THE DISTRIBUTION OF THE LATENT ROOTS OF THE
COVARIANCE MATRIX

By Aran T. James!

Yale University

1. Summary. The distribution of the latent roots of the covariance matrix
calculated from a sample from a normal multivariate population, was found by
Fisher [3], Hsu [6] and Roy {10] for the special, but important case when the
population covariance matrix is a scalar matrix, = = ¢°I. By use of the repre-
sentation theory of the linear group, we are able to obtain the general distribu-
tion for arbitrary =.

2. An integral expression for the distribution. Suppose the sample consists of
N observations from a normal k-variate population with covariance matrix 2.
After the usual orthogonal transformation to eliminate the sample means, we
have a k X n matrix X, n = N — 1,
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where the symbol etr stands for the exponential of the trace of a square matrix.
If A = (a;j), then etr (A) = exp (au + a2 + - + a@u). Our object is to find
the distribution of the latent roots ¢;, ¢, + -+ , & of the matrix XX', (4 = & =
cee = ).

By expressing X as a function of the ¢; and other variables and integrating
with respect to the latter, Fisher, Hsu and Roy showed that
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In the special case when Z = ¢’I;, the density in (1) is a function of the #;
alone, and thus they obtained the distribution as

c bttt + 4 \in—k—1) . ]
(4) @r)iigE exp ( 257 ) (II#) E (& = t;) I] at;
For general Z, the density
(5) etr (—3z27'XX’)

is no longer a function of the ¢;. This is equivalent to saying the (5) is not in-
variant under congruence transformation by the orthogonal group O(k) of
k X k orthogonal matrices, H,

XX' — HXX'H' H £ 0(k).

However, by an argument similar to the one given for the derivation of the
noncentral Wishart distribution in James [7], one sees that the distribution of the
t: is not altered if the density function in the initial distribution (1) is symme-
trized, by which we mean that the function (5) occurring in (1) is replaced by
its average

(6) fo , etr (=32 HXX'H) d(H)

with respect to the invariant measure, d(H ), on the orthogonal group, O(k). The
invariant measure is normalized to make the total measure of O(k) unity. The
symmetrized function (6) is now a function of the ¢;, and, putting XX’ = A4, we
have the

THEOREM 1. The general distribution of the latent roots t, , - - - , t, of the matriz A
of sums of squares and products about the means, of a sample of N = n + 1 ob-
servations from a k-variate normal population with covariance mairiz T is

@m) 7 |z e f etr (—3Z'HAH') d(H)
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where the constant c is given by (3) and d(H) is the invariant measure on the orthog-
onal group O(k). The integral is a symmetric function of the latent roots of = and

the latent roots &y, - - , t of A.
Formulae for the distribution, similar to (7), are well known. The real problem,

to which we now turn, is to evaluate the integral which is of the form
®) [ etr (BHAR') a(H)
o
where A and B are k X k symmetric matrices. Our results, as summarized in

Theorem 2, are an expansion for the integral in a series of zonal polynomials
which are given, up to fourth order, in the appendix.
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One possible method of finding the integral would be to expand the integrand
in a power series and calculate the integrals of the resulting monomials in the
elements of H by using the generating function given by James [8]. This method
was used to check our results up to third order but beyond this it became too

cumbersome.
The use of the theory of spherical and zonal functions is far more powerful

and much more enlightening.

3. Spherical and zonal functions. The initial distribution (1) of a normal
multivariate sample is highly symmetrical and this provides the clue to the
evaluation of the integral (8). The distribution (1) is clearly invariant under the
group O(n) of orthogonal matrices H of order n acting upon X from the right

(9) X —-XH H £0(n).
It is also invariant under the linear group G(k) of all real k& X k nonsingular

matrices L acting upon X from the left and upon =, simultaneously, by con-
gruence transformation

(10) X - LX
(11) s — L3l

Transformations (10) and (11) imply that A = XX’ is transformed by congru-
ence transformation cogrediently, and the information matrix =™, contra-

grediently,
(12) A — LAL'
(13) o ) A

L eG(k)

The function tr (Z~'XX’) upon which the probability in (1) depends and the
volume element

|z l—(»/z)H s
)
are invariants under the transformations. tr(Z7'4) is the sum of the latent
roots \; of the determinantal equation
(14) IAZ — 4| =0,

which, apart from their order, are a complete set of invariants of the pair of posi-
tive definite matrices  and A under their simultaneous transformation in (11)
and (12). This is proved by the fact that one can choose an L ¢ G(k) such that

LZL = I,
M

(15) LAL =A=| -
M

Hence \;, -+, A\ are a complete set of invariants.
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One might think that, having obtained a complete set of invariants, one had
exhausted all the information supplied by the symmetry. However, this is not
so. Within the spaces of functions defined on the matrices there is a deeper and
much more extensive structure associated with the symmetry, which is revealed
by the theory of group representations. This leads to a generalized Fourier or
harmonic analysis of the (scalar valued) functions on the positive definite sym-
metric matrices. They are seen to be a system of generalized spherical functions,
under congruence transformation by the linear group, in the sense of Berezin
and Gelfand [1] and Godement [5]. Functions of the latent roots of the deter-
minantal equation (14), being functions of two matrices invariant under their
simultaneous transformation, play a very special role; they are the zonal func-
tions.

