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1. Summary. Shrikhande [9] and Roy [7] have shown that certain Balanced
Incomplete Block Designs (BIBDs) can be dualised to give Partially Balanced
Incomplete Block Designs (PBIBDs) with exactly two associate classes. Roy
and Laha [8] have obtained a necessary and sufficient condition for the dual of
a BIBD to be a PBIBD with two associate classes. In this paper, a general re-
sult regarding the dual of a BIBD is established and the results of Shrikhande
and Roy are obtained as particular cases. An illustration to show the use of the
result when the dual is not a 2-associate PBIBD is also given.

2. Two Lemmas connecting the parameters of a BIBD. For the definition of
a BIBD the reader may refer to Kempthorne [4]. The following two lemmas will
be stated without proof. Lemma 2.1 is due to Connor [2], while Lemma 2.2 is

due to Hussain [3].
Lemma 2.1: If 1;; 1is the number of treatments in common with the ¢th and the

jth blocks of a BIBD with parameters v¥, b*, r*, k*, N*; the following inequalities
hold:
(2.1) [2AN*E* 4 r*(r* — NF — EN)]/r* = Li; =2 — (r* — N* — kF).

Lemma 2.2: If n, denotes the number of blocks having v — 1 treatments in com-
mon with a chosen initial block of a BIBD with parameters v*, b*, r*, k*, N\*, and
t ©s the largest integer contained in [2N¥E* 4 r*(r* — N¥ — E*)]/r*, such that
t < k + 1, the following equalities hold:

(2.2) inu = p* — 1,
(2.3) i (w — Dng = k*(r* — 1),
(24) i (w — 1)(u — 2)n, = E*(k* — 1)(\* — 1).

Note that if (2.2), (2.3) and (2.4) admit a unique nonnegative integral solu-
tion, then, corresponding to each block of the design, the remaining b* — 1
blocks may be divided into ¢ 4 1 = m groups such that a block in the uth group
has exactly u — 1 = Ay (u = 1, 2, --- m) treatments in common with the
chosen initial block, there being exactly n. blocks in the uwth group.

3. The definition of a PBIBD. An incomplete block design is said to be a
PBIBD if it satisfies the following conditions:

(3.1) There are v treatments divided into b blocks of & plots each, different
treatments being applied to the plots in the same block.

Received March 20, 1959; revised January 22, 1960.
779

&5
ale
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é'g(:%

o

The Annals of Mathematical Statistics. KGN ®

WWWw.jstor.org



780 P. V. RAO

(3.2) Each treatment occurs in exactly r blocks.

(3.3) There can be established an association relationship between any two
treatments satisfying the following conditions:

(3.3a) Two treatments are either 1st, 2nd, - - - mth associates.

(3.3b) Each treatment has exactly n, uth associates (v = 1, --- m).

(3.3c) Given any two treatments which are kth associates, the number of
treatments which are the uth associates of the first and w'th associates of the
second is P%,. . Also, P&, = P%.,.

(3.4) Two treatments which are uth associates will occur together in exactly
M(u = 1,2, ---, m) blocks.

For the necessary conditions satisfied by the parameters of a PBIBD the
reader is referred to Bose and Nair [1] and Nair and Rao [6].

4. The dual of a design. Let B;, By, --- , Byeand Ty, Ty, - -+, Tys denote
the blocks and treatments of a given design, D*, in which v*(=b) treatments
are arranged in b*(=v) blocks of k*(=r) plots each such that every treatment
is replicated r*(=Fk) times. Let D be a new design with v treatments and b
blocks constructed by placing the treatment numbered 7 in block numbered j
of D, if in D* the block B; contains the treatment 7';. The designs D* and D
are said to be the duals of each other. Evidently, in D each block contains k
plots and each treatment is replicated r times. Further, if N* = (n,;),
(t=12,---,v%7 =12, .-, b*), where n;; denotes the number of times
the 7th treatment occurs in the jth block, is the incidence matrix of D*, the
incidence matrix of D is (N*)’, where (N*)’ is the transpose of N*. Also the
element in the ¢th row and the jth column of the v* X v* matrix (N*)'N* will
be equal to the number of blocks in the dual design D in which the ¢th and the
Jth treatments occur together.

