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GENERALIZED D} STATISTICS!

By A. P. DEMPSTER

Harvard Unwversity

1. Introduction. The purpose here is to present simplified derivation methods
which can be applied to generalizations of some distributions derived by Birn-
baum and Tingey [1] and Birnbaum and Pyke [2]. In the case of [1] the generaliza-
tion is explicitly written down as equation (5)’. Other authors have noticed this
generalization; it appears implicitly in equation (31)-of Chapman [3] and is given
explicitly by Pyke [4]. However the derivation given in the following section
differs from the methods of other authors and gives a probabilistic meaning to
each term in the summation formula (5)’. In the case of [2] explicit formulas
are given for a special case of our generalization different from that considered
by Birnbaum and Pyke.

Consider a sample of # from the uniform distribution on (0, 1). Denote the
sample c.d.f. by F,(x). The relevant part of the curve y = F.(zx) is ‘entirely
contained by the closed unit square 0 < z < 1and 0 < y =< 1, and within this
square the population c.d.f. is represented by the line y = . For 0 £ 6 < 1
and 0 < e < 1 the line joining (0, 8) and (1 — ¢, 1) will be referred to as bar-
rier (8, €). A set of such barriers moving away from ¥y = z may be conceived of,
and we are concerned with a set of probabilistic questions about which barriers
are crossed and where by the curve y = F,(x) as it passes from (1, 1) to (0, 0)

2. The basic derivation. Denote by f;(0 < 7 < n — 1) the probability that
y = F.(x) crosses the barrier (3, ¢) at level y = (n — j) / n not having crossed
itatanylevely = (n — ¢) / nfor7 < j. Denote the abscissa of the intersection
of the barrier (3, ¢) and level y = (n — 7) / n by m; . Then it is easily checked
that

1 — _ _-Z
(1) m,—l_s(l ) n)'

Finally, let us use b(r, s, p) for the binomial probability (:) p (L — p)”

An expression for f; may be derived as follows. Given that y = F,(z) passes
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594 A. P. DEMPSTER
through (m.;, 1 — i/n) the conditional probabilities of passing through
(m;, 1 —j/n) and (m;, 1 — (j — 1) /n) are respectively

and b(j — 7 — 1, n — %, (m; — m;) / m;), for 5 > 4. The unconditional prob-
abilities of arriving at these 2 points can therefore each be computed in 2 ways as

i—1 _ i
@ Wt —m) = B (i == M) 4,
and ‘
Jj=1 o '
(3) b(j—l,n,1—m,.)=zfib(j—i_1,n_i,&;l_ﬂf),
=0 i

If equation (3) is multiplied by [(n — j + 1) / (F — D)ll(m, — m;) / m;],
which factor is independent of 7 from (1), and (3) is then subtracted from (2),

then fo, -+, fj—1 are eliminated and so,
. n—j+1m;—m;,, .
fi = G L= my) = = m BG4, 1= my)
or after reduction
(4) fi=e(3) @ = mpmi

or

: o (n L= edV7 (1 - o Lzed)”
“) A=) A (B =t

If P(n,8,¢) =1 — Q(n, s, ¢) is defined to be the probability that y = F,.(x)
nowhere crosses the barrier (8, ¢) then

(5) Qn, 5, ¢) = ]};fj

where k; is the largest integer such that k/n < 1 — 8. Thus in full form

, & (n 1—ejV? 1 — g\’
(8")  Q(n,s,¢) *Jgof(j)( +1—aﬁ) (1—6—1—67»)

This formula is a direct generalization of the formula in [1] for P,(e) where
P.(e) = P(n, ¢ ¢).

Another interesting special case is & = 0. Here it should be made definite
that we are considering only intersections of y = F.(x) and barriers (0, €)
occurring at points other than (0, 0). A special derivation for Q(n, 0, €) is given
as follows. Considering once more the movement of y = F,(x) downward from
(1, 1) in the general case of barrier (4§, €) we see that f; is the probhability that
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y = F.(x) passes through (m;, 1 — j/n) times the conditional probability
that it did not cross the barrier between (1, 1) and (m;, 1 — j/n), i.e.

