ON INTERCHANGING LIMITS AND INTEGRALS
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One frequently wants to show lim [f, = [lim f, ; that is, knowing f, — f
pointwise, one wants to show [f, — [f. Commonly used criteria are those of
the Lebesgue (dominated or bounded) convergence theorem [1, Theorem 26.D;
2, Theorem 7.2C; ete.] and Scheffé’s “Useful Convergence Theorem for Prob-
ability Distributions” [3]. The following criterion sometimes applies more
directly and is never much harder to apply. Informally, the criterion is that
fa shall be bounded above and below by functions which converge pointwise
and in integral; or, in other words, a convergent sequence permits exchange of
lim and [ if it is bracketed by two sequences which permit this exchange. Spe-
cifically,

TaEOREM 1. If

1) fa—=f ga—9 G — G,
(1) gn = fa £ Ga for all n,
(iii) fga — [g and [G. — [G with [g and [G finite,

then [fn — [f and [f is finite.

(i) and (ii) may be interpreted as holding at each point and the integrals as
ordinary (Lebesgue) integrals over a fixed (Lebesgue measurable) subset of the
real line or k-dimensional Euclidean space.

More generally, it is assumed throughout this note that all integrals are
taken with respect to the same measure u on a Borel field ®, all sets mentioned
are measurable, all functions mentioned are measurable from ® to the class of
Borel sets, inequalities like (ii) hold almost everywhere [u], and convergence of
functions, as in (i), is either almost everywhere [u] or in measure [u]. Proofs
will be given for the case of convergence almost everywhere. The more general
case follows, since every subsequence of a sequence which converges in measure
has a subsubsequence which converges almost everywhere.

In Theorem 1, Corollary 1, and Corollary 4, [ may be replaced by [ for a
fixed set B (and [s by fsns) provided all integrals are so replaced. This is not
a real generalization, being the result of substituting u; for u, where

wm(S) = u(B N 8)
for all S.
Proor oF THEOREM 1: 0 S fo — gn—f —gand 0 = G, — f, =G — f. We
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can thus apply Fatou’s Lemma {1, Theorem 27.F, etc.] (The Lemma says
[ lim inf &, < liminf [A, for h, = 0.) We obtain:

ff— fg - /lim (o — go) < lim inf/(fn — g») = lim inf/fn - /g;

fG—ff=fnm (G — 1) gliminff(Gn—fn> =fG~limsup/fn.

Therefore, lim sup [f, < [f < lim inf [f., so [f. — [f, q.e.d.

CoroLrAry 1. If (1)—(iii) hold and, in addition

(1v) gn = 0 = G, for all n,
then

(a) flfn _fl—’o;

(b) Ssfa— [sf uniformly in S (S measurable);

(¢) fhfs — [hf for all bounded functions h, uniformly in h for each bound.

(a)—(c) are equivalent, as is well known, since it is immediate that (a) im-
plies (¢), (¢) implies (b), and (b) implies (a). To prove (i)-(iv) imply (a),
note that, by (ii) and (iv),

Os|fa—fl=S|fil +IfISG =9+ G—g—2(G —y),

while, by (iii), [(G» — g» + G — g) — [2(G — ¢) which is finite. Thus Theorem
1 applies with | f» — f | for f., 0 for g, , and G, — g, + G — ¢ for G, . (b) and
(¢) without uniformity are perhaps even more direct applications of Theorem 1.

Conditions (i)—(iii) alone do not imply (a)—(c), nor can the region of in-
tegration in the conclusion of Theorem 1 be different from that in (iii) in gen-
eral. For trivial counter-examples, let fi(z) = —1 for —1 < ¢ < 0, =1 for
0 < z < 1,and =0 otherwise;let f = g = G = 0; let fu(z) = g.(z) =
G.(z) = nfi(nz) or n 'fi(n'x); and let the integrals be ordinary (Lebesgue)
integrals from —1 to 1 or — « to «. Then (i)-(iii) hold but (a)-(c¢) do not,
nor can the integrals in the conclusion of Theorem 1 be taken over positive z
only. The choice nfi(nx) from —1 to 1 gives finite measure and the choice
nfi(n"'z) from — o to o gives uniformly bounded functions. If the measure
is finite and the functions are uniformly bounded, of course, f, — f implies
(a)—(c¢) without further conditions.

Theorem 1 and Corollary 1 reduce to the Lebesgue convergence theorem when
G.=0G=—g= —g, = 0.

The next corollary is Scheffé’s theorem.

CoroLLARY 2. If all f, and f are probability densities and f, — f, then (a)—(c)
hold.

Proor. (i)-(iv) are satisfied by g, = ¢ = 0, G, = f., G = f. Thus, Corollary
1 applies, q.e.d.

