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Yates’ estimate can now be written as
(4) 7= 1 — o(68)]lms + v(us — )] + ¢(65)[z: + (N/1h) (us — )]
Clearly (4) is equivalent to (1). Rearranging and simplifying (4) we get
Fo= [+ v(us — )] + 0(65) [(M/rk) — v](us — )
Graybill and Weeks have shown in [2] that E[z; + v(u; — ;)] = ;. Therefore
in order to show that Yates’ estimate is unbiased we need only show that
El(65) (M/rh) — 7)(ui — 2:)] = 0

Let 2z, = (u; — x;) wheres = 1,2, --- ,t — 1. Now 63 is a function of z; , S¥,
and §°. So let

6’; = g(Zl 9 Ry 4y 21, S*2, Sz)
v is also a function of z; , S*, and S°. Therefore, let

Y= h(zl 1R,y "ty R, S*z) Sz)'

Denote the joint density of the £ + 1 random variables 2, , 2;, * - - , 2ey , 8*,
by f(z1, 22, -, 221, S¥, §). From (2) it is clear that v is an even function
of the z; and from (3) we see that 3 is also an even function of the z; . Therefore,
#(43) is an even function of z;, (¢ = 1,2, --- , ¢t — 1) and ¢(63)[(N/rk) — 7]
is also an even function of z;. Hence ¢(é3)[(M/rk) — v](u; — z:) is an odd
function of z; . Therefore,

Elp(68) (M/rk) — 7)(us — )] = 0,
since z; are independent normal variables with mean zero and are independent
of §* and 8*. Thus Yates’ estimator, which is based on intrablock and inter-
block information, is unbiased.
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ON THE BLOCK STRUCTURE OF CERTAIN PBIB DESIGNS WITH TWO
ASSOCIATE CLASSES HAVING TRIANGULAR AND L,
ASSOCIATION SCHEMES

By DaMARAJU RAGHAVARAO
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0. Summary. The PBIB designs [2] with two associate classes are classified in
[3] as 1. Group Divisible, 2. Simple, 3. Triangular, 4. Latin Square type with ¢
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constraints, and 5. Cyeclic. Group Divisible designs are divided into three types
[1]: 1. Singular, 2. Semi-regular, and 3. Regular. It has been proved [1] that
every block of a Semi-regular Group Divisible design contains k/m treatments
from each of the m groups of the association scheme. In this note we prove
analogous results in the case of certain PBIB designs with triangular and L.
association schemes.

1. On the Block Structure of certain PBIB designs with two associate classes
having a triangular association scheme. A PBIB design with two associate
classes is said to have a triangular association scheme [3] if the number of treat-
ments v = n(n — 1)/2 and the association scheme is an array of n rows and n
columns with the following properties:

(a) The positions in the principal diagonal are blank.

(b) The n(n — 1)/2 positions above the principal diagonal are filled by the
numbers 1, 2, --- , n(n — 1)/2 corresponding to the treatments.

(¢c) The array is symmetric about the principal diagonal.

(d) For any treatment 6, the first associates are exactly those treatments
which lie in the same row and same column as .

It is then obvious that

(1) the number of first associates of any treatment is n; = 2n — 4, and

(2) with respect to any two treatments 6; and #; which are first associates,
the number of treatments which are first associates of both 6 and 6 is
ph(ﬂ; , 02) =n— 2.

We now prove

TaEOREM 1.1. If ©n a PBIB design with two assoctate classes having a triangular
assoctation scheme

(1.1) rk — o\ = n(r — M)/2,

then 2k is divisible by n. Further, every block of the design contains 2k/n treatments
from each of the n rows of the association scheme.

ProoF. Let ¢] treatments occur in the jth block from the 5th row of the associ-
ation scheme (¢ = 1,2, --- ,n;j = 1,2, ---, b). Then we have

e

e;: = (n— 1)r,

<,
]
-

(1.2)

M-

eilei — 1) = (n — 1)(n — 2)A1,

[

j=

since each of the treatments occurs in r blocks and every pair of treatments
from the same row of the association scheme occurs together in A; blocks. From
(1.2), we get

b
(1.3) g () = (n — D){r + (n — 2)\}.
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Define ¢! = b)Y tye; = (n — 1)r/b = 2k/n. Then

i (e — el = (n — D{r + (n — 2)A} — 40K /n’

Jj=1

1.4

(1.4) = 2(n — D[{n(r — N)/2} — (vk — v\1))/n

from (1.1). Therefore e = e3 = - -+ = ej = ¢! = 2k/n. Sinceej (1 = 1,2, - -+ , n;
J=1,2,---,b) must be integral, 2k is divisible by n. This completes the proof

of the theorem.

