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0. Summary. The main purpose of this paper is to obtain the limiting dis-
tribution of certain statistics described in the title. It whs suggested by the
author in [1] that these statistics might be useful for testing the homogeneity
hypothesis H; that k& random samples of real random variables have the same
continuous probability law, or the goodness-of-fit hypothesis H» that all of them
have some specified continuous probability law. Most tests of H; discussed in
the existing literature, or at least all such tests known to the author before [1]
in the case k > 2, have only been shown to have desirable consistency or power
properties against limited classes of alternatives (see e.g., [2], [3], [4] for lists of
references on these tests), while those suggested here are shown to be consistent
against all alternatives and to have good power properties. Some test statistics
whose distributions can be computed from known results are also listed.

1. Introduction. Let X;; be independent random variables (1 < 7z < n;,
1 =7 = k), X;; having unknown continuous distribution function (d.f.)F;.
We are going to consider tests of two hypotheses, the homogeneity hypothesis

(11) H12F1=F2'—‘"'=Fk
and the goodness-of-fit hypothesis
(1.2) Hy:Fy,=F,= - =F. =G,

where @ is some specified continuous d.f. In the case of H;, the hypothesis al-
lows the common unknown d.f. to be any continuous d.f. The class of alternatives
to H, or H, can be considered to be all sets (Fy, -, Fi) which violate (1.1) or
(1.2), respectively; in discussing power under alternatives, continuity of the
F. is irrelevant.

Let

\ -1 )
S (x) = ny" (number of X;; < 2,1 < ¢ < n;)

be the sample d.f. of the n; observations in the jth set. We shall omit the sub-
script m; whenever this causes no confusion. For £ = 1 the Kolmogorov test
[5] and Cramér-v. Mises «’ test [6] of H,, and for k& = 2 the Smirnov test [7]
and the 2-sample analogue of the «’ test of H considered by Lehmann [8] and
Rosenblatt [9], may be thought of as test criteria based on simple measurements
of distance between S and G or between S® and S®, respectively. (In this
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paper, the word “distance” is not used in the technical sense; see [23], following
(5.1).) In [1], several analogous measurements of distance (dispersion) among
the S were suggested for testing H; or H, when k is larger than 2. For example,
for testing H, , some of the most obvious aralogues are

U= 2 4,5up.Cqyr| 89x) — 8 (2)],
V = supg,.Co | 89 (z) — 87 (x)],
T = sup.)_; C{S7(») — S(z)T,

Il

W= [ 5,089 @) - &) ad(a),

2 = max; [ " 089 (z) — S dS(a),

where C,,, and C; are positive constants (see, however, the next paragraph) and
S) = >; anf.j,-)(x)/Zj n; is the sample d.f. of the pooled k samples. Simi-
larly, for testing H,, one might use corresponding statistics U’, V', TV, W’ or
Z’, obtained from the above by writing G for 8 or S. Each of this last collection
of statistics has a distribution which does not depend on @ in the case that H,
is true, and each of the first collection has a distribution which does not depend
on what the common d.f. is when H, is true. In all cases, large values of the
statistic lead to rejection of the hypothesis. It is clear that an appropriate choice
of the C; and C,,, in the case k = 1 of H; or the case k = 2 of H;, reduces each
of these tests to one of those previously mentioned for those cases in [5], [6],
[71, [8], [9] (in the case of [8] and [9], the integrating measure is altered slightly,
as discussed in connection with (2.8) below).

Many. tests may be constructed along similar lines by allowing the C'; and
C,.» to be functions (of the S” for H, and of G(z) for H,) as in the treatments of
Kac [11] and Anderson and Darling [12] when k& = 1, by using other measures of
distance or dispersion, etc. In Section 5 we shall mention a few statistics whose
limiting distributions are easy to obtain from those of the usual Kolmogorov-
Smirnov and. w” statistics, but which are intuitively less appealing than those
we have mentioned, especially from a practical point of view. In fact, the limiting
distribution_v;of V' or Z’ (suitably normalized) is that of the maximum of mul-
tiples of k independent random variables with limiting Kolmogorov or ® dis-
tributions, and is thus trivial to obtain from these latter distributions. From a
practical point of view, the problem of testing H, may thus seem to be satis-
factorily answered by these statistics.

Thus, our main goal is to obtain the limiting distribution under H,; of ap-
propriate statistics for testing that hypothesis, and the corresponding results we
shall obtain for tests of H are less important by-products of the investigation.
Specifically, in Section 3 we shall obtain the limiting distribution of 7 (and
T') for C; = n;, as the n; — «, while in Section 4 we obtain the limiting dis-
tribution of W (and ¥¥’) under the same conditions. The limiting distributions
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of U, V, and Z seem more difficult to obtain, and the methods of this paper do
not apply at all to those statistics.

Many different proofs of the Kolmogorov-Smirnov results [5] and [7] now
exist. Combinatorial proofs such as those of Feller [10] and of several papers by
Russian authors (such as Smirnov, Gnedenko, Korolyuk) seem inapplicable to
the problem of obtaining the limiting distribution of the generalizations 7" and
7" of the Kolmogorov-Smirnov statistics. The geometric aspects of Doob’s
proof [13] clearly cannot be directly generalized. However, the approach used
by Kac in several papers since 1949, e.g., in [11], to obtain various results such
as that of Kolmogorov, can be generalized with some slight technical modifica-
tions to give results on the Wiener process in dimensions >1 which can be used
with an analogue of Donsker’s result [14] to obtain the limiting distribution of
T; such results for closely related problems have in fact been studied by Rosen-
blatt [17]. The method of Anderson and Darling [12] could also be used, but
perhaps guessing the solution to the appropriate diffusion equation is more
difficult than the approach used here.

In Section 2, therefore, we reduce the problem of finding the limiting distribu-
tion of T or T’ to a calculation regarding a multidimensional Wiener process,
and outline the steps to be carried out in performing this calculation. The solu-
tion is then obtained in Section 3. A similar method will work for the limiting
distributions of W and W’, but these may be obtained more easily by convolving
the usual w® distribution with itself an appropriate number of times (Section 4).
In Section 5 the statistics mentioned three paragraphs above and whose distri-
butions may be obtained from existing tables, are discussed. The power of the
tests considered in this paper is discussed briefly in Section 6, where several other
remarks are made. Finally, Section 7 contains tables of some of the limiting
distributions obtained in the paper.

2. Reduction of the problem. We hereafter write N for the vector (n;, - - - , nt)
and consider (now exhibiting the dependence on N) '

Ty = SUpy D N [Sff,‘)(x) - Sa()P,
Ty = sup, 2_; n; [Sy) (2) — G(2)I},

wy= [ TS 1S9 (w) — Sy ()] dSa(a),

Wi = [ Tim 89 ~ 6@F d6).

(We shall also consider extensions of Wy ; see equation (2.8).) Since the dis-
tribution of each of these statistics does not depend on G (resp., on the common
d.f.) if H, (resp., H,) is true, we shall as usual perform our calculations under
the assumption that G and all F; are the uniform d.f. on the unit interval.
Let Yy, Y2, ---, Y, be h independent separable Gaussian processes whose
sample functions are functions of the same “time” parameter ¢, 0 < ¢t < 1, and



K-SAMPLE ANALOGUES 423

such that BY () = 0 and EY;(¢)Y(s) = min(s, t) — st for each ¢. Thus, the
Y; are independent ‘“‘tied-down Wiener processes” which may be represented as
Yi(t) = (1 — t) " 'wi(t/(1 — t)), where the w; are independent Wiener processes
of the usual variety; i.e., w; is a separable Gaussian process of independent
increments with EFw;(r) = 0 and Ew;(r)w;(¢) = min (7,0) for0 < 7,0 < o,
The use of such processes in [11], [12], [13] to obtain the Kolmogorov-Smirnov
results is well known. Let

(2.1) 4x(a) = P{ max Dt V() < a}.
0<t<
and
1
(22) B = P{[ Throrasa).
0
When @ is the uniform d.f., the k¥ random functions
v} (1) = Vmi (83 (1) — 1), 0st=1
are independent of each other and as n; — « their behavior .approaches that
of the processes Y1, ---, Y, with » = k. More precisely, an obvious extension

of the argument of Donsker [14] or Theorem 2 of Kiefer and Wolfowitz [15] to
the present case shows at once that, at all continuity points of the limit (which,
we shall see, means for all a),

’

(23) “lim P{TN = a} = Ak(a)
and
(2.4) lim P{Wx < a} = Bi(a).