Suppose P, and P are the probability measures given by the probability
densities f, and f; that is, P.(S) = [sfs, P(S) = [sf. It is an immediate con-
sequence of Corollary 2 that, in Euclidean space, f, —f implies P, converges in
distribution to P (in the usual sense that the c.d.f. of P, approaches the c.d.f.



76 JOHN W. PRATT

of P at points of continuity of the latter. 8 must include Borel sets, but x need
not be Lebesgue measure). It is more illuminating to compare consequences (b)
and (c) of convergence of densities to a density with the following conditions,
each of which is equivalent to convergence in distribution in Euclidean space.
(This is well known; in fact, (¢’) is often used to define convergence in distribu-
tion more generally.)

(b’) Pa(8) — P(8) for every set S whose boundary has P-measure 0.

(c’) [hdP, — [hdP for every bounded continuous function h.

Provided open sets are measurable, (b’) and (¢’) are obviously weaker than
(b) and (c).

CoroLLARY 3. A density which is continuous in a parameter has continuous (in
fact, equicontinuous) power and Type II error functions.

Proor. Suppose f(z, 8) is a density function for each 6 and continuous in 6
for each z (or, more generally, for almost all z at each value of §). The power
function of a test is «(6) = [h(z)f(x, 6) where 0 < h < 1 and the integration
is over z. Given any sequence 8, — 8, Corollary 2 applies with f,(z) = f(z, 6.),
f(z) = f(=, 0), giving a(6,) — «(8) uniformly in A, q.e.d.

Another consequence of Theorem 1 is that a function may be differentiated
with respect to a parameter under the integral sign if its derivative is bracketed
by the derivatives of two functions which permit differentiation under the
integral sign. That is,

CoroLLARY 4. Suppose 8 is a real parameter. Let D denote differentiation with
respect to 6 and [ integration over x. If 6, is an interior point of an interval I and

(i) Dy(z, 0), Df(z, 8), and DG(z, 8) exist for all 0 ¢ I,
(ii) Dg(z, 6) < Df(z, 0) < DG(x, 8) forall 0 1,

(iii) Dfg(z, 6o) = [Dg(z, 6o) and DfG(z, 60) = [DG(z, 6,) with all four
quantities existing and finite,
then Dff(z, 6) = [Df(x, 60) with both quantities existing and finite.

This follows from Theorem 1, since the difference quotients of f lie between
the corresponding difference quotients of g and of G. It suffices that (i) and
(ii) hold for almost all z[u].

When G(z, 8) = —g(z, 8) = 6G(z), Corollary 4 reduces to the commonly
given criterion that | Df(z, 8)] < G(z) for @ integrable.

The main advantage of the approach presented here is its simplicity. From
the point of view of application, Theorem 1 is a single theorem which applies
with trivial specialization to the situations for which Lebesgue’s and Scheffé’s
theorems are tailor-made. Furthermore, Theorem 1 implies the following facts,
for instance, more directly than the latter theorems do.

(1) I fa — fand f| fu| — [| f| finite, then f| fa — f|— 0.

(2) If all f, and f are densities, f, — f, all &, and h are test functions (that
is,0 < h, £ 1,0 £ h £ 1), and h, — h, then [h.f, — [hf.

Pedagogically, I find Theorem 1 useful in reviewing measure theory briefly
in a probability course. The most expeditious way I know to prove the Lebesgue
Convergence Theorem is to prove Fatou’s Lemma first [2, Section 7.2, for in-
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stance]. But the proof of Theorem 1 is a simple extension of a proof of Lebesgue’s
Theorem from Fatou’s Lemma. Thus Corollaries 2 and 3 are obtained virtually
without extra proof. Concepts not involved in the statement of the theorems
(such as equicontinuity at the empty set) need never be introduced.

In fact, it is interesting to note that the equivalence of Theorem 1,
the Lebesgue Convergence Theorem, Fatou’s Lemma, and the Monotone Con-
vergence Theorem [2, Theorem 7.2A, etc.] depends only on properties of meas-
urable functions and [ having to do with order and addition. Theorem 1 is
especially natural in this context.

The fact that the foregoing theorems have short proofs is fortunate for the
purposes mentioned. However, it means the individual theorems are in this
sense not deep, and it makes it hard to verify that any particular one is new. I
have not searched the literature thoroughly, but I have never seen even a state-
ment of Theorem 1 or Corollary 1, although they unify important theorems on
interchanging lim and [, both conceptually and pedagogically. The only state-
ment of Corollary 3 I know is Wald’s [4, p. 133], although it is obviously im-
portant and frequently assumed tacitly. Corollary 4 I presume is new.
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