We shall restrict our study to complex valued polynomial functions of the ele-
ments of a positive definite real symmetric & X k matrix A. When we come to the
evaluation of the integral (8), we can expand the exponential in the integrand
in a power series

(16) > L e(BHAR))
= f!

whose terms will be polynomials in the elements of A and B and our results will
be applicable to these.
Corresponding to a congruence transformation

17) A — LAL L eG(k)

of the space of positive definite real symmetric matrices A, one can define an
induced linear transformation of the polynomials ¢(A4) in the elements of A with
real or complex coefficients,

(18) o(4) = (L) (4) = o(L'AL™") L e G(k).

(18) is a representation of G(k) in the vector space of all polynomials ¢(4).

The first problem is to decompose the space of polynomials into its irreducible
invariant subspaces and find out which irreducible representations of G(k) are
present. Since the transformation (18) maps any monomial into a homogeneous
polynomial of the same degree, the vector space V; of homogeneous polynomials
of degree f is an invariant subspace of the space of all polynomials. Let us con-
centrate upon this.

From the results of Littlewood [9] and Foulkes, [4] it can be shown that the
space V; decomposes into the direct sum of m irreducible invariant subspaces
V;.» where m is the number of elements in the set P(f, k) of partitions p =
(fi,fe, --*), of f into not more than k parts. f = fi+ fo + ---

(19) Vi= @ Vip.
peP (fk)
In each of the V; , a separate irreducible representation, namely {2f1, 2f2, - - -},

of G(k) acts. The symbol {2f1, 2f>, -+ -} denotes the irreducible representation
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of G(k) corresponding to the Young symmetry diagram whose rows are of length
2f1, 2fs, - - - respectively. See Boerner [2].

Now consider the vector space V; , for any p, under the transformations (18)
but with the matrices L restricted to be orthogonal,

(20) o(A) = o(HAH™) H £ 0(k)

Since O(k) is only a subgroup of G(k), V;, will not be irreducible under it in
general, but will decompose into a direct sum of irreducible invariant subspaces
Vf.p,i

(21) Vie =Vipa @ Vipa @ -+-

of which there will be a unique one, say V; ,.1, which is one-dimensional and is
generated by a polynomial Z,(A) which is invariant under orthogonal trans-
formations (20). Z,(A) is called a zonal polynomial. Being invariant under (20),
it must be a symmetric function of the latent roots ¢, , - - - , & of A. Zonal poly-
nomials of low order are given in the appendix.

4. Evaluation of the integral.
THEOREM 2. If A and B are symmetric k X k matrices, O(k) the group of orthog-
onal k X k matrices and d(H) its invariant measure, then
& 1

fm) etr (BHAH') d(H) = ;gof!l.3.5.~~.(2f —)

(22)
c(p) ,
peP (fik) Z:n(l) Ap(B)Zp(A)
where P(f, k) is the set of partitions p = (fi, fo, +++) of f into not more than k
parts and Z,(A) s the zonal polynomial corresponding to the partition p and hence
to the representation {2f1, 2f2, « -+ -} of the linear group G(k).

Z,(A) is a symmetric polynomial in the latent roots ¢, - -+, & of 4, which
can thus be written as a polynomial in the sums of powers s; = 2 ey 8 = tr(47),
of these roots. ¢(p) is a constant and Z,(I), the value of Z,(A) at 4 = I,is a
polynomial of degree f in k.

Proor: Consider the function (tr (BA))’. Since it is a homogeneous poly-
nomial of degree f in both B and A it belongs to the direct product ¥V, X V; of
V; with itself. Assume a basis has been chosen in each V7, ; for all p and <. Then
any element of V; X V, is a unique linear combination of terms each of which
is the product of a basis function of B with a basis function of A. In particular
(23) (tr (BA)) = 2. D ¢peZp(B)Zy(A) + other terms

PEP(fik) acP (k)
where each of the other terms has at least one of its two factors in a V, , ; with
7 > 1, i.e. not a zonal function.

Let A and B be transformed by an arbitrary L ¢ G(k), A cogrediently and B
contragrediently.