Similarly, let H be a k X k orthogonal matrix such that the jth element of
the first row of H is (n;/2_n;) for1 £ j < k, and write vy for the k-vector
whose jth component is the random function vf.’,.). We have already discussed
the asymptotic behavior of vy as the n; — «. The extension of the results of
Donsker [14] or Kiefer and Wolfowitz [15] to the present case shows, on con-
sidering the"sum of squares of the last ¥ — 1 components of Hvy , which sum is
equal to _; n,[S5) (1) — Sn(t)I’, that
(2.5) lllim P{Ty £ a} = Ar(a).

a n,'-wo

We remark that, as in the case h = 1, if F; is not continuous, the statistics
Ty and Ty are equivalent to statistics obtained for the case of continuous F,
by taking the supremum over a restricted range; thus, the d.f. of Ty or Ty in
such a case is not larger than what it is for continuous 7, .

Next, we consider Wy . Since we need to prove statements which differ slightly
from those of Rosenblatt [9], and since the partial integrations in [9] require
some alterations, we shall carry out the required demonstration in full here
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rather than to refer elsewhere.” We shall actually prove without extra difficulty
a more general result than that needed here, but one which is useful in reducing
the calculation of the limiting distribution of other integral criteria in the same
way that we reduce that of W, . Our result is (roughly) that an integral criterion
formed by’ integrating with respect to a consistent estimator of the common
F; has the same limiting distribution if the consistent estimator is replaced by
Fy . The following statement of it is thus easily generalized:

Lemma. Let D Z 0 be a continuous function of k — 1 real variables which is
bounded on bounded sets and such that

(2'6) f . f D(tx R ,tk_l) ! o tk_1|e‘“f*"“"‘ia)/?dtl e dlyy < .
Then, for each j, when all F; are uniform on [0, 1],

1
(2.7) fo D@} (1) — vl (8) , -+ w0 () — v2(1) d(8Y) (1) — 0)

converges to 0 in probability as all n; — .

Proor: It was proved by Dvoretzky, Kiefer, and Wolfowitz [16] that
P{sup,uf.',)(t) > 7} < ce™” for all n; and r, where c is a positive constant. Hence,
(2.6) implies that if in (2.7) we replace the function D by max (D, L), where
L is a constant, (2.7) is altered by a quantity which goes to 0 in probability as
the constant L — oo, uniformly in the n; . Hence, it suffices to prove (2.7) as-
suming D is bounded and uniformly continuous, which we now assume. The
proof of Theorem 2 of Kiefer and Wolfowitz [15] shows that for any ¢ > 0 there
is a value m such that the probability that

SUP:/ms t< (i41)/m | Vszji)(t) (’)(z/m) [ < e

for all 4(0 < ¢ < m — 1) is at least 1 — e for all sufficiently large n; .
Thus, given any ¢ > 0, we can choose ¢ (and thus m) with regard to the
modulus of contmulty of D, so that for all n; sufficiently large the probability
will be >1 — ¢ that the value of the integrand of (2.7) varies over a range of
length < ¢ as ¢ varies from ¢/m to (2 + 1)/m, 51multaneously for all 7. On the
other hand, when the n; are sufficiently large, S,.’, assigns measure arbitrarily
close to 1/m to each of the intervals 2/m < ¢ < (¢ + 1)/m, with probability
arbitrarily close to 1. Since we have seen that D may be assumed bounded, the
assertion of the lemma now follows easily.

We conclude at once from the lemma and the use of the orthogonal trans-
formation H discussed in connection with Ty that if a;, - - - , ax are real numbers
with Za,« = 1, then

(2.8) lim P {fw an [Sfjl?(x-) — S\ (2)) d[z a; ngi)(:c)] = a} = Bir(a);

all n j>e0

2 Professor Rosenblatt has informed the author that he has constructed another correct
proof of the result of [9], and has indicated that some corrections to [17] will appear shortly.



K-SAMPLE ANALOGUES 425

in particular,
(2.9) lim P{Wy < a} = Byx_i(a).

all n ;>0
The extension (2.8) of (2.9) includes, for example, integration with respect
to k'Y, Sf.’?, which is what is done in the case £ = 2 by Rosenblatt [9]. It
is easy to extend (2.8) to allow the a; to vary slightly with N, etc.

We note that we nowhere require the ratios n;/n; to approach positive finite
limits. This requirement, which is made in [7], [9], [10], and [13] in the case k = 2
of H,, is inessential, and our remarks show that the results there hold without
this restriction.

3. The limiting distribution of Ty and Ty. In [17] Rosenblatt studies the
distribution of a class of suitably regular functionals of the h-dimensional process
Y = (Y1, ---,Y,) on0 = ¢t = 1. We shall only state briefly the results we
need from [17] and Kac’s paper [11]. In fact, writing

A:0) = (N0 + o) + 32 (Tu(0)}

for ¢ = 0, if one considers only nonnegative functions v of A. which satisfy the
regularity conditions of [17], then the analysis there may be shortened somewhat,
and we now summarize the results we need in that briefer form; the reader may
consult [11] or [17] for details.

For any h-vector x and ¢ > J, with primes denoting transposes, write
(3.1) Qo(z, t) = (2mt) ™26 /2
and, for n > 0, with E" denoting Euclidean h-space and df = d&dg, - - - dy

(32 Qulz0 = [ [ @ - 51— Do(@ahu ) de dr.

It is easy to see that Q. depends on z only through z’x = 7 (say), so that we can
write Q,(x, t) = Qa.(r, t). Define the generating function (in u = 0)

(3.3) Q(r, ¢, u) = ;(—u)"Qn(n t)
and, for r > 0, its transform (in s = 0)

(34) W) =) = [ QU we a.
Write

(3.5) $(r) = ¢u,u(r) = r ().

One proves easily that ¢ is the unique solution of the ordinary differential equa-
tion (for r > 0)

(36) Vo) + ) - s+ 2wEle) = 0
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which satisfies
(a) ¢(r) > 0asr— o«;
(3.7) (b) ¢'(r) is continuous for » > 0;
(c) asr —0,¢/(r) ~ — T(h/2)x "™,

It is sometimes convenient to rewrite (3.6) and (3.7) in other terms. For ex-
ample, for ~ > 1 and suitably regular », we can obtain ¢ as the unique solution
(for r > 0) of

(h = 1)(h — 3)
4r2

(3.6a) " (r) — [23 + + 2uv(r):| o(r) =0

which satisfies

(a) ¢(r) > 0asr— =;

(b) ¢'(r) is continuous for r > 0;
(3.7a) 14 .
—a rlogr if h=2,
T(h/2)a M52/ (b — 2) if h> 2.
(Equation (3.6) is merely the reduction to an ordinary differential equation of
the partial differential equation of {17, equation (1.14)] when v depends only on
2'z; (3.7) for the case h = 1 is the analogue of [11], equation (3.14), for the
case h = 1.)

Let (w1, +--, wx) be the h-dimensional Wiener process described just above
(2.1). Let

(38) () = fo o((2 [wi(r)1")?) dr,

a(g;t) = P{s(t) < g¢.

The function @ in the case of more general v is studied by Rosenblatt [17] be-
cause, as in the case h = 1 of Kac [11], it is desired to compute o, and

(39) [ edeetan = [ @l b u) do

(e) as r—0, ¢(r) ~ {

But it can also be seen, as it was in [11], equation (6.16), when A = 1, that if
1 ‘
ne= [ o(A) d,
o

pe(Q) = P{n. < ¢},

(3.10)

then

(3.11) [D e d, p.(q) = (2m)*%eQ(c, 1, w).
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This is the use of ¢ which concerns us in obtaining distributions like those of
(2.1) and (2.2).

