ON UNBIASED ESTIMATION!
By L. SCHMETTERER®
Unaversity of California, Berkeley

The theory of unbiased estimation has been mainly developed for quad-
ratic loss-functions. The purpose of the present paper is to generalize this
theory to convex loss-functions, and especially to loss-functions which are pth
powers (p = 1). The treatment of these cases needs in part quite different tools
than in the quadratic case. Theorems of Stein and Bahadur are generalized. The
contents of the paper have, however, some relations to results previously obtained
by Barankin.

Let (R, S) be a measurable space and let B be a nonempty class of probability
measures P on 8. Let g be any real valued function from P into euclidean R, .
A real-valued measurable function on R for which [ hdP exists for all P ¢ P is
called an unbiased estimator for g if

(1) | B P) = [ wap = o(P),

for all P ¢ PB.

The set of all h’s which satisfy (1) will be designated by H, . Let w(z) be any
nonnegative Borel-measurable function defined on — % < z < . Denote by
H,(w; P) the set of all b ¢ H, for which E(w(h — g(P)); P) with P & P exists.

DEFINITION 1: ho € Hy(w; Po) is called locally w-minimal a P, & P if

E(w(ho — g(Po));)Po) = E(w(h — g(Py)); Po)

for all h ¢ Hy(w; Py).
DEeFINITION 2: ho € N g Hy(w; P) is called uniformly w-minimal if

E(w(ho = g(P)); P) = E(w(h — g(P)); P)

for all h & N pep Hy(w; P) and every P ¢ P.

If w(2) is of the form | z |°, p = 1, then we shall also use the phrase p-minimal
instead of w-minimal. The significance of H,(p; P) is obvious.

The case w(z) = 2’ is frequently treated in the literature. Only a few papers
exist which are occupied with more general loss functions w(z). I refer in this
connection to investigations by Barankin [1].

We now give

Dermvition 3. Let V,(p = 1) be the class of all unbiased estimators v for
g = Osuch that E(|v |; P) exists forall P ¢ B, andlet V2 bethe class of all un-
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ON UNBIASED ESTIMATION 1155

biased estimators » for g = 0 such that E(| v |”; Po), Py £ B, exists. The class of
all measurable functions 4 which satisfy E(| & |”; P) < o for all P ¢ B will be
denoted by E, . '

For any p = 1 and any measurable function % on R we will write || & ||, » for
(f= | k |?dP)"?. The Banach space of all functions & with finite norm || & ||, » will
be denoted by Lj .

In [2], the following theorem was proved by the author.

THEOREM 1. ho &€ N\ p.5H,(p; P) is uniformly p-minimal (p > 1) of and only if
the Fréchet-differential, dL(ho — g(P); v), of the norm || ho — g(P))||p.r vanishes
for all v € V, and each P € P.

Clearly, a similar theorem is valid for unbiased estimators which are locally
p-minimal at P, replacing V, by V5.

Moreover, I will make use of the following theorem [2], [3, p. 63].

TrEOREM 2. If w(2) s stricily convex, then there exists at most one unbiased
estimator which ts locally or uniformly w-minimal.

ReMmark. Clearly, the exact meaning of Theorem 2 is the following: If & ¢
H,(w; Py) is locally w-minimal in P,, then, for any other locally w-minimal
h & Hy(w; Py), we have Po({h 5 ho}) = 0, and, if ho £ M pesH,(w; P) is uniformly
w-minimal, then, for all P ¢ B, we have P({h % ho}) = 0 for any other uniformly
w-minimal & & N p.gH,(w; P). Similar remarks apply to analogous cases. We
shall now prove

THEOREM 3. Let P be dominated by a probability measure u with u & PB. The gen-
eralized density dP/du of P e B will be denoted by fr . Suppose that fo € Ly(qg > 1)
for all P & PB. Let G be the set of all real-valued functions g, on B of the form P —
E(k; P) withk e Lyand 1/p + 1/q = 1. h € Hy(p; ) with g &€ G s locally p-
minimal at p if and only if there exists a mapping T defined on G into the real
numbers such that

(2) T(g) = kalh — g(u) [P sgn (b — g(u)) du

for all k & Ly . The value of the minimum s given by T(g — g(u)).

The proof is based on two lemmas.