(6) fj=b(j,n,1—mf)P<j,0 : )

’l—m,-

from which using (4) we find,

P025) = () 0= mmar [ 0 =]

€
l—mj

whence by reparametrizing we may deduce that
) P(n,0,¢) = ¢
independently of n. Finally from (5)’ and (7) we have

)

the algebraic identity here having been circuitously derived.
It is worth remarking that if G(z) is any continuous c.d.f. and G.(z) the sam-
ple c.d.f. for a sample of n from G/(z) we have by transformation from

P(n, s, ¢) =Pr(F,.(x) §6+i:ix for O<x<1) that
(9)
P(n,s,e¢) =Pr(Gn(a;) é&-l——;-;—iG(x) for —»o <2z < +°°>
or
P(n,8,¢) = Pr ([1 — Ga(z) — [1 — 8]G(2) =< 81 — ¢
(10)

for —o <2< +®)

for 0 < 6 <1 and 0 < e¢ < 1. Therefore given any real numbers a, b and ¢
we can express Pr(aG.(z) 4+ bG(z) £ ¢ for —x <2 < «) as 0 or 1 or
P(n, 6, €) for correctly chosen & and ¢ depending only on a, b and ¢. In par-
ticular
a—1 .
(11) Pr(G.(z) £ aG(x) for —o <3< ®) = a oozt
0 f a1

3. The statistics D}, U* and ¢*. Suppose we consider the class of barriers
(d, d) moving away from line y = z as d moves from 0 to 1. The d correspond-
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ing to the furthest barrier reached defines random variable D} and the point
(U*, ©*/n) where this furthest barrier is touched defines random variables
U* and ¢*. Since

%
(12) Ux =% — D}
n

the joint distribution of any 2 of the 3 random variables determines the joint
distribution of all 3. In [1] the distribution of D% is presented: Pr(D} < d) =
P.(d). In [2] the joint and marginal distributions of U* and ¢* are derived.

Now it is possible to generalize this situation by defining a class of linear
barriers moving away from the line y = z restricted only by the requirement
that no 2 members of the class intersect within the unit square. These barriers
may be indexed by real variable d with at most one barrier corresponding to a
given d, and described as barriers (8(d), e(d)) where §(d) and e(d) are mono-
tone non-decreasing. We can allow d to take values in a discrete or continuous
set. Random variables D} , U* and 7* may be defined as in the previous para-
graph where relation (12) becomes

1 — e(D:)

(13) U* = [% - a(Di:)] g

Clearly now Pr(Df < d) = P(n, 8(d), e(d)) and this gives the distribution of
the generalized D} . A method of writing down the joint distribution of U*
and ¢* which applies in general will be demonstrated in the following section
applied to a special case where the formulas become fairly simple.

4. The class of barriers (0, d). The class of barriers (0, d) formed by rotating
a line through the origin may be of some statistical interest. It has been seen
in this case that

(14) Pr(D} < d) = d.

It is proposed now to investigate the joint distribution of U* and #*. Define
H(i,u) = Pr(¢* = ¢and U* < ) and h(s, u) = dH(%, u) / du, so that h(7, )
is the density of the joint distribution along the line y = ¢/n. It is evident that
h(i,u) = P.P.P;, where P; is the density function at u of the 7th order statistic,
P, is the conditional probability given that y = F.(z) passes through (u, 7/n)
that it does not touch the barrier through (u, i/n) above level ¢/n, and P;
is as P, but replacing above by below. Thus

n! —1 n—i
Ll T T
> — a1l = (n/u _ 1= (n/)u
Ia—P(n 1, 0, T >_ T

and
P;=P(t—1,0,1/1) = 1/1
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so that

(15) h(G, u) = (?)ui‘l(l — )" = (n/d)u)
for 0 < u < 7/n which integrates to give

(16) H(G,u) = %(Z‘) w1 — u)™

The marginal distributions are given by

e n(e) 1O (-

and

K(u) = Pr(U* < u) = gH(i,m_in [%u])

= 25 (7)(min £ ’“]>i~1<1 ~ min [ £ ,u])"""

The algebraic identity implied by the relation > i p; = 1, like that in (8),
has been indirectly derived. Both identities may be algebraically proved using
the formula quoted as (5) in [2].

We repeat that the method used here to obtain H (<, u) is applicable to the
general class of barriers (8(d), e(d)).

(18)
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APPLICATIONS OF A CERTAIN REPRESENTATION OF THE
WISHART MATRIX

By RoBERT A. WsMAN
University of Illinots
0. Summary. Apart from pre- and post-multiplication by a fixed matrix and
its transpose, the Wishart matrix A can be written as the product of a triangular

matrix and its transpose, whose elements are independent normal and chi
variables. Various applications of this representation are indicated. Examples
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