In Kac’s paper [11] it is only necessary to consider 7o , since po is what we actu-
ally want to determine. However, ¢,,,,(0) is infinite when A > 1, so that we are
forced to consider 5. , determine ¥, .(c) for ¢ near 0, invert this to obtain @(c, 1,
u), and the let ¢ — 0 to obtain Q(0, 1, »). This continuity in ¢ of @(c, 1, u) is
proved by Rosenblatt [17] (it is also evident from the probabilistic meaning
of 5.); the particular case of interest to us here involves another limit operation
and will be discussed in the next paragraph.

In order to obtain the function 4, of (2.1), we consider, as did Kac [11] for
the case h = 1, the function

]'0 if r<a,
3.12) v(r) =
11 if rza,-
where a > 0. From (3.10) and (3.11) we then have
(3.13) P{max A.(t) < a} = (2r)"%"Mim Q(c, 1, w).
0st=1 uU->0

It is convenient to interchange the order of inverting with respect to s and
letting v — = ; i.e., by bounded convergence we have

(314) 1l’:z.m((?) = lim Ills.u(()) = ) lim Q(C, t’ u)e—-sl dt,

u->x 0 u->w
so that we can invert (2r)" 2662/2ll/3,ao(6) with respect to s and set ¢ = 1 to obtain
the left side of (3.13) and then, from the probabilistic meaning of A, let ¢ — 0
and obtain, for @ = 0,
(3.15) An(@®) = lim P{max A.(t) < a}.
c>0 0st=s1

For the v of (3.12), the solution of (3.6) satisfying the conditions (3.7) is
easily obtained in terms of modified Bessel functions of the first and third kind
((18], Vol. 2, [20]). The solution is of the form ¢(r) = r* V% (r) =
Cir'K gz 12(1(25)Y) + Cor'I sy 12(r(2s)?) for 0 < r < @, and of the same form
with s replaced by s + u and with C; and C; replaced by C1 and Cs (say) for
r = a, where the C; and C; depend on s and u. From (3.7)(a) or (38.7a)(a) we
obtain C; = 0, and from (3.7)(c) or (3.7a)(c) we obtain

Cr = 2(25) " (2m) ™"

The other two constants are obtained from the continuity of ¢ and ¢’ at r = a.
In particular, we obtain, writing a(2s)% = aand a(2s + 2u)? = B,

(3.16) Co _ Kup(a)Ka22(8) — (8/a) Kn-2/2() Knj2(B8) )

Cy Ijo(a) K —2y2(B) + (8/ )1 —2yse( ) Knj2(B)

When we let u (i.e., 8) go to o, this ratio approaches the limit
=K -2 2(@) /T 2 12(@).-
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Thus, we have, for 0 < r < aand h°= 1,

(27r)h/2‘//s,w(7”)
(317) = 2(20) %" 3 Ki22(a(28)) L iy (r(28)F)
oo {K(h—2)/2(r(28) )~ ” I(h—z)/z(aé%));) }

(The corresponding formula and subsequent inversion in [17] is incorrect,’
due to a mistake in evaluating C,).

To invert (3.17), we consider the Fourier-Bessel expansion of [18], Vol. 2,
p. 104, equation (58):

Jy(l'Z) = Jv('Yvnx)Jv('Yan)
3.18 W— [Jv 4 Yv(Xz) - Y,,(Z)J.,(XZ)] = - : )
(318) “r V) B = A U T
where v,,.(n = 1, 2, - - -) are the positive zeros of J,, » and z are arbitrary, and

0 <z < X £ 1. (A similar formula of Watson ([20], p. 499) seems incorrect,
as can be seen in the case » = %, z — 0 there.) Divide both sides of (3.8) by
J,(zz) and let 2 — 0, noting that J,(v,.x)/J,(22) — (v.,./2)"; it is easy to
justify taking the limit inside the sum. Put z = ¢a(2s)* and X = r/a. We then
obtain, from (3.17), (3.18), and the relation of 7 and K to J and Y, where » =

h/2 _ Z Yv,n ’ Jv(r'Yv,n/a)
019 oo =2 % () g e

n=

It is easy to see that this series can be inverted term-by-term with respect to s;
inverting and setting ¢ = 1, we have from (3.14),

('Yv,n)y J,,(m,,n/a)e‘*%.n”ﬂz

or [Jr41(vv,n)] %

Finally, letting r — 0, we have, from (3.15) and (3.20),
TueoreMm. For k = 1 (see also (3.27) and (3.31)),

(3.20) Pimax A.(t) < a} = 2612 >

0<t<1 n=1

Au(ad) = 4 i (Yoyzn) ™" expl— (Y_2)2,n)%/20’] )

r (@) gz [Sr2(Yo—2)/2.n)]?
2

(3.21)

Thus, writing ®;(x) = Ax(z) for > 0 and & (z) = 0 otherwise, ®;_; and
@, are the limiting d.f.’s of /Ty and /7T , respectively.

The series converges rapidly (see also the discussion of the two succeeding
paragraphs for large a), but reduces to an expression in terms of elementary
functions only when h = 1orh = 3. Whenh = 1, we havey_;, = (2n — 1)n/2
and thus [J3(y_3..)]° = 4/(2n — 1)«". Thus, for ¢ > 0,

(39{)) A( ) = (27'.)5 3 —(2n—1)272/8a2
3.22 (a”) = = Z e ,

n=1



K-SAMPLE ANALOGUES 429

which is Smirnov’s result, since Ty is the square of the usual Smirnov statistic
when & = 2. Similarly, for o = 3 we obtain, for a > 0,

3 3 o
(3.23) As(a’) = 2—’3’ nle

a’ n=1
In these cases we can obtain alternative expressions which are more useful for
computations when a is large. These may be obtained directly by using an ap-
propriate transformation on a theta function, or by noting that (3.17) reduces to

x* sinh [(a — 7)(25)%/s" cosh [a(2s)*]
when A = 1 and to
(27)} sinh [(a — r)(2s)"]/r sinh [a(2s)}]

when & = 3, and these are tabled as theta function transforms in [19], Vol. 1,
p. 258, equations (34) and (31), the first of which is wrong in sign. For b = 1
we obtain, letting » — 0, the more familiar form of 4, for a > 0,

(324:) Al(a2) =1+ 221(__1)116—27:,2«12.

(For h = 1, but not for » = 3, we could have let r — 0 before inverting, and
used [19], Vol. 1, p. 257, equation (24).) For h = 3, the inverse Laplace trans-
form is given in terms of a derivative of the theta function 6, ; letting r — 0
yields

(3.25) As(a®) = 1+ 421 [ — 2niafe

The existence of the two forms for A; and A; suggests that a form more useful
than (3.21) for large a might be found. There seems to be no simple analogue
of the theta function transformation for the series of (3.21), but in this and the
next two paragraphs we mention other computational approaches which may
prove useful. There are other Fourier-Bessel expansions which can be employed
in inverting (3.17). For example, one series for J,(z2)/J,(z) ([18], Vol. 2, p.
104, equation (59)) gives (writing » for (h — 2)/2)

(27")”2‘//8 00 (r)

(3.26) (2s)"" N = T (Yem 7/0)vem Ko(a(2s)')
= 2 — Kv 2 - 2 5 .
rv (T( S) ) ﬂz=:1 Jy+1(7v,n)(2a28 + "/f,n)
Now, by [19], Vol. 1, p. 283, equation (40), 2(2s)"’K,(r(2s)})/r" is the trans-
form of t‘”‘le“'zm, wzhich becomes 1 at ¢ = 1, r — 0. Since (2a°s + v°) " is the
transform of ¢~ "% /2d" and (a/r)’J,(yr/a) — ¥'/2T(v + 1) as r — 0, we
obtain

2 1 > ('Yv n)y+1 fl —v—1 —a2/2t —(v,,,)2(1—1)/22
8 v It
(327) Au(a’) =1 — ST+ 1) n§=:1 Tonri) o 7 e d
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For computational purposes, this formula has the disadvantage of involving a
numerical quadrature, but it has the advantage that the series converges rapidly
for a large.