LemMA 1. Let B be a Banach space. Denote its norm by || - ||. Let B* be the con-
jugate space of B and let M° C B* be the annihilator of M, where M is a closed
linear manifold of B. Let Q = B/M be the quotient space of B and M and let ¢ be
the canonical mapping of B onto Q. Introducing the norm

[yl = inf [,
o(z)=y

Q also becomes a Banach space. Let Q* be the conjugate space of Q. The mapping
¥, the transformation adjoint to ¢, is a one-to-one linear and isumetric mapping of
Q* onto M° [4, p. 115].

Lemma 2. V% is a closed linear manifold of LY, .

Proor. It is clear that V7 is a linear manifold. Moreover V% is closed in L}
because strong convergence in L implies weak convergence.
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Proor oF TaeorEM 3. First, let T be a mapping of G into the set of real num-
bers, which satisfies (2) for some h & Hy(p; ). Choose B = Ly and M = V%, .
There is a one-to-one correspondence between G and the set of all classes H,, (p;u)
(with k ¢ L%). Thus, there is a one-to-one correspondence between G and =
L4/ V"% . Let us now consider 7 as a functional on Q. Clearly, T must be linear
and bounded. Now an application of Lemma 1 shows that necessarily

(3) fkvlh —g(u) |"?sign (b — g()) du = 0

for all v ¢ V% . But Theorem 1 implies that & is locally p-minimal in . On the
other hand, if & ¢ H,(p; n) is locally p-minimal we again have (3) for all v £ V%
according to Theorem 1. Denote the linear functional defined by

kalh — g(u) " sign (b — g(u)) dp
for all k & L% by L. We can define T by ¢*(L). Clearly,

7( - o) = [ 15— o) I du

For the case p = 2, Theorem 3 has been proved by Stein [5] by a different
method.

Next we give

DerFiNiTION 5. Let p > 1 and 1/p + 1/¢ = 1. We define a transformation
N of L to L% by f — | f|”* sgn f for all f & L5 . If f runs through a subset
C < L% we write for the set of all Nf with f & C simply NC. Clearly, for all
k e L* , N"'k exists and is given by | k |7 sgn k.

It is not difficult to find applications of Theorem 3 which are generalizations
of corresponding applications by Stein. This leads, e.g., to

TueoreM 3. Let there be given a o-algebra & of subsets of P, let there be given a
o-finite totally additive (in general) signed measure m over (B, ©), and suppose that
fr satisfies the conditions of Theorem 3. Suppose further that fe , considered as o
function on R X B, is measurable. If [z| k| [oft d|m | du exists for all k & Ly
and if E(N™* [¢fe dm; p) = 0, then N~ [3 fo dm is locally p-minimal at p.

Proor. Denote the mapping P — E(k; P) with k ¢ L by gi . It is enough to
observe that

T(g) = L fR ko dm du

for all k ¢ L, exists and satisfies the conditions of Theorem 3.
We will illustrate this theorem for the case p = 3 by a simple example which
however is general enough to serve as a pattern for the general finite dimensional

case.
ExampLe 1: Suppose that R = {x1, %2, @3, @4} is a finite set and S the set of
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all subsets of R. Define
4
Pl(xi)=a,~, aigO, 1§2§4, Za¢=1

=1
Py(z:) =a>0, 1 =1,3; Po(z:) =p>0, 1 =2,4a+8=1%
w(z:) =8, ©=1,3; wx)) =a 1=2,4

Let & be the set of all subsets of B = {P;, P2, u} and define the measure m by:
m(P;) = 0, m(P2) = A2, m(pu) = \;, where A\; and A; are any real numbers. -
Obviously P; and P, are dominated by x and we have

Jr(@) = ai/B, ©=1,3;  [fp(z:) = ai/e, ¢ =2,4
fe(x:) = /B, ©=1,3; fr(xs) = B/, ©=2,4
We will now determine unbiased estimators which are locally 3-minimal at p.
~ We have: Jofe(x:) dm = (a/B)he + As, ¢ = 1,3, [o fo(x:)dm = (B/a)hs + \s,
' Acz;);i(iing to Theorem 3’ we have to determine A and A; in such a manner that
B (a/B) M + Ns |' sgn (a/B)Ns + o)
+ a |8/ + Nl sgn (/) + X) = 0
It follows by a simple calculation that, if y is any real number and if g is a
function over P defined by ’

g(P1) = (ly|ld — BB + &) ((@ + as)(a/B) sgn (y(a® — £°)
+ (a2 + ai)(B/a) sgn (y(68' — o))
g(P2) = (Jy |l = B DB + )7 ((a*/8) sgn (y(o’ — £))
+ (8/e) sgn (y(6' — o))
g(p) =0,
then
h(z) = (lylla® — BD'a/BB + o) sgn (y(a® — ), =13,
h(z) = (|y] 18 — o )!8/a(B + o) sgn (y(8*— oY), i=24

is the unbiased estimator for the function g which is locally 3-minimal at u.