6. The dual of a BIBD. Consider a BIBD with parameters v*(=b), b*(=v),
r*(=k), k*(=r), N\*. Let N* = (n;;) be the incidence matrix. We have, by the
well known properties of a BIBD,

(5.1) N*(N*) = MNEp + (% — A Loe,

where E,» is a v* X v* matrix with all elements unity and I, is a v* X v* identity
matrix. Also,

(5.2) (N*)'N* = (Z‘;'nimu) = (Njj),

where, as already observed in the previous section, Aj;» is the number of treat-
ments common to the jth and the j'th blocks of the original BIBD, which is
also equal to the number of blocks of the dual design in which the jth and the
J'th treatments occur together. Thus, in the dual design, a pair of treatments
can occur together in at most ¢ blocks, where ¢ is defined as in Lemma, 2.2. Fur-
ther, if the equations (2.2), (2.3) and (2.4) admit a unique integral non-negative
solution, in the dual design, corresponding to each treatment, the remaining
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v — 1 treatments can be divided into ¢ + 1 = m groups, such that a treatment
in the uth group will occur in exactly Ay = v — 1 (u = 1, 2, ---, m) blocks
with the initial treatment, and, there will be exactly 7, treatments in the uth
class. At this point, it may be noted that we do not exclude the possibility of
some of the n,’s being zero, in which case the exact number of classes will be
less than m. In fact, the total number of groups will be exactly equal to the total

number of non-null #,’s.
We now proceed to investigate the conditions under which the dual will be a

PBIBD. Evidently, if the equations (2.2), (2.3) and (2.4) admit a unique
integral non-negative solution, then the conditions (3.1), (3.2), (3.3a), (3.3b)
and (3.4) are satisfied by the dual design. Hence it remains to see when (3.3¢)
will also be satisfied.
Define m » X v matrices B,(u = 1,2, ---,m) as
(53) B, = (b;‘l’) j’jl = 1, 27 U5
where bj; = 0 for all 7, and bj7 = 1 if A\;; = A, and 0 otherwise, for all j > j'.
The matrices B, are symmetric, independent, and commutative with respect
to multiplication. It is also clear that
(5.4) Z bis b;‘J, = Z bas b;"dl = ngu’,

8=1 8=1

which is the number of treatments common to the uth and u’th groups of treat-
ments with respect to the treatments numbered ¢ and j in the dual design if
1 # j. It equals n, if ¢ = j and v = ¥/, and it equals zero if ¢ = jand u # u’.

Now consider any block, B;, of the original BIBD. There will be n, blocks
in the design that have exactly A, treatments in common with B;. Of these n,
blocks, C¥* blocks will have A, treatments in common with the block B; Hence

(5.5) ™10t = n, if the blocks B; and B; do not have \, treatments in
common,

= m, — 1 otherwise.

Now using (5.2) and (5.3), and observing that A\;; = k*, we have,
(5.6) (N*)'N* = k*Ipe + Zi AuBu,

and hence,
(5.7) [(N*)'N*][(N*)'N*] = (N*)'[N*(N*)'IN*
= (N*)'N*Eye + (r* — M) LN*
= N*(N*)'EosN* + (r* — M) (N*)'N*.
As N* is the incidence matrix of a BIBD it is easy to verify that
(5.8) (N*)'E,oN* = (k*)’Epe ,
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and that the left hand side of (5.7) can also be expressed as

(59) (N*)'N* [zc*zb. +3 quu].

Hence, using (5.8) and (5.9) and noting that A; = 0, we get from (5.7),
k*(N*)'N* + (N*)'N* (é )\uB.‘) = N¥(k*)’Eye 4+ (r* — N*)(N*)'N*.