Another way of trying to obtain a more useful formula for large a is to try to
use the theta function transformation on a function close to that of (3.21).
The following is such an approach when h is odd. We again write » = (h — 2)/2.
Now, for large n we have Yron ~ w(4n + 2v — 1)/4 (see, e.g., [18], Vol. 2, pp.
60 and 85) and [J,1+1(vy..)]* ~ 2/7y,.» . Thus, an approximation to the summand
of (3.21) is

L 2v — 1" sy
(328)  fO,ma) =" [n+ - ] T

How good an approximation this is of course depends on the exponential term;
but the form of (3 28) is suggestive of theta functions. In fact, the transforma-
tion 65(t™ | — ) = (—at)'e™ '0;(v / 1) ([18], Vol. 2, p. 370), on putting
t = —1/i{zx, becomes

oc 0
1 —r2 2 —21 292 : —n2
(3.29) (Wx))z :e r2[(n+v]2z =¢ 212y zz :e“rvne n /I,
n=—o n=—00
so that, for 2v a nonnegative integer,

o —272222 o 0
Z —72[nt+v]22 __ € iﬂm—n’lr 1 Z —7r2 [n+v] 2z

(3.30) e 2(ma)! ﬂg_:w e 2
= qi(z) — g(x)(say).

Putting v = (2v — 1)/4, differentiating (2» + 1)/2 times with respect to z,
and denoting the summand of (3.17) by g(», n, a), we thus obtain for odd
h = 3,

O s
(3.31) —-——4~——A,,(a2) = nL:I lg(v,n,a) — f(v, n, a)]

_ (2v+41)/2 @2v+1)/2
+ (1—)2"1 (%) () — @(2)] lmter .

When f is close to g, this will be a convenient formula, since ¢, converges rapidly
as a — o« and ¢ will contain only 2» + 1 terms.

Another approach to obtain different: expressions from (3.17) to invert, and
which allows us to let » — 0 before inverting with respect to s, is to note that
although the Laplace transform  of Q(r, ¢, v) is infinite for » = 0, the transform
of t"Q(r, t, u) is finite there for m an integer > h/2. But this is just d™y,...(r)/ds™.
Thus, performing such a differentiation and letting « — « and r — 0, we obtain
an expression whose inverse transform with respect to s at ¢ = 1 give
(27f)_h/2-‘1h(a2)-

Tables of the functions 4, will be found in Section 7. Even when h is even,
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the computation is not very difficult. For example, when & = 2 the denominator
of the summand of (3.21) is approximately 2/myo,. , as we have seen, and the
series is easy to work with. For the next odd & above those we have considered in
detall h = 5, the v,,. are solutions of tan z = x and the summand of (3.21) is
7r'Yv "(7v -+ 1) —(7v. n)2/202/2

4. The limiting distribution of Wy and Wy . The differential equation of (3.6)
and (3.7) can be solved, when v(r) = #°, in terms of a confluent hypergeometric
function (specifically, by (3.7)(a), in terms of the Whittaker function W, ,);
but a more direct approach is to note, on reversing the order of integration and
summation in (2.2), that the distribution B; is merely the h-fold convolution of
B, with itself. In the case h = 1, it is well known that (21r)*Q(O, 1, u) =
[(2u)*/sinh(2u)*. Raising this to the hth power, we obtain (27)"?Q(0, 1, u)
for general h. We can now follow a procedure like that of Anderson and Darling
([12], p. 201): we obtain, on integrating by parts,

1
(4.1) f e “Bi(a) da = u[(2u)?/sinh(2u)"".
0
Using the binomial expansion on [1 — _2(2")!]—” ? (4.1) becomes
(4.2) k4 Z F({F-(i;t/hz/) 2) L CLI D
7=0

This series can be inverted term-by-term in terms of tabled transforms, without
computations like th?se of [12]: from [19], Vol. 1, p. 246, equation (9), we
find that w4 9 g the Laplace transform of

2(2—h)/47r—§t—h/4e—(:+h/4) 2/tD 2 12(2 (J + h/4 ) t—%) ,

where D is the parabolic cylinder function. Thus, inverting (4.2) with respect
to u, we obtain, for a > 0,

2(h+l)/2 © (] + h/2) _ 2, ) -
(43) Bi(a) = Yy :Z JIT(h/2) GO D (25 + h/2)/ab).

Thus, B and Bi_; are the limiting d.f.’s of W, and W, , respectively.

B, can be written in a more convenient form if s is even. In that case if we
write H, for the nth Hermite polynomial, i.e., H.(z) = (—1)""d" ™ /dz",
we obtain from the relation between D, and H, ([18], Vol. 2, p. 117), fora > 0
and h even,

202 2 1(j + h/2) 2HhDa
matt =5 ‘j!F(h/2)

When % is odd, (4.3) can be written in terms of the Bessel functions K; and
K;, as follows Since ({18], Vol. 2, p. 119) D_x(z) (2/21r)*K;(z /4) and
Dy(z) = —e™Mdle D y(2))/dz = 7H(2/2)'[Ki(#/4) + Ky(#/4)], suc-
cessive use of the recursion relation D, ,(2) = zD,(z) — vD,_;(z) and the fact
that K, = K_, yields D,y , for m a positive integer, in terms of K; and Kj; .

(44) Bu(a) = Haona((25 + h/2)/(2a)%).
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In the case & = 1, substitution of the formula for D_; in terms of K; gives the
formula of [12], equation (4.35).
Tables of By, will be found in Section 7.

6. Criteria whose distributions may be obtained from previously known
results. We limit our discussion to criteria for testing H; ; analogues for testing
H, are obvious, and some criteria have been mentioned in Section 1. We shall
also limit our discussion to criteria of the Kolmogorov-Smirnov type, ones of
the integral (w’-) type being obtained similarly. Symbols newly defined in this
section need not have their earlier meaning.

One of the simplest tests whose size may be computed from previously known
results is that based on the maximum of the & — 1 random variables

Y, = C sup, | Si(x) — X niSu(x)/ 2 nil, (255 =k)
1<7 1 <7

which are obviously independent under H; (since, for example, the conditional
distribution of sup, | Si(z) — Si(x)| given the value of the function n,S; + 7282
does not depend on the latter). Y, is distributed like a multiple of the Smirnov
2-sample criterion for sample sizes n,; and »_.<jm; ; thus, the tables of Massey
[21] may be used in an obvious way to compute the d.f. of max;Y ;. Of course,
asymptotically one may use the Kolmogorov-Smirnov distribution Ay(d).

This test may be made more symmetrical by choosing at random the indexing
7 of the k sets. Another method of symmetrizing is to subdivide each of the k
original sets of observations into k! subsets, form %! collections each of which
contains one subset of each original set, index the subsets in each collection in
a different one of the k! possible ways, compute the maximum of the Y'; for each
collection, and take the maximum of these over all collections.

A test based upon the Y; of the previous paragraph is a special case of the
class of tests based on the k — 1 quantities Z; = sup. | Rj(z) | (j = 2, -+ , k)
where the R, are any & — 1 orthogonal linear combinations of the S; which are
orthogonal to S; however, the Z; will in general be independently distributed
only in the limit, not for finite n; as with the Y ;.

For k = 3, the asymptotic behavior of max (Y,, Y3) was also noted by Fisz
[22]. For k > 3 I'isz suggests dividing the k samples into approximately k/3
collections of 3 or 2 samples each, computing the above or the Smirnov statistic
from each collection, and then computing the maximum of these. The resulting
test is clearly inferior to those we have considered: it is not even consistent,
since it tests effectively only differences within the various collections.

Another simple test whose size may be computed from previously known
results is the following: Let the n; observations in the jth sample be divided at
random into & — 1 subsets, cach subset containing approximately the same num-
ber of observations, and call the sample d.f.’s of the observations in the £ — 1
subsets of the jth samples 6,,(x)(1 Sr =k, rj);foranyji, j w1th i # Iz,
the distribution of Z,,;, = C7,j,8ups |S;152(x) — Sjpi(z)| (where Cij, i a suit-
able normalizing constant) may again be obtained from Massey’s tables [21],
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and the size of a test of H; based on such a statistic as max;,,;,Z;,.,, is again
easily computed, since the Z;, ;, are independent.