Clearly, if we had taken m(P;) = A\ 5% 0, then we would have obtained a
two-parametric class of unbiased estimators which are locally 3-minimal at u
for a corresponding two-parametric class of functions g which vanish at p.
Hence it is possible to determine the locally 3-minimal unbiased estimator for
every function g on P that vanishes at p by solving an algebraic equation for
M, A2, Az, which is at most of the second degree (Cf. also example 2).

Let G have the same significance as in Theorem 3 and let Gy be the subset of
all functions g £ @ with g(u) = 0. We denote the set of all unbiased estimators
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for ¢ & Gy which are locally p-minimal at p by T’ and the corresponding set for
allg e G by T . ’ '

We now prove ,

THEOREM 4. Suppose that B satisfies the conditions of Theorem 3. T’ can be
mapped by a one-to-one transformation onto a subset W of a closed linear manifold
U c L4 where U is the closed linear manifold spanned by all fr and W is the set
of all k ¢ U with E(N 'k; u) = 0. U N NH,(p; p) contains for each g & Go exactly
one element k, and N 'k, is an unbiased estimator for g and locally p-minimal at p.

Of course, this theorem is strongly related to Theorem 3. First we formulate a
theorem of Barankin [1] as

Lemma 3. Suppose that P is dominated by u with p & B. Suppose further that
freIh(1 £ q < ») for all P & PB. Then there exists for each nonempty class
H,(p; 1) at least one unbiased estimator which is locally p-minimal.at p, where

1/p+1/q¢ = 1.

Proor oF THE THEOREM. Let k& ¢ U and so
(3) E(N"'k; ) = 0.
According to Definition 3 we have for each v ¢ V% and all f»
(4) /vap dp = 0.
If
(5) k= 2 aife
for any natural n, any real number o; and P; ¢ B,2 =1, - -+, n, then (4) implies
(6) | f vkdu =0

R

for all v ¢ V% . If k satisfies condition (3’), then an application of Theorem 1
shows that N 'k is locally p-minimal at p.

If || kn — k|| ¢ — O, where the k. are of the form (5), and if k fulfills (3’),
then k also satisfies (6) for all v & V% . This implies that N ' is locally p-minimal
at u.

Now we have to show that U N NH,(p; r) is not empty for every g £ Go. An
application of Theorem 2 entails that this intersection contains at most one
element. There exists, according to Lemma 3, an element & & Hy(p; u) which is
locally p-minimal at u. Moreover, Barankin has proved the existence of a se-
quence k. ¢ U, such that

[Fnhau— Rz and | ko llow— | Nl

It follows, using a theorem of Radon [6], that || kn — Nh [[¢u — 0.
CoROLLARY. For p = 2, U and T% are identical [7].



ON UNBIASED ESTIMATION 1159

This follows from the fact that N is the identity for p = 2.

Let us denote by T the set of all estimators which are p-minimal at P ¢ P
for some real-valued mapping on P.

TuEOREM 5. Let B be any (not necessarily dominated) set of probablity measures
defined on S and suppose P & PB. If h & T, then, for any constant N, h + \ and M
are also in Th. T} s in general not linear.

Proovr. The first positive part of the theorem is a trivial application of Theo-
rem 1. Further, it is almost obvious that T for p #2is not linear. We consider
a simple example.

FXAMPLE 2: Let &, t, t3(0 < ¢; < 1) be a set of three real numbers mcludmg

3. Let a1, - -+, aq be any different real numbers. Let P = (P, , Py, , Pe,) be
given by P,,.(al) = (1 — t.)%, Py(a2) = t; — /2, Py(as) = t; — 1, Py(as) =
t3/2 and P, (M) = 0 for each set M of real numbers which does not contain at

least one of the numbers a; , -+, a4 .
Consider the two functionals on B, g:(8:) = ti, g2(t:) = $,1=1,23 Ttis
easy to see that the set H,, consists of the following functions:

