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so that

(15) ) = (D = w0 = i)
for 0 = » =< 7/n which integrates to give

(16) H(G,u) = %(Z’) Wil — u)™.

The marginal distributions are given by

e n(e3) 10 (-

and

7=1

= 52 ()i [£u]) (1 min £ ])

The algebraic identity implied by the relation > i p; = 1, like that in (8),
has been indirectly derived. Both identities may be algebraically proved using
the formula quoted as (5) in [2].

We repeat that the method used here to obtain H(7, u) is applicable to the
general class of barriers (8(d), e(d)).

K(u) =Pr(U*=2u) = i:H(z’,m_in [%,u])

(18)

REFERENCES

[1] Z. W. BirnBauM aND F. H. TiNGEY, “One-sided confidence contours for probability dis-
tribution functions,” Ann. Math. Stat., Vol. 22 (1951), pp. 592-596.

[2] Z. W. BirnBaUM AND R. PYRE, “On some distributions related to the statistic D%,”
Ann. Math. Stat., Vol. 29 (1958), pp. 179-187.

[3] D. G. Crarman, “A Comparative study of several one-sided goodness-of-fit tests,”
Ann. Math. Stat., Vol. 29 (1958), pp. 655-674.

[4] R. PykE, “The supremum and infimum of the Poisson process,’”’ Technical Report No.
39, Applied Mathematics and Statisties Laboratory, Stanford University, March
1958 (Abstract in Ann. Math. Stat., Vol. 29 (1958), p. 327).

et ———————

APPLICATIONS OF A CERTAIN REPRESENTATION OF THE
WISHART MATRIX

By RoBErT A. WsMAN
University of Illinois
0. Summary. Apart from pre- and post-multiplication by a fixed matrix and
its transpose, the Wishart matrix A can be written as the product of a triangular

matrix and its transpose, whose elements are independent normal and chi
variables. Various applications of this representation are indicated. Examples
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are given concerning the diagonal elements of A™, the sample ordinary and
multiple correlation coefficient, the characteristic roots of A and the sphericity
criterion i the bivariate case.

1. Introduction. Let X be a p X n matrix, with p < n, whose columns are
independent and distributed according to a p-variate normal law with mean
vector 0, and covariance matrix 2. The matrix A = XX’ will be called the Wish-
art matriz. If € = I, (the p X p identity matrix), then A can be written in the
form

(1) A =TT

in which T is a triangular p X p matrix whose elements are independent random
variables, the off-diagonal elements being N (0, 1), and the diagonal elements
being x variables with certain degrees of freedom.! More specifically, if we choose
T to be lower diagonal (which we shall do from now on), then T;; is a x vari-
able with » — ¢ + 1 degrees of freedom. The representation (1) is known; in
fact, it is implied by the Bartlett decomposition [2]. However, only few authors,
like Mauldon [6], state the representation (1) and the nature of T explicitly.?
Equation (1) is also implied in [8]. It is the purpose of this note to point out
some of the applications of (1), or, as the case may be, of the more general
equation (2) below.
If = does not necessarily equal I,,, let C be a p X p matrix such that

CC’' = =,
Then the Wishart matrix can be represented as
(2) A = CTT'C/

with T as before. It may be convenient in applications to choose C also lower
triangular. If £ = I,, we may take C = I,, so that (2) reduces to (1).
Equation (2) can be used in several ways. In the first place the Wishart
distribution can be derived very easily starting from the distribution of T,
since the Jacobian of the transformation (2) from T to A is simple to com-
pute. Secondly, if it is desired to generate values of A, or of a function of A,
by a random process (for an application see [7]), this can be done conveniently
by generating values of T. In the third place, the distribution and certain prop-
erties of functions of A can sometimes be obtained quite easily by expressing
them as functions of the elements of T. It is of this third kind of application
that we will give some examples. Concerning notation and nomenclature, the
ratio of a normal and a central x variable will be called a ¢ variable, and the
ratio of a x* variable and a central x* variable will be called an F’ variable (the
primes are used here to distinguish these variables from the customary ¢ and
F variables, in which the x° variables have been divided by their degrees of

1 In [8], footnote 3, the diagonal elements were erroneously termed x? variables.
2 Very recently, A. M. Kshirsagar (Ann. Math. Stat., Vol. 30 (1959), pp. 239-241) also
gave the decomposition (1) and a simple derivation.
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freedom). The degrees of freedom of a ¢’ or F’ variable will be indicated by
subscripts on ¢’ or F’.

2. Applications.

ExamPLE 1: THE DIAGONAL ELEMENTS oF A~ 1r ® = I,. These diagonal
elements are obviously identically distributed, so it suffices to consider (A7) ,, .
By (1) we have A~ = T/7'T™ (with probability 1, T is non-singular). Now
T~ is also lower triangular, and its diagonal elements are the reciprocals of the
corresponding diagonal elements of T. Thus, we find

(A_l)pp = (T,—l)pp(T_l)pp = I/Tip .