Tests based on statistics like _Y; are less convenient to use, since the com-
putation of size entails the convolution of the Kolmogorov-Smirnov d.f. ®,(z) =
A,(«*) with itself. For example, a single convolution of ®, with itself using term-
by-term integration of (3.24) yields the d.f. G, given for z > 0 by a slowly con-
verging double sum of terms involving the normal d.f., und this is extremely
poor for computational purposes. It is in fact easier to obtain G, by numecrical
integration of the convolution formula, and this has been done to obtain a
table of G in Section 7.

6. Power; miscellaneous remarks. We again limit the discussion to tests of
H, , similar remarks applying for H, . We use the notation of Section 1.

It is easily seen that, for the test of size (approximately) « > 0 based on
T, U, V, or any of the procedures listed in the previous section (excluding that
of Fisz [22] for k > 3), for any 8 < 1 there is a value 8(a, 8) such that any of
these tests has power >3 against all alternatives for which

Supgr o |Fo(x) — Fo(z)| min(ni, nl)} > 8(a, B).

However, tests based on criteria such as Z or W cannot be guaranteed to have
the property just cited; this may be demonstrated exactly as it was for o*-type
tests in another problem in the paper by Kac, Kiefer, and Wolfowitz [23]. Similar
results may be proved relative to other measures of distance of alternatives
from H,, as in [23]. Thus, distance tests of the Kolmogorov-Smirnov type seem
preferable in applications to those of the w’-type.

We note that the distribution of A, obtained in Section 3 gives an asymptotic
computation of power for certain alternatives when 7' is used.

We remark that the methods of this paper may be modified along the lines of
the papers by Darling [24] and Kac, Kiefer, and Wolfowitz [23] in parametric
cases, e.g., to test the hypothesis H,; under the assumption that the F; are all
normal, or to test that the F, are equal and normal.

In the case k = 3 of H,, when all n; are equal, David [25] has used a clever
device to compute the distribution of max;.[S;(x) — S;;i(x)], where the sub-
scripts are taken mod 3. The method does not seem to generalize.

The use of ‘““distance’ criteria in various nonparametric multi-decision prob-
lems, e.g., problems of ranking or of classification, is to be recommended, but
the appropriate distribution theory is more complicated.

The author plans to return in another. paper to consideration of some of the
limiting distributions discussed here using a mecthod somewhat similar to that
of Doob [13].

7. Tables. The functions A, of Section 3 and By, of Section 4 (1 £ h £ 5), and
the function G, defined in Section 5, have been tabled by the Cornell Computing
Center’s 650. I am indebted to DMiss Susan Litt, Miss Virginia Walbran, Mrs.
Jane Wiegand, Professor R. J. Walker, and Mr. R. C. Lesser, for carrying out
this work.

(Continued at the foot of p. 438)
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TABLE 1
Tables of ®:(x) = Ai(z?) fori =1,2,8,4,6
x ®1(x) $2(x) @3(>) Bu(x) ®s(x)
0.37 .000826
0.38 .001285
0.39 .001929
0.40 .002808
0.41 .003972
0.42- .005476
0.43 | .007377
0.44 .009730
0.45 .012589
0.46 .016005
0.47 .020022
0.48 .024682
0.49 .030017
0.50 036055
0.51 042814
0.52 .050306
0.53 058534 .000894
0.54 .067497 .001256
0.55 .077183 .001731
0.56 .087577 .002342
0.57 .098656 .003115
0.58 .110394 .004079
0.59 122760 .005262
0.60 1135717 .006696
0.61 . 149229 .008412
0.62 .163255 .010441
0.63 177752 .012816
0.64 192677 .015566
0.65 .207987 .018720 - .000762
0.66 .223637 .022307 .001035
0.67 .239582 .026350 .001383
0.68 .255780 .030874 .001824
0.69 .272188 .035897 .002373
0.70 .288765 .041437 .003050
0.71 .305470 .047507 .003874
0.72 .322265 .054116 - .004866
0.73 .339114 .061271 .006050
0.74 .355981 .068976 007447
0.75 .372833 .077230 . .009081
0.76 .389640 .086029 .010977 .000820
0.77 .406372 .095367 .013159 .001080
0.78 .423002 .105233 .015649 .001406
0.79 .439505 .115614 .018472 .001810
0.80 .455858 .126496 ..021649 .002306
0.81 .472039 137859 .025201 .002907
0.82 .488028 .149685 029149 .003631
0.83 .503809 .161950 .033510 .004493
0.84 .519365 1174632 .038300 .005511
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x $1(x) $2(x) ®3(x) Pu(x) ®s5(x)

0.85 .534681 187705 .043534 .006704

0.86 549745 .201142 .049223 .008092 .000897
0.87 564545 214917 .055378 .009694 .001157
0.88 .579071 .229001 .062006 .011530 .001476
0.89 .593315 . 243366 .069112 .013621 .001867
0.90 607269 . 257982 .076699 .015986 .002340
0.91 .620928 . 272822 .084766 .018645 .002908
0.92 . 634285 . 287855 .093313 .021618 .003584
0.93 647337 303054 .102333 .024924 .004382
0.94 . 660081 .318390 .111821 .028579 .005317
0.95 672514 .333834 .121767 .032600 .006407
0.96 684636 .349361 .132160 .037004 .007666
0.97 696445 .364942 .142988 ~.041802 .009113
0.98 .707941 . 380554 . 154236 .047009 .010765
0.99 719126 .396169 . 165887 .052634 .012639
1.00 . 730000 .411765 .177923 .058687 .014754
1.01 . 740566 .427319 .190326 .065174 .017127
1.02 .750825 . 442809 .203074 .072101 .019777
1.03 . 760781 .458214 .216146 .079471 .022720
1.04 . 770436 .473514 . 229521 .087284 .025972
1.05 L779794 . 488690 .243174 .095541 1029551
1.06 . 788860 .503725 . 257083 .104239 .033471
1.07 797637 .518603 .271223 .113372 .037747
1.08 .806130 533308 . 285569 .122935 .042390
1.09 814343 .547826 . 300099 .132919 .047414
1.10 . 822282 .562143 .314786 .143314 .052828
1.11 .829951 .576248 .329607 .154110 .058642
1.12 .837356 .590130 .344538 .165291 .064862
1.13 844502 .603779 .359554 .176846 .071495
1.14 851395 .617184 .374632 . 188756 .078545
1.15 .858040 .630340 . 389749 .201006 .086015
1.16 .864443 .643237 .404883 213577 .093904
1.17 .870610 .655871 .420012 .226450 .102213
1.18 876546 .668235 .435114 .239605 .110938
1.19 882258 .680325 .450170 . 253023 .120075
1.20 887750 .692137 .465159 . 266681 .129619
1.21 .893030 703668 .480064 . 280558 .139562
1.22 .898102 .714916 . 494865 .294632 .149895
1.23 .902973 725879 .509546 . 308881 .160607
1.24 .907648 736555 524090 . 323283 .171687
1.25 .912134 746946 .538483 .337815 .183121
1.26 .916435 . 757050 .552710 . 352455 .194895
1.27 920557 . 766869 .566758 .367181 .206993
1.28 924506 776403 .580613 .381971 .219400
1.29 928288 .785655 . 594266 .396804 .232097
1.30 931908 . 794626 .607703 .411658 .245067
1.31 .935371 .803319 .620917 .426513 .258290
1.32 .938682 811737 .633898 .441348 .271746
1.33 .941847 .819883 .646638 .456145 .285417
1.34 .944871 827761 .659129 .470884 .299281