BP(a) =0, 8% (a) =1 — z, k®(as) = z, A%(a) = 1 + =,
—o < < o,

For the determination of the unbiased estimator h{" which is locally 3-minimal
‘at Pj one obtains the equation

32 — o)’ sgn(z — 3) +3(z — 3)’sen(z — 3) +3G + 2)’sen(3 + ) = 0

and A§" is determined by the solution z{” = (3 — (5))/4. The set H,, consists
of the following functions

E®(ar) = 0, A% (as) = —2, h®(as) = 2, % (@) =2+ 2, —w <z < .
For the determination of h{"® we must consider the equation
3o+ D’sen(e + 1) + 1@ — Disgn(e — ) +HE + 4 sen (3 +2) =

and the relevant solution of this equation is given by z§® = (3 — (53)%)/8.
Finally, let gs(¢;) = g1(¢:) + g2(8:), ¢ = 1, 2, 3. The set H,, consists of the

functions
hO (@) = 0,1 (a) = 1 — y, h¥(a) = y, h¥(a) = 3 + 9,
—o <y < o,
The solution yo = (9 — (141)*)/8 of the equation
3G - sy — 1 T3y — Dsenly — D HEE + 9 senE + y)= 0

determines k§® . Clearly, h® + h$® = h§® .

TuEOREM 6. Suppose that B satisfies the conditions of Theorem 3. Then T is
closed in LY, .

We need the following
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LemMA 4. Let f, and f; be in Ly, . We have the inequality
@ [ING = NE AP S C@ A e 15210 L = e
wherep > 1and 1/p + 1/q = 1 and C(p, | fi lp.p, | f2 l5.p) =
2 ([ f1 llpr + | £2ll5.2)""%

Proor. For r = 1 and any real numbers y, 2 the following inequalities are
valid:

(8) ly—z1"=2"||yl"sgny — | 2| sgn 2|
and '
-(9) Ilyl"sgny — |z|"sgnz| = 2r|y — 2| (|y|+|2])"

(For a proof, compare ([8], p. 221)).
We use first (8) fory = |fi ["“sgnfi,z = |f2|”?sgn fand r = ¢ and then
(9) fory = fi,2 = fyand r = p and so obtain

[Al"sgnfy — | sgnfol® = 2 p|fi — £l (Sl + 1)

(up to sets of P-measure 0 of course). Integrating, and applying Holder’s and
Minkowski’s inequalities, gives (7). 4

ProOF OF THE THEOREM. Let h, ¢ T% and || hn — h || — O for some h & L.
We have g.(P) = E(h,; P) > E(h ; P) = g(P) forall P &£ P becausefr £ L.
It follows that

” ha — ga(p) — (b — g(n)) ”p,n — 0.

" The inequality (7) of Lemma 4 implies

(10) ” N(hn — ga(n)) — N(h — g(n)) ”q,n — 0.
Now

va | o — gn() |”" sgn (hn — gu()) du = 0
forallv ¢ Vo andn = 1,2, -- - . Therefore, (10) implies
[ 215 = 96" sgn (b = g(u)) du = 0

forallv e V5.

It is well known that there is a strong relation between the concepts of suffi-
ciency and of uniform w-minimality. In this connection the following definition
'[9] is important.

DEFINITION 6. A subalgebra S, of S is called p-complete if zero is the unique
Se-measurable element of V,, .

There is the following important result [10], [11], [9] which we formulate as

Lemma 5. If there exists a sufficient and p-complete subalgebra So of S for B, then
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an Se-measurable uniformly p-minimal estimator exists for each g if N pesH,(w; P)
18 non empty.

For the case p = 2 Bahadur [7] gave an interesting inverse theorem. It seems
that such a theorem does not exist in the more general cases. But by modifying
Bahadur’s ideas it is possible to give the following

TeEOREM 7. Let B be any class of probability measures. Consider the set C, of all
characteristic functions of sets in S, which are uniformly p-minimal (p > 1).
Denote by So the smallest subalgebra of S, such that all functions of Cp are So-
measurable. Then S, is a p-complete subfield and all So-measurable functions E,
(Definition 3) are uniformly p-minimal estimators.

