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DISTRIBUTIONS, II: THE DISTRIBUTION OF THE RANGE IN
NORMAL SAMPLES!
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1. Introduction and summary. Numerous investigations, both theoretical and
numerical, have been made of the distribution of the range in normal samples.
One of the first investigators was Student [1] who examined the distribution on
an empirical basis. Somewhat earlier, Tippett [2] presented tables and charts for
the mean, standard deviation, and of the measures of skewness. and kurtosis
(B and B.) for the range; further studies of the moments were made by E. S.
Pearson [3], Hartley and Pearson [6] and by Ruben [7]. Tables of the moment
constants are available in [6] and in Pearson and Hartley’s book of statistical
tables [10] (Tables 20 and 27), while, more recently, tables of the moment con-
stants were provided by Harter and Clemm [11].

Approximations to the probability integral and percentage points of the distri-
bution were suggested by E. S. Pearson [4], Cox [12], Patnaik [14] and Tukey [15].
Pearson’s approximations were based on Pearsonian distributions of Type I and
VI, while Cox used the Gamma Function (i.e., a multiple of x* with fractional
degrees of freedom) and Patnaik a multiple of x with fractional degrees of freedom
as the basis for their approximations. These last two approximations have been
compared by Pearson [5]. An approximation of a different type was derived by
Johnson [16] who gave a series expansion for the probability integral suitable for
low sample sizes and low values of the range. The behavior of the distribution for
large sample size has been studied by Gumbel [17], [18], [19], Elfving [20], Cox
[13] and Harley and Pearson [21].

For theoretical studies of the exact distribution reference is made to McKay
and Pearson [22], Pillai [23], [24] and Cadwell [25] (see also Hartley [26]). Finally,
tables of the probability integral and percentage points of the distribution have
been provided by Hartley and Pearson [27], [10] (Tables 23 and 22), as well as
by Harter and Clemm [11].

In the present paper, the following new results relating to the range distribu-
tion will be obtained: (i) The latter function may be expressed as the product of
the sample size and the probability content of a certain parallelotope relative to
a hyperspherical normal distribution, and (ii) the function can be evaluated as an
infinite series involving the even moments of a sum of independent truncated
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1114 HAROLD RUBEN

normal variables. The distribution function may also be directly related to the
moment generating function of the square of the sum of these truncated variables.

2. Distribution of the range in normal samples. It is well known (se€ e.g., [10],
p. 43) that the distribution function of the range in normal samples is given by

) Puw) = n [ J@IF( +w) = F@)I dz,
where
i@ = @07, F@) = [ 10 a
Accordingly,
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after integration with respect to z’, where @ is a definite positive quadratic form
in the y;, ' '
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n—1

(7) Qus, ¥, = Yns) = 28
The relationship between the y; and the £f is provided by
n—1
(8) yi = {n/(n — DPE + 2 ai G=12: -,n—-1),

and (2) reduces to

n—1

(9)  Pau(w) = nf e f(21r)"*“"” exp (—% ; E_?2> dgf -+ dEn,

where the region R is the polytope defined by
n—1 .
(10)  0sf{n/(n— DI + el Sw (=12 -,n-1).
im2

R is a parallelotope since it is bounded by 2(n — 1) flats, each of dimensionality
n — 2, which are parallel in pairs. Note further that one of the 2" vertices is
at the center of the distribution of the £ , and that the diagonal of the parallelo-
tope having the latter vertex as one of its end-points lies along the £ -axis. The
length of this diagonal is {(n — 1)/n}w.

It now remains to determine the angles at the various vertices between the
flats which bound the parallelotope. Each vertex is characterized by the equa-
tions

Yia (a=1721'°'}k)7

(11)
yi3=0 (ﬁ=1,21”°7n—1—k)

for k =0,1,2,---,n — 1, where (41,4, -+, %) is a subset of k integers
from the set (1,2, --- ,n — 1) while (j1,J2, - - - , ja-1—) is the complementary
subset. It is understood in (11) that the y’s are to be expressed in terms of the
£s by means of (8). To determine the (n — 1)(n — 2)/2 angles between the
flats in (11) which are ¢nterior to the region R, the equation (11) must be re-
placed by the inequalities '

v

—Yia —w (a = 1; 21 e ,k))
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For convenience, refer to the first k flats in (11) as w-flats and to the remaining
n — 1 — k flats as O-flats. The angle 6;; between the sth and jth flats at the
vertex defined by (10) is then given by

(12)

n n—1
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according as to whether the flats are both w-flats or both 0-flats on the one
hand, or are of different types on the other. Equation (13) simplifies to

(14) cos 6 = Fi,

depending on whether the two flats are or are not of the same type, on using
the orthogonality property of the matrix in (4). All the dihedral angles are
therefore either 27/3 or =/3.