436

TABLE 1—Continued

J. KIEFER

x @1 (x) @2 (x) P3(x) $ylx) @5 (x)
1.35 .947758 .835374 .671366 .485547 .313318
1.36 .950514 . 842727 .683343 .500117 .327506
1.37 .953143 . 849824 .695055 514577 .341825
1.38 .955651 .856670 .706498 .528911 . 356254
1.39 .958041 . 863269 717669 .543104 .370771
1.40 .960318 .869627 . 728564 .557141 .385356
1.41 962487 875748 .739183 .571009 .399989
1.42 964551 .881638 749523 .584696 .414648
1.43 .966515 887302 759585 .598190 .429314
1.44 .968383 .892745 . 769367 .611479 443968
1.45 .970158 .897973 778871 624554 .458590
1.46 .971846 .902992 .788096 .637405 473163
1.47 973448 .907808 .797046 .650025 . 487667
1.48 .974969 .912425 .805720 T .662404 .502087
1.49 .976413 .916849 .814122 .674537 .516406
1.50 977782 .921086 822255 .686418 .530607
1.51 979080 925142 .830121 .698041 .544676
1.52 .980310 .929023 837724 .709401 . 558598
1.53 .981475 .932733 845067 720496 .572360
1.54 982579 936278 .852154 731321 .585948
1.55 .983623 .939664 .858990 .741874 .599352
1.56 .984610 942897 .865579 . 752155 .612560
1.57 .985544 945980 871926 762160 .625561
1.58 086427 .948921 . 878036 .771890 .638346
1.59 987261 951723 .883913 781345 650906
1.60 988048 .954393 .889563 .790525 663233
1.61 . 988791 .956934 .894991 .799432 .675320
1.62 .989492 .959352 .900203 . 808066 .687161
1.63 .990154 .961651 .905203 .816430 .698749
1.64 .990777 963837 .909998 . 824526 .710081
1.65 .991364 .965913 .914593 .832356 721151
1.66 .991917 .967885 .918994 .839925 731957
1.67 .992438 .969756 .923206 .847235 742495
1.68 .992928 .971530 .927235 .854290 752763
1.69 .993389 .973213 .931087 .861094 .762760
1.70 .993823 974807 .934766 .867651 772485
1.71 .994230 .976317 .938280 .873967 .781936
1.72 .994612 .977746 .941633 . 880045 .791116
1.73 .994972 979099 .944830 . 885891 .800024
1.74 .995309 .980378 .947878 .891509 . 808660
1.75 .995625 981586 .950781 .896905 .817028
1.76 .995922 082728 .953546 .902084 .825130
1.77 .996200 983807 .956176 .907052 .832966
1.78 .996460 .084824 .958676 .911813 .840542
1.79 .996704 .985784 .961053 .916375 847859
1.80 .996932 986689 .963311 .920741 .854921
1.81 .997146 987542 .965455 .924919 .861732
1.82 .997346 088345 .967488 .928913 . 868296
1.83 .997533 1989102 .969417 .932729 .874618
1.84 997707 .989813 .971245 .936373 .880703
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x & (x) ®2(x) P3(x) Pa(x) P5{x)
1.85 .997870 .990483 .972976 .939851 . 886554
1.86 .998023 .991112 .974615 043167 .892177
1.87 .998165 .991703 .976166 .946328 .897578
1.88 .998297 .992259 .977633 .949338 .902760
1.89 .998421 .992780 .979019 .952204 .907731
1.90 .998536 .993269 .980329 .954931 .912494
1.91 .998644 .993728 .981566 957524 .917056
1.92 .998744 .994158 .982733 .959987 1921423
1.93 - .998837 .994560 .983833 .962326 .925599
1.94 .998924 .994938 .984871 964547 .929591
1.95 .999004 .995291 985848 .966653 033404
1.96 .999079 .995621 .986769 .968649 .937044
1.97 .995930 987635 .970541 .940517
1.98 .996219 .988450 972332 943827
1.99 .996489 .989216 .974027 .946981
2.00 .996741 989936 .975631 .949984
2.01 .996976 .990612 .977146 .952842
2.02 .997195 .991247 978578 .955560
2.03 .997400 .991843 .979930 .958142
2.04 .997591 .992402 .981206 .960595
2.05 .997768 .992925 .982409 .962924
2.06 .997934 .993416 983543 .965133
2.07 .998088 993875 .984612 967227
2.08 .998231 .994305 .985618 .969211
2.09 998364 .994707 986565 .971090
2.10 .998488 .995083 087455 .972868
2.11 .998603 .995434 .988292 .974549
2.12 .998710 .995762 .989079 .976139
2.13 .998809 .996069 989817 .977640
2.14 .998901 .996355 990511 .979058
2.15 .998987 .996621 .991161 080396
2.16 .999066 .996870 .991770 081657
2.17 .999139 .997101 .992342 082846
2.18 .997317 .992877 983966
2.19 .997518 .993377 985020
2.20 .997704 .993846 986012
2.21 .997878 994284 .986945
2.22 .998039 .994693 987821
2.23 .998189 .995075 088645
2.24 .998328 .995432 .989418
2.25 .9984568 .995765 .990143
2.26 . .998577 .996076 .990823
2.27 .998688 .996366 .991460
2.28 .998791 .996635 .992057
2.29 .998887 996887 .992616
2.30 .998975 .997120 .993139
2.31 .999057 .997338 .993628
2.32 .999132 .997540 .994085
2.33 .997728 .994512
2.34 .997902 994910
2.35 .998064

995282
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TABLE 1—Continued

x &1(x) ®2(x) ®3(x) Pu(x) ®5(x)
2.36 .998215 .995629
2.37 998354 .995952
2.38 .998483 .996253
2.39 998603 .996534
2.40 | .998714 .996795
2.41 .998817 .997038
2.42 - 998911 .997263
2.43 998999 .997473
2.44 999080 .997668
2.45 .999155 .997849
2.46 .998016
2.47 .998172
2.48 ) .998316
2.49 .998449
2.50 .998573
2.51 .998687
2.52 998793
2.53 .998891
2.54 998981
2.55 .999065
2.56 .999142

TABLE 2
Table of the inverses ®5'(p)

» 27 (P ®3' (9) @3 (p) * @ @3 (0
.25 0.67645 0.89456 1.05493 1.18776 1.30375
.50 0.82757 1.05751 1.22349 1.35992 1.47855
.75 1.01918 1.25299 1.42047 1.55788 1.67728
.80 1.07275 1.30614 1.47337 1.61065 1.72997
.85 1.13795 1.37025 1.53692 1.67388 1.79299
.90 1.22385 1.45399 1.61960 1.75593 1.87462
.95 1.35810 1.58379 1.74726 1.88226 2.00005
.98 1.51743 1.73699 1.89743 2.03053 2.14698
.99 1.62762 1.84273 2.00092 2.13257 2.24798
.995 1.73082 1.94172 2.09773 2.22797 2.34235
.999 1.94948 2.15162 2.30296 2.43009 2.54217
.9999 2.22530 2.41695 '2.56244 2.68565 2.79481

&,(z) = An(2’) is tabled in Table 1 for 1 < h < 5 and for « in steps of .01
from ®;°(.001) to ®,"(.999). Tables of &, (p) for various often used values of p
are given in Table 2. Thus, in using the statistic 7' (resp., T”) to test H, (resp.,
H,) when the n; are large, with a test of size «, one should reject the hypothesis
when /T > &1(1 — a) (resp., VT’ > ®:'(1 = a)).

(Continued on p. 444)