Proor. Let A C R be any set. We denote by c, the characteristic function of
this set. Consider now a set 4 ¢ S and suppose that ¢, & C»p . Then we have for
allv e V, and each P [roN(cs — P(A)) dP = 0. Suppose 0 < P(4) < 1. It
follows that

L o[(1 = P(4))" + (P(4))"dP = 0

for all v ¢ V,, and each P & . This means [, v dP = 0 for all v ¢ V, and each
P &P, or '

(11) f vey dP = 0.
R

Obviously, (11) holds also for the cases P(A) = 0 and P(4) = 1. We have
0=<ci=1andsoby (11) vcs e V,oforallv e V,. Now, if Be S is a different
set with ¢z € C, , we have instead of (11) frvcsdP = Oforall v ¢ V, and each
P ¢ P. It follows that

(12) [ veucaap = [ veansap =0
R R
forallv £ V, and each P ¢ . Suppose 0 < P(A N B) < 1. Consider

fR N (cans — P(ANB)) dp

for a v e V,and a P e %. (12) implies that this integral vanishesand so c4ns £Cp .
Moreover, if ¢4 € Cp it follows that 1 — ¢4 = cz—4 € C'p by using Theorem 5.
Finally, consider a denumerable class of sets A; S, which are pairwise disjoint

and so that c4; & Cp . Denote U2, 4; by A. We have ¢4 = .o ¢4, and so for

all P e B || Di1ca; — ca || p.r — 0. Theorem 6 gives cs & C,. Thus, we have

proved that the class of all sets A ¢ S for which ¢, belongs to C, , forms a o-

algebra and obviously this must be Sy. It is easy to show that eics, + asca, for

any real numbers «; and c4; ¢ Cy is a uniformly p-minimal estimator. Let h ¢ E,

and let h be Si-measurable. Then there exists always a sequence of functions of

the form D %, aic4; , a; real numbers, c4; ¢ C,, which converge to 4, and such
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that | D% aica; — kb ||p.» — 0 for very P & P. It follows that h is uniformly
p-minimal. '

If h ¢ E, is Se-measurable and an unbiased estimator for ¢ = 0, h must be
uniformly p-minimal and so equal to zero. Moreover it is easy to show that
So is necessary. (Cf. [7].)

Concerning sufficiency it is possible to show

TaEOREM 8. Let P be a dominated class of probability measures, p a measure
equivalent to P, and p & B. Suppose that B is a convex set. Consider the set Tpyp
of all bounded uniformly p-minimal estimators, and denote by S° the smallest sub-
algebra of S such that all elements of Tpp are S’-measurable. We assume further:
If a real-valued function g on B has a bounded unbiased estimator then it has also a
uniformly p-minimal unbiased estimator. Then S° is sufficient for P.

Proor. We remark that the existence of a measure u which is equivalent to P
can be proved in the dominated case [12]. Let P, , P, ePBand P, %~ P, . The
measure

)\=411P1+¢12P2'+0!al-¢, ;i >0, a1 t+ar+tas=1
is equivalent to u and so to B and moreover, A ¢ B. We have
1 = a1(dP1/d\) + az(dP2/dN) + as(du/dMN).

It follows that dP;/d\ = fe; , ¢ = 1, 2 is bounded. Consider E(f»;; P) = ¢:(P)
for all P ¢ PB. By the boundedness of fr; there exist uniformly p-minimal un-
biased estimators h;forg;.

Let V be the class of all unbiased estimators v for the zero-functional on P.
We have

(13) fn ofe, A\ = 0

forallv e Vandsoforallv e V5 .

If E(N"Yfs; ; A) = O then according to Theorem 4, N~ 'fe, must be locally
p-minimal at \ for g; . But \ is equivalent to P and moreover N ‘feo, € Ep . Thus,
we must-have N 'f», = h; according to Theorem 2. Since N 'fp, is bounded,
we have h; & Tpp. Therefore, fr; is S’-measurable. However, in general
E(N"Ys,; \) = 0.

Let v be any real number. By (13) we also have

f v(fe; +v)dN =0 forallveV.
R
Consider

[ 1gec+ 71 sgn (g + ) .

It is easy to show that this integral is a continuous function » of ¥ for —» <
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v < » by using Lemma 4. If v > 0 is large enough, n(v) must be >0, because
fp‘ is bounded. If y < 0 and |y | is large enough, n(y) is < 0. Hence, there is at
least one y = 7o with n(y,) = 0. ,

We have to repeat the previous argument with f», replaced by (fr; + o).
We obtain again the result that f», is S’-measurable. Thus we have proved that
S° is pairwise sufficient for PB. This involves sufficiency for the dominated
case [12].
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