Hence, from (5.6),
)\*(k*)zEbc - k*(k* —r¥ — )\*)Ibt
= (2k* — r* + A*) >N\, B, + [Z MBu:I
u=2 u=32

2

Hence
N (K*) By — E¥(r* — B* — N L*
(5.10) = (2k* — r* 4 %) Z AuB. + Z Z AAu'BuBy: .

Comparing the (¢j)th non-diagonal terms on both sides of (5.10),
2 3 MM TBEBY = N(B9) — (2k* — 1% %) T NbY

Using the notation of (5.4),
(511) 2 T NMCH = N(E*) — (2k* — 1 + N¥) 20 NbY .

U, u

We can divide the set of (b*)® equations (5.11) into m mutually exclusive
sets such that the gth set (¢ = 1, 2, ---, m) contains all the equations with
Ci for A\;; = N\, The coefficients in the left hand side, and the constant in the
right hand side, are same for all the equations in a given set. In fact, the equa-
tions in the gth set will be obtained by giving all the values to ¢ and j such that
)\ij = )\q in

(5.12) 2 MM = NH(R*) — (2k* — r* 4 AR,

Thus it is clear that the values of C%"" depend onlyon Ay , Au and A;; . Hence, by

writing C3* = Phu if A;j = \,, the equations (5.6) and (5.12) may be re-

written as

(5.13) ?::-:1 qu’ = Ny if u '8
=Ny — 1 ifu=gq;

and

(5.14) T 3 APl = MR — (k% — ™ + 0N, ¢=1,2, -+, m.

Hence, if (5.14) has a unique integral non-negative solution, it follows from (5.4)
and (5.13) that the number of treatments common to the uth group and «'th
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group of two treatments is the same for all treatment pairs which belong to the
gth group with respect to each other. This number is equal to P%,, with P, =
P%+. . Thus we have proved Theorem 5.1.

TrEOREM 5.1: The dual of a BIBD with parameters v*(=b), b*(=v), r*(=k),
E*(=r), A* is a PBIBD with parameters v, b, r, k; M, A2y *++ 5 Am ; T, T2,

- N Phu(u,w', g = 1,2, -+, m), wherem = t + 1 isdefined asin Lemma
2.2, provided the equations (2.2), (2.3), (2.4) and (5.14) admit unique integral
non-negative solution subject to the conditions (5.13).

6. Shrikhande’s two theorems as particular cases of the Theorem 5.1.

(6.1) The case \¥ = 1. Consider a BIBD with parameters v*(=b), b*(=v),
r¥*(=k), k*(=r), A* = 1. In this case we have { = 1 and the equations (2.2),
(2.3) and (2.4) reduce to n; + ny = b* — 1 and n, = k*(r* — 1), giving the
unique non-negative solution

n= (v —1) —r(k — 1),
ng = r(k — 1).

Noting that A; = 0 and X\; = 1, we can solve the equations (5.14) uniquely to
get the solution Py = r*, Pay = — 2r + k — 1 = (r — 1)* + (k — 2). The
other parameters can be easily obtained by using condition (5.13).

Thus we have proved Shrikhande’s [9] Theorem 1 that the dual of a BIBD with
parameters v* = vk — k 4+ 1,0* = k(0k — k + 1)/r,r* =k, k¥ =r,N\* =1
is a PBIBD with parametersv = k(rk — k + 1)/r,b =1k — k + 1, r =1,
k=kM=0N=1m=rk—-1),n=(—1r)(r—1)E&—1)/r;

, ':(k - +20r—1) —k(k—1)/r r(k—r— 1)}

¢ =
wu 2

r(k—r—1) T
. _[(r— VEk—-r)k—r—1)/r (r—1)(Fk—7r) :l
Pl =0 -n h—2)+ (r— 2]

(6.2) The case \* = 2. It can be easily seen that, if we exclude the solutions in
which the same block is repeated, for all designs with A* = 2 and r < 10, we
must have ¢ = 2. In this case the equations (2.2), (2.3) and (2.4) will have the
unique solution given by

n = (b* — 1) — k*(* — k*) — E*(k* — 1)/2,
ne = k*(r* — k*),
ng = k*(k* — 1)/2.