Tables of B; () fori = 1,2,8, 4,6

TABLE 3

x Bi(x) Ba(x) Bs(x) Bi(x) Bs(x)
0.01 .000006
0.02 .002892
0.03 .023832
0.04 .066851
0.05 .123719 .000324
0.06 .186020 .001566
0.07 .248436 .004768
0.08 .308145 .010891
0.09 .363856 .020564
0.10 .415127 .034001
0.11 . 461959 .051075 .000914
0.12 .504575 .071420 .001966
0.13 . 543293 .094544 .003735
0.14 .578461 .119910 .006438
0.15 .610424 .146986 .010272
0.16 .639507 .175283 .015396
0.17 .666005 .204366 .021924 .000708
0.18 .690186 .233862 .029920 .001249
0.19 .712291 .263459 .039405 .002067
0.20 . 732530 .292900 .050357 .003240
0.21 .751092 .321978 .062721 .004848
0.22 768144 .350530 .076413 .006971
0.23 .783833 .378432 .091332 .009682
0.24 .'798290 . 405587 .107364 .013049 .000675
0.25 .811630 .431928 .124383 .017130 .001043
0.26 .823958 .457406 . 142264 .021971 .001566
0.27 .835364 .481991 .160881 . 027§05 .002274
0.28 .845930 . 505668 .180110 .034056 .003184
0.29 .855730 .528431 .199832 .041333 .004359
0.30 . 864829 .550283 .219937 .049437 .005830
0.31 . 873285 571236 .240320 .058356 .007632
0.32 .881153 .591305 . 260885 .068071 .009813
0.33 .888478 .610511 .281544 .078555 .012394
0.34 .895305 .628877 .302218 .089771 .015414
0.35 .901673 .646428 .322835 .101682 .018906
0.36 .907617 .663191 . 343331 .114243 .022887
0.37 .913168 .679193 .363651 .127406 .027378
0.38 .918358 . 694464 .383745 .141122 .032397
0.39 923211 .709031 .403570 .155340 .037951
0.40 927753 722922 .423088 .170007 .044054
0.41 .932006 .736166 442268 .185074 .050702
0.42 .935990 .748790 .461084 .200488 .057898
0.43 .939724 .760820 .479514 .216199 .065629
0.44 .943226 772283 .497538 .232160 .073892
0.45 .946512 .783203 .515144 .248323 .082674
0.46 .949595 793605 .532320 .264643 .091955
0.47 .952490 .803513 .549056 .281078 .101720
0.48 1955210 .812950 .565349 .297587 .111948
0.49 957765 .821936 .581193 .314133 .122617
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TABLE 3—Continued

x Bi(x) Ba(x) Bs{x) Bu(x) Bs(x)
0.50 .960167 .830494 .596590 .330680 .133701
0.51 .962425 .838642 .611537 .347194 145177
0.52 1964549 .846400 .626039 . 363646 .157017
0.53 966547 853787 .640097 .380006 .169195
0.54 .968427 .860819 .653717 .396248 .181679
0.55 .970197 .867515 .666904 .412349 .194449
0.56 971864 873889 .679663 .428287 .207471
0.57 .973433 .879957 .692004 .444042 .220721
0.58 .974912 .885734 703933 .459597 .234170
0.59 .976305 .891233 715458 .474935 .247790
0.60 .977618 .896468 726589 .490043 .261557
0.61 978855 .901451 737333 . 504908 275444
0.62 .980022 .906195 .747701 . .519519 . 289426
0.63 .981122 .910710 757702 .533868 .303480
0.64 .982159 .915008 .767344 .547945 .317582
0.65 .983138 .919100 776639 .561745 .331712
0.66 .984061 .922995 .785596 .575262 .345847
0.67 .984932 .926702 .794224 . 588492 .359967
0.68 985754 .930231 .802533 .601431 .374053
0.69 .986530 .933590 .810532 .614076 . 388088
0.70 987262 .936787 .818232 .626427 .402054
0.71 987954 .939830 .825641 .638482 .415937
0.72 .988607 942727 .832769 .650242 .429721
0.73 .989224 945485 .839624 .661707 .443394
0.74 .989806 .948110 .846217 .672878 .456943
0.75 .990356 .950608 .852555 .683757 .470349
0.76 .990876 .952986 .858647 .694347 .483607
0.77 .991367 .955250 .864502 704649 .496713
0.78 .991831 .957405 870127 .714668 .509646
0.79 992270 .959455 .875532 . 724407 .522402
0.80 .992684 .961408 .880723 733869 .534981
0.81 .993076 .963266 .885707 .743059 .547361
0.82 .993447 .965035 .890494 .751980 .559556
0.83 .993797 .966718 .895090° .760639 .571546
0.84 .994128 .968321 .899501 769038 .583319
0.85 .994441 .969846 .903735 777183 .594903
0.86 .994737 .971298 .907797 .785079 .606259
0.87 .995017 .972680 .911696 792732 .617411
0.88 .995282 .973995 .915436 .800145 .628332
0.89 .995532 .975248 ©.919024 .807326 .639045
0.90 .995769 .976439 .922465 .814278 .649538
0.91 .995993 .977574 .925765 .821007 .659801
0.92 .996205 .978654 .928930 .827519 669848
0.93 .996406 .979681 .931964 .833819 .679675
0.94 .996596 .980660 934874 .839912 .689284
0.95 .996776 .981591 .937663 .845803 .698668
0.96 .996946 982477 .940336 .851499 707832
0.97 997107 .983321 .942898 .857003 .716780
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x Bi(x) Ba(x) Ba(x) By(x) Bs(x)
6.98 .997259 .984124 .945353 .862321 .725508
0.99 .997403 .984889 .947706 .867459 .734026
1.00 997540 .985616 .949960 872421 .742332
1.01 .997669 986309 1952120 877213 . 750424
1.02 1997791 .986968 .954190 .881839 .758311
1.03 .997907 .987596 .956172 .886304 765992
1.04 - .998017 .988193 .958070 .890614 773472
1.05 .998121 .988761 .959889 .894771 .780754
1.06 998219 .989302 .961630 .898782 787834
1.07 .998312 .989817 .963298 .902651 794727
1.08 .998400 .990308 .964895 .906382 .801427
1.09 .998484 .990775 .966425 .909979 .807943
1.10 .998563 .991219 .967888 913447 .814272
1.11 .998638 991642 .969291 .916790 .820424
1.12 .998709 .992044 .970632 .920011 .826397
1.13 998776 .992427 971916 .923115 .832199
1.14 .998840 .992792 .973146 1926106 .837833
1.15 .998900 .993139 .974322 928986 .843298
1.16 .998957 .993469 .975448 .931761 . 848602
1.17 1999011 .993784 .976525 .934433 .853750
1.18 .999063 .994083 977557 .937006 858742
1.19 .994368 .978544 939484 .863580
1.20 .994639 .979488 .941868 .868274
1.21 .994897 980391 .944164 872821
1.22 .995143 981256 .946373 877227
1.23 995377 .982082 948499 .881497
1.24 995599 982873 .950544 . 885630
1.25 995811 .983630 .952512 .889635
1.26 .996013 984354 .954405 .893515
1.27 996205 .985047 .956226 .897268
1.28 .996388 985708 957977 .900902
1.29 .996562 .986341 .959661 .904419
1.30 996727 .986947 .961281 .907818
1.31 .996885 987526 .962837 .911110
1.32 .997035 988080 .964334 .914292
1.33 997178 .988610 .965773 .917370
1.34 .997313 .989116 .967156 .920346
1.35 .997443 .989600 .968485 .923223
1.36 .997566 .990063 .969762 .926004
1.37 .997683 « .990506 .970989 928692
1.38 .997795 .990929 .972169 .931287
1.39 .997901 1991334 973302 .933797
1.40 998002 .991721 974390 .936220
1.41 .998098 992091 .975435 .938560
1.42 .998190 1992444 976439 .940821
1.43 .998277 .992782 .977404 .943003
1.44 .998360 .993104 978330 .945110
1.45 998439 1993413 979219 .947145
1.46 .998514 .993708 980073 949108
1.47 .998586 993990 980893
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TABLE 3—Continued

x By(x) Ba(x) Ba(x) By(x) . Bs(x)

.48 99865+ 994259 .981680 952831
.49 .998718 .994517 .982436 .954595
.50 .998780 .994763 .983161 .956298
.51 .998839 994998 .983857 .957937
.52 998895 1995223 984526 .959519
.83 .998948 .995437 .985167 .961044
.64 | .998999 .995643 985782 .962520
.55 .999047 995839 .986373 .963941
.56 -999093 996026 .986939 .965311
.57 996205 987483 .966629
.58 .996376 988005 .967897
.59 .996539 .988505 .969129
.60 .996695 988985 .970307
.61 ’ .996844 - .989445 .971452
.62 .966987 .989887 .972538
.63 .997123 .990311 .973602
64 .997253 .990717 .974615
.65 .997377 .991106 .975598
.66 .997495 .991480 976544
.67 .997608 .991838 977450
68 997717 .992182 .978329
69 .997820 1992511 .979165
.70 .997919 .992827 .979979
.71 998013 1993129 .980765
.72 .998103 993420 981511
.73 .998189 .993698 .982239
.74 .998271 .993964 .982932
75 998349 994220 .983606
76 .998424 .994465 .984252
77 998496 .994700 .984865
78 .998564 994925 .985462
.79 998629 .995140 .986040
.80 998692 .995347 .986590
81 .998751 .995545 987123
.82 .998808 .995734 .987635
83 998862 .995916 .988124
84 .998914 .996090 .988597
85 .998963 .996257 .989056
86 999011 .996417 .989493
87 .999056 .996570 .989915
88 ' .996717 .990315
.89 .996857 .990709
90 .996992 .991077
91 1997121 .991439
92 -.997244 .991781
.93 .997363 1992111
94 .997476 .992431
.95 .997584 992742
.96 .997688 993039
.97 .997788 993321
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Bi(x)