Hence, each diagonal element of A™ is the reciprocal of a x%_p+1 variable. This
result can be applied to exhibit Hotelling’s 7" as a constant times an F variable

8].

ExampLE 2: THE SAMPLE CORRELATION COEFFICIENT. This is essentially a
bivariate problem, so we may set p = 2. Let the population correlation coefli-
cient be p, the sample correlation coefficient r = A (Andas) . It suffices to
assume Zy = Iy = 1, Ty = 2y = p. This can most conveniently be effected
by choosing C lower triangular, with Cyy = 1, Coy = p, Caos = (1 — p°)"%. From
(2) we compute then

T T21+Tup/'\/1—p
\/1-—7*2 T

The same expression was also obtained by Elfving [3], following a different
method. The right hand side of (3) can be described as a non-central th_y vari-
able, with a random non-centrality parameter Typ(l — p°) ™% which is a xa.
variable times p(1 — p*) ™%. From this remark an expression for the density p(p, - )
of r(1 — *) ™ follows at once. Let f(p, -) be the density of Thyp(1 — o°) ™ and
g(%, -) the density of a non-central ¢,_; variable with non-centrality parameter

& Then

(3)

(4) plo,2) = [ 1o, Do(t, ) .

From (4) the monotonicity of the probability ratio follows then immediately
by applying a theorem of Lehmann [5] (theorem 3), or a theorem of Karlin
[4] (lemma 5).

ExampLE 3: THE SAMPLE MULTIPLE CORRELATION COEFFICIENT. Let R be the
population multiple correlation coefficient between the pth variate and the
first p — 1 variates and let R be the corresponding sample quantity. Then

(5) 1 - R = IA! / IA*I Amv

where A* is obtained from A by deleting the last row and column. It is suffi-
cient to choose C to be lower triangular, with Cy; = -+ = Cp_y, o1 = 1,Cpp =
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(1 — R)™ €, = R, all other elements equal to 0. Substituting into (2) and

using (5), we derive
p=1

(6) R (Tp1+TnR/\/1 —-R 2)2+§ T‘i,-

1—R T2,
This can be described as a non-cent_,ral F;,_.l,,,_,,+1_variable, yvith a random non-
centrality parameter TuR’/(1 — R'), which is R*/(1 — R?) times a x> vari-
able. An expression for the density of R*/(1 — R?) can then be written down

at once, and the monotonicity of the probability ratio follows in a similar way
as in Example 2.

ExAMPLE 4: THE CHARACTERISTIC ROOTS OF A AND THE SPHERICITY CRITERION
IN THE CASE p = 2 AND X = I, . Let the square roots of the characteristic roots
of Abe; and X2 (A\1 = X\2). We have

(7) AN+ =trA
(8) AN = |A|

‘The joint distribution of A\, and A; is determined by the joint-distribution of
(M — N)? and 2\;\;, which turns out to be very simple. Using (7), (8) and
(1) we compute

(9) M — M) = (Tu — T)®* + Th
(10) 2)\1)\2 = 2T11T22 .

By the lemma below, the right hand sides of (9) and (10) are independent,
and distributed as x3 and x3a_» respectively.

Lemma. If X and Y are independent and distributed as xn , xn—1, respectively,
then (X — Y)* and 2XY are independent and distributed as x3 and xan.—» respec-
tiely.

The proof is straightforward, and will be omitted.

The sphericity criterion (Anderson [1], section 10.7) in the bivariate case is
the ratio Z = 2 |A|"? / tr A, which can also be written as

Z = 2:h/ (A1 + 2.
Using (9) and (10) we find

VA _ 2Ty T
1—-2Z (Tu —_— T22)2 + T§1

which is an Fs,_,» variable, by the lemma.

The statistic Z, or, equivalently, Z / (1 — Z), can be used to test the hypothe-
sis H that ® = o’I,(¢’ unknown) against the alternative that this is not so.
The likelihood ratio test rejects H if Z < constant. It can be shown that this
test is also uniformly most powerful invariant. In the first place, Z is maximal
invariant. Secondly, the distribution of Z depends on a single parameter only,

(11)
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e.g. on 2| X |"?/ tr . In the third place, it can be shown that the probability
ratio is monotonic. This can be demonstrated either by starting from
the Wishart distribution, or by using (2). However, in this example the latter
way does not seem to be any simpler than the former. The moral seems to be
that in some cases the utilization of the representation (1) or (2) leads to the
results in a fast and elegant way, but in other cases the conventional approach
may be more practical.
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ON DVORETZKY’S STOCHASTIC APPROXIMATION THEOREM

C. DerMAN! aAND J. Sacks?
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1. Introduction. A very general theorem was proved by Dvoretzky [2] on
the convergence of transformations with superimposed random errors. This
work followed that of Robbins-Monro [5] and others (see [6] for bibliography)
and contains the most comprehensive results on convergence (with probability
one and in mean square) of the stochastic approximation procedures of Robbins-
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