A — LAL/

24 , LeG(k
(24) B— L™ BL™ -
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Then tr(BA) — tr(L"™VBLT'LAL') = tr(L"VBAL') = tr(BA), i.e. tr(BA),
and hence (tr(BA))’, are invariant.

In a direct product of an irreducible covariant space V,, with an irreducible
contravariant space V;,,, there will be an invariant if and only if the represen-
tation in V;, is the contragredient representation corresponding to the co-
gredient representation in V,,,, i.e. if and only if p = ¢. Hence the expansion
(23) of (tr(BA))’ contains only those terms whose factors belong to subspaces
V;.» with the same index p. Thus ¢,, = 0 if p # ¢, and both factors of the “other
terms” must belong to subspaces with the same p, i.e. we cannot have terms
belonging to Vf'p'i X V/,q,j with p # q.

As (tr(BA))’ is invariant under orthogonal transformations (20), we must
likewise have ¢ = j for any nonzero term. In summary, all terms belong to sub-
spaces of the form V,,,,: X V;,;,:, and if one factor of a term is a zonal function,
so is the other.

Averaging over O(k) annihilates all irreducible invariant subspaces other than
those in which the identity representation acts. These it leaves unaltered. Thus
the vectors in the V,,,,; for ¢ > 1 are all mapped on zero but the zonal poly-
nomials in the V;,,1 remain unchanged. Therefore all the “other terms” in the
expansion (23) disappear under the averaging process and we have

@) [ (@BHAE)Y dH) = T ey 2,(B)Z(4).
0 (k) P (f.k)

pe

When calculating zonal functions, one can find coefficients ¢(p) such that

1
(26) (trd)’ = TR T MZM c(p)Z,(4).

Substituting B = I in (25) we have (tr A) = > ¢, Z,(I)Z,(A). Therefore

e — c(p)
1352 — 1)Z,(D)
and
ANYA _ 1 C(p)
Jowy BHARY AE) = s 3 B BB )

from which the theorem follows.

6. The distribution of the roots. If [ , - - - , I are the latent roots of the covari-
ance matrix n A4, then t; = nl; .
The convergence of the series can probably be improved by writing

27) etr (=12 'HAH') = etr (—-—2172 A) etr (BHAH')

where B = (1/2¢°)] — %27, and the constant o* is chosen to give optimum
convergence.
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TreEoREM 3. The distribution of the latent roots ly, ---, Iy of the covariance
matrix calculated from a sample of N = n -+ 1 observations from a normal k-variate
population with covariance matrix = s

n ink k . —4n n k k Y (n—k—1)
(_) c(H ) exp (———Ez,- (nz,. G- 1)
2w =1 20% = =1 i<i

(28) 3 n’ <(p)
=6 1135, .(2f — 1) pefttar Zp(I)

'Zp(ﬂly ] Bk)Zp(lly e ,lk) dly -+ - dl;

where Z,(l;, -+, lx) are zonal polynomials,

1/(1 1 .
s=3(n-2) Pebonk

o* is an arbitrary constant chosen to optimize the comvergence of the series, o,
1 =1, - - -, k are the latent roots of the population covariance matrix and the constant
¢ s given in (3).

The zonal polynomials Z,(li, - -, ;) are listed up to f = 4 in the appendix
as functions of s; = 2. I, together with the constants ¢(p) and Z,(I). The
symbol P(f, k) is explained in theorem 2.

Roy [11] discusses significance tests and confidence intervals based on the
roots distribution.

APPENDIX

Zonal polynomials of the representation of the linear group in the space of
polynomials in the elements of a positive definite real symmetric matrix. (s; is
the sum of the th powers of the latent roots of the matrix.)

. Constants
Deiree P arv;non Zonal polynomial Zp
c(p) Zp(I)
1 1) s 1 k
2 ) st 4 2ss 1 k(k + 2)
(12) st — 5, 2 kG — 1)
3 ®) 83 + 65152 + 8s3 1 k(k + 2)(k + 4)
(1) sy 4 5182 — 283 9 k(k 4+ 2)(k — 1)
(1) s3 — 38152 + 253 5 k(e — 1)(k — 2)
4 ) st + 12s3ss + 1252 + 325183 + 48s, 1 k(k 4+ 2)(k + 4)(k + 6)
(31) st + 5sisy — 283 + 45185 — 8s4 20 k(e + 2)(k + 4)(k — 1)
(22) | 814 2sts2 + Ts; — 85155 — 284 14 k(k 4+ 2)(k — 1)(k + 1)
(212) | st — s}sp — 253 — 28185 + 454 56 k(k + 2)(k — 1)(k — 2)

(14) | st — 65252 + 353 + 8s155 — 654 14 kG — 1)k — 2)(k — 3)
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