Ba(x)

Ba(x)

Bu(x)

Bs(x)

.997883
.997974
.998061
.998145
.998225
.998302
.998375
.998445
.998513
.998577
998639
.998698
.998754
.998808
998860
998909
.998957
999002
.999046

.993593
.993853
.994107
.994346
.994577
.994802
.995014
.995219
995417
.995605
995787
.995963
.996132
996290
.996445
.996596
.996737
.996873
.997004
.997131
.997252
.997367
.997479
.997584
.997687
.997787
.997882
997971
.998059
.998143
998224
.998298
.998373
.998446
.998512
.998578
.998637
998699
.998756
.998812
.998866
.998916
.998962
.999012
.999055
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The corresponding tables of B, , the limiting d.f. of W (with h = k — 1)
and of W’ (with A = k), and of By", are Tables 3 and 4.

Tables 1 and 2 were computed from equation (3.21), while Tables 3 and 4 were
computed using the form of (4.3) given in (4.4) and the paragraph following
(4.4). A program developed at Cornell was used to obtain the Bessel functions
by power series or asymptotic series in appropriate regions.

As a check, the tables for A = 1 were compared with that of & of Smirnov
[26] and that of B; of Anderson and Darling [12]. In the case of ®,, the last
tabled figure often differed slightly; wherever a discrepency was noted in the
last two places, the tables were checked by differencing, and Smirnov’s appeared
to be in error. The table of [12] checked with that of B; here.

As mentioned in Section 5, the easiest way to compute tables of the convolu-
tion G, of ®, with itself appeared to be by numerical integration, and Table 5
was computed in this way. Thus, for example, to test H; with size « when k = 3,
one can use the statistic ¥, + Y; of Section 5 with €5 = [mna/(ny + n2)]* and
Cs = [ms(ny + n2)/(ny + ma + ng)]*, rejecting the hypothesis for large n; when
Yo+ V3> Gi(1 — o).

Added in proof: The author has recently learned that the following inde-
pendently obtained results, which overlap. some of those of this paper, appeared
somewhat after [1] and the submission of earlier versions of the present paper:
the limiting d.f. of 7' has been considered by J. J. Gichman in Teorya Veryot-
noster 1 yeyau primenyenya, vol. 2 (1957), pp. 380-384, using an approach like
that of [12], and two papers by L. C. Chang and M. Fisz in Science Record, vol.
1 (1957), pp. 335-346, consider tests like those discussed in the second and fourth
paragraphs of Section 5.

TABLE 4
Table of the inverses Bi'(p)

» Bi' (p) B! (9 B3 () Bt (9) B! (p)
.25 0.07026 0.18545 0.31472 0.45103 0.59161
.50 0.11888 0.27757 0.44138 0.60668 0.77252
.75 0.20939 0.42098 0.62227 0.81775 1.00947
.80 0.24124 0.46640 0.67691 0.87980 1.07785
.85 0.28406 0.52481 0.74592 0.95734 1.16268
.90 0.34730 0.60704 0.84116 1.06311 1.27748
.95 0.46136 0.74752 1.00018 1.23730 1.46466
.98 0.61981 0.93320 1.20561 1.45913 1.70028
.99 0.74346 1.07366 1.35861 1.62263 1.87215
.995 0.86939 1.21412 1.51010 1.78345 2.03935
.999 1.16786 1.54027 1.85773 '2.14949 2.40774
.9999 1.60443 2.00691 2.3495 2.66130 2.825




TABLE 5

Table of Gz(z)

x Go(x) x Ga(x) x Ga(2) x Ga(x)
.92 .0008 1.42  .2005 1.92  .7157 2.42 9531
.93 .0011 1.43  .2100 1.93  .7238 2.43  .9549
.94 .0013 1.44  .2197 1.94  .7319 2.44  .9569
.95  .0016 1.45  .2295 1.95  .7396 2.45  .9586
.96 .0020 1.46  .2396 1.96  .7474 2.46  .9605
.97 .0024 1.47  .2497 1.97  .7549 2.47  .9621
.98  .0028 1.48  .2601 1.98  .7624 2.48  .9638
.99 .0034 1.49  .2705 1.99  .7695 2.49  .9653
1.00  .0040 1.50 .2811 2.00 7767 2.50  .9669
1.01  .0048 1.51  .2017 2.01  .7835 2.51  .9682
1.02  .0056 1.52  .3025 2.02  .7904 2.52  .9697
1.03  .0065 1.53  .3133 2.03  .7969 2.53  .9709
1.04  .0076 1.54  .3242 2.04  .8035 2.54 9723
1.05  .0087 1.55  .3352 2.05  .8097 2.55  .9734
1.06  .0100 1.56  .3463 2.06  .8160 2.56  .9747
1.07  .0115 1.57  .3573 2.07  .8219 2.57  .9757
1.08  .0131 1.58  .3685 2.08  .8278 2.58  .9769
1.09  .0149 1.59  .3796 2.09  .8335 2.59  .9779
1.10  .0168 1.60  .3909 2.10  .8391 2.60  .9790
1.11  .0189 1.61  .4020 2.11  .8445 2.61  .9798
1.12  .0212 1.62  .4133 2.12  .8499 2.62  .9808
1.13  .0238 1.63  .4244 2.13  .8549 2.63  .9816
1.14  .0265 1.64  .4356 2.14  .8600 2.64 9826
1.15  .0294 1.65  .4467 2.15  .8648 2.65  .9833
1.16  .0326 1.66  .4579 2.16  .8697 2.66  .9841
1.17  .0359 1.67  .4689 2.17  .8742 2.67  .9848
1.18  .0395 1.68  .4801 2.18  .8788 2.68  .9856
1.19  .0434 1.69  .4910 2.19  .8830 2.69  .9862
1.20 .0475 1.70  .5020 2.20  .8873 2.70  .9869
1.21  .0528 1.71  .5127 2.21  .8914 2.71  .9874
1.22  .0564 1.72  .5236 2.22  .8954 2.72  .9881
1.23  .0612 1.73  .5342 2.23  .8992 2.73  .9886
1.24  .0663 1.74  .5449 2.24  .9030 2.74  .9892
1.25  .0717 1.75  .5554 2.25  .9066 2.75  .9896
1.26  .0773 1.76  .5658 2.26  .9102 2.76  .9902
1.27  .0832 1.77  .5761 2.27  .9135 2.77  .9906
1.28  .0893 1.78  .5864 2.28  .9169 2.78  .9912
1.20  .0957 1.79  .5964 2.29  .9200 2.79  .9915
1.30 .1923 1.80  .6064 2.30  .9232 2.80  .9920
1.31 .1092 1.81  .6162 2.31  .9261 2.81  .9923
1.32  .1164 1.82  .6260 2.32  .9291 2.82  .9928
1.33  .1237 1.83  .6355 ¢ 2.33  .9318 2.83  .9930
1.3¢  .1314 1.84  .6451 2.34  .9346 2.84  .9934
1.35  .1392 1.85  .6543 2.35 9371 2.85  .9937
1.36  .1474 1.86  .6636 2.36  .9397 2.86  .9941
1.37  .1557 1.87  .6726 2.37  .9420 2.87  .9943
1.38  .1642 1.88  .6816 2.38  .0445 2.88  .9946
1.39  .1730 1.89  .6902 2.39  .9466 2.89  .9948
1.40  .1820 1.90  .6989 2.40  .9489 2.90  .9952
1.41  .1911 1.91  .7073 2.41  .9509 2.91  .9953
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