 8 and 6° can be inferred from Table 5 in particular and
(10) in general.

6. Acknowledgements. I am grateful to Mr. C. J. Taylor for doing all the
calculations; and to the referee for a correction to my maximal remainder in (11),
and other helpful remarks.
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