A formal expression for the probability content of the parallelotope may be
obtained using the method of sections [9], the sections being conveniently chosen
in this instance to be orthogonal to the £f-axis. The probability content of that
portion of the parallelotope between the sections distant z and 2z + dz (a slab
of infinitesimal thickness dz) from the center of the distribution is (2#)_*6_*'2 dz
-Qn-2(2; w). Here Q.—2(z; w) is the probability content of the (n — 2)-dimen-
sional polytope, T'»_s(z; w), the intersection of the flat £f = z with the parallelo-
tope, relative to the (n — 2)-dimensional spherical normal distribution in the
linear subspace £ = z with center at the centroid of Tn_s(z; w) and with unit
variance in any direction. Thus,

{(n=1)/n}}w .
(15) Pn(w) =n f (27r)—§e°‘if Qn—Z(z; ’U)) dz (n = 2) 3; e ))
0

where Qo(-; -) = 1.
For n = 2, equation (15) reduces to
2= %y

(16) Py(w) = 2 fo (2) ¥ de,

so that the density function is 7 exp (—2w*), and we obtain the otherwise
obvious result that 3w’ is distributed as a chi-square with 1 degree of freedom.
For n = 3, (15) is easily shown to be equivalent to

(17) Py(w) = 12V(27%w, 67'w),
where V(-; -) is Nicholson’s function [28] defined by

I —3(z2+y2)
V(h, k) =§r.{ L 2 dy dx

and tabulated in [28] and [29] (cf., [22] and [29], p. XXXIII). For n > 3, the
right-hand member of (15) cannot be expressed in terms of elementary functions.
The difficulty arises essentially because the nature of the cross-sectional polytope
Ta_s(z; w) varies as z increases from 0 to {(n — 1)/n}*w; specifically, the num-
ber of faces of the parallelotope intersected by the cutting flat varies with its
location along the diagonal of the parallelotope lying on the £f-axis. (For values
of z near the lower and upper limits, 0 and {(n — 1)/n}*w, respectively, the
cross-sections are simplices and the corresponding @Q-functions are then the
K-functions discussed previously [9].) Nevertheless, (15) should provide a use-
ful point of departure for future further study of the range distribution.
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We now obtain a series expansion for P,.(w) from equation (2) as follows:

P.(w) =n f f (2m) 7" exp (— 5 "f y)
(18) E{(”Z_:l y) / ((2n)7r!] }dyl R T

r=0

2r n
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where

n—1
(19) O = 2 TIne (8 /e
Fite s <oy =2r G221 2

and T.(z) is the Incomplete Gamma Function, T'n(z) = [§e “u™" du,
(m > 0). In general, however, it will be difficult to evaluate the C{™, even for
moderate n, by direct enumeration of the partition integers k; and reference to
tables of the Gamma Function [30]. An alternative and more convenient series
development for P,(w) follows directly from (2) in the form

(20) P.(w) —n*cr*"‘%w)z(2 yr e MTa(0; w),
where
(21) 6(w) = 20 | "

M. 1(8;w) = {@Hw)}™ fw e fw (27)~HD

n—1 n—1
(22) © exp (—— 2y + 02 y) dip -+ dyna
= [ {F(w — 0) — F(—0)}/G(w)]"™,
and
2r " _ aern—l(a; w) — ! =
(23) M;—i(o, w) = T e o = Mor (; yf) .

The series in equation (20) seems to be computationally convenient for low or
moderate n. It should be remarked that M, ,(0; w) is the moment generating
function of the sum of » — 1 independent and standardized normal variates
Y1, Y2, *** 5 Yn-1, each of which has been truncated at 0 and at w, while the
MT1(0;w) then give a representation of P,(w) in terms of the even moments of
the sum variate. The us, (27" y:) can be obtained as polynomial functions of
ur(y:), the moments of a standardized normal variate truncated at 0 and at w.
The moment generating function of the latter variate is

(24) Mi(6;w) = " {F(w — 0) — F(—8)}/G(w),
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from which the recursive relation

(25)  M{"™(0; w) = mM{" " (0;w) — w"f(w)/G(w)  (m=1,2---)
is readily adduced. (Observe that M (0; w) = ur(y).) An explicit formula for
ur(y) may also be obtained in the form ‘

/ 1 <~ (& (k = 5!
08 W) = g 2 () g (Tim) = Lia(