It has been proved ([4], [5], [7]) that a PBIB design with two associate classes
satisfying the relations (1) and (2) has a triangular association scheme for all
n except 8. Using this result and Theorem 1.1, we have

CoroLLARY 1.1.1. A necessary condition for the existence of a PBIB design with
two assoctate classes having the parameters

(1.5) v=mn(n—1)/2,b,r,k\N,N,n =2n— 4, p}l =n— 2

where rk — vA; = n(r — \1)/2 and n = 8, is that 2k is divisible by n.
Now let us consider the PBIB design with parameters

v =n(n—1)/2, b=(n—-—1)(n—2)/2, r=mn—2,
(16) k =n, nm = 2n — 4, ne = (n — 2)(n — 3)/2,
M=1 M=2 pu=n-—2  ph=4

This PBIB design has been shown to have a triangular association scheme [8].
Further, the parameters satisfy relation (1.1). Hence every block of this design
contains 2k/n = 2 treatments from each of the n rows of the association scheme.

2. On the Block Structure of certain PBIB Designs with two associate classes
having a L, association scheme. A PBIB design is said to have a L, association
scheme [3], if the number of treatments » = s?, where s is a positive integer,
and the treatments can be arranged in an s X s square such that treatments
in the same row or the same column are first associates, while others are second
associates. The following results are easily seen to hold in this case:

(i) The number of first associates of any treatment is n, = 2s — 2.

(i1) With respect to any two treatments #; and 6, which are first associates,
the number of treatments which are first associates of both 6, and 6, 1s p}l =s—2.

We now prove

Tueorem 2.1. If, in a PBIB design with two assoctate classes having a L. associ-
ation scheme,

(21) rk — U)\l = S(T el )\1),

then k is divisible by s. Further, every block of the design contains k/s treatments from
each of the s rows (or columns) of the association scheme.
Proor. Let f; treatments occur in the pth block from the gth row (or column)
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of the association scheme (p = 1,2, ---,b;¢ = 1,2, --+, s). We then have

b
2 f3 = s,

p=1

(2.2) )
E{f‘;(f% — 1) = s(s — )N,

since each of the treatments occurs in r blocks and every pair of the treatments
from the same row (or column) of the association scheme occurs together in A
blocks.

From (2.2), we get

)
(2.3) 2_,; () = slr + (s — 1N}

Define f¢ = b Y 51 f& = sr/b = k/s. Then

b
(24) 2 G =1 = sln+ (s — DM} — 0/’
= S(T - )\1) - (Tk - vkl) = 0,
from (2.1). Therefore ff = ff = -+ = f§ = f* = k/s. Since 5 (p = 1,2, -+ -, b;

¢=1,2, .- ,s) must be integral, k is divisible by s. Thus the theorem is proved.
It has been proved that a PBIB design with two associate classes satisfying
the relations (i) and (ii) has a L, association scheme if s = 4([6], [9]). Using this
result and Theorem 2.1 we have
CoROLLARY 2.1.1. 4 necessary condition for the existence of a PBIB design with
two associate classes having the parameters

(2.5) v=28,b71k N\, A, n = 2s — 2, pi=s— 2,
where tk — v\ = s(r — M) and s % 4, is that k vs divistble by s.
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OPTIMALITY CRITERIA FOR INCOMPLETE BLOCK DESIGNS!

By K. R. Suan?
Forest Research Institute, Dehra Dun, India

1. Introduction and Summary. Several optimality criteria have been suggested
for the efficiency of incomplete block designs. This note surveys these criteria,
extends certain results and puts forward a new and simpler criterion.

2. Existing Criteria. Important aims in experimental design are to estimate
the effects of treatment comparisons with maximum precision for a given total
number of experimental units, or total cost, and to perform a test of the null
hypothesis. These two considerations lead us to different criteria for choosing
from among the designs.

Consider the class of incomplete block designs, D, , for fixed values of v, k
and b(v > k), where v treatments are arranged in b blocks of k plots each, and
each treatment is replicated r times. In the usual notation, (see for example,
Kempthorne [2]) intra-block estimates of treatment effects are given by

(2.1) Ct=0Q,

where C = rI — NN’/k, N being the incidence matrix of the design. We consider
only connected designs, so that the rank of Cisv — 1. Let A1, A2, =+, Ny, be
the v — 1 non-zero latent roots of C. It is proved in [2] that the average variance

of all elementary treatment contrastsis proportional to )_A\;* . Let Pit(i = 1,2,
-, v — 1) be any complete set of ¥ — 1 orthogonal normalised contrasts. Set

PZ[P17P27"'7P1!—1]7 P/t=9; 9={p17"'7pv—l}o
It can be shown that P’CP is a non-singular matrix with latent roots Ay, - -+ , A1,
and that (2.1) leads to
(2.2) P'CP$ = PQ or § = (P'CP)"'PQ.

Let us denote the dispersion matrix of x by V(x). Now V(Q) = C-¢°, which
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