But, in general, equations (5.14) will not have a unique solution. However, if
we consider the particular case n; = 0, i.e. when r* = k* 4 2, the equations
(5.14), when ¢ = 3, reduce to P3, + 4(P3 -+ Pi) = 2k*(k* — 1). Hence,
using (5.13), we get, Py, = 2k*(k* — 1) — 4(n; — 1) = 4. Similarly, the other
parameters may be found. Hence we have proved Theorem 3 of Shrikhande [6]
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that the dual of a BIBD with parameters

v*=(k;1>’ b*=(l2c), =k K =k—2 =2

is a PBIBD with parameters

k k—2
__(2>, b_(2 ), r=k—2  k

>\1=1, k2=2, ’ﬂ1=2(k_2), n2=(k;2>,

Il
=

k—2 k-3 4 2(k — 4)

Puw = k—3\[5  Puw= k-4
i-s (39 i (59

Roy’s [7] Theorem 3, regarding the dual of an affine resolvable BIBD, can be
proved in a similar way by using Theorem 5.1 of this paper.

7. Application of Theorem 6.1 when the solution of the equations is not unique.
When the solution of the equations (2.2), (2.3), (2.4) and (5.14) is not unique,
Theorem 5.1 will not give complete information about the dual. However, if
the structure of the original BIBD is known, Theorem 5.1 can be used to simplify
the investigation about the properties of the dual. As an illustration, we con-
sider the dual of a BIBD with parameters v* = 16, b* = 24, r* = 9, k* = 6,
M = 3. A plan of this design is given by Mann [5]. He constructed it by the
process of residuation from the symmetric BIBD with parameters v* = b* = 25,
r* = k* = 9, \* = 3. We shall denote Mann’s design by D*.

Since any two blocks of a symmetric BIBD must have A* treatments in com-
mon, any two blocks of the design D* cannot have more than three treatments
in common. Hence we must have n; = ng = ny; = 0. Thus the equations (2.2),
(2.3), and (2.4) can be written as

n1=5—n4,
n2=3(n4—4),
ny = 3 (10 — na).

From inspection of Mann’s plan we can see that no two blocks of the design D*
have exactly one treatment in common. This gives the unique solution, n; = 1,
ny = 0, n; = 18, ny = 4. For the sake of simplicity, we shall write n,, ns, ns
instead of n; , n3, ns and make corresponding changesin P3., . Now, asn; = 1
and Py + Pis+ Pizs=m — 1 = 0, we must have Pl = Pi, = Pi; = 0. There-
fore, the equations (5.14), when ¢ = 1, may be solved uniquely to get the values
of Phu(u, v = 2, 3.). Again, if the dual of the design D* is a PBIBD, then
P?%, and P3; must both be unique and equal to (n1/nz)Ps and (n1/ns) P3; respec-
tively. It can be verified that, for the design D*, the values of P} and Pi; satisfy
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these conditions and are both equal to 1. Hence, as n; = 1, it follows from (5.13)
that P} = P}; = P}, = P} = 0. It is now easy to see that the equations (5.14)
will have the unique solution

0 00
P... =0 18 0],
[0 0 4]
[0 1 0]
Pl =11 12 4|,
0 4 0]
[0 1 17
Pl.. =10 18 0
|1 0 2]

Hence the dual of the design D* is a PBIBD with the parameters v = 24, b = 16,
r = 6,’0 = 9,)\1 = 0, A = 2, A = 3;7&1 = 1, Ne = 18,7&3 = 4;P‘fmr(u,u',q
=1,23.).

Roy and Laha [8] have already pointed out that this PBIBD may be ob-
tained as the dual of a BIBD. However, they have not stated how they arrived
at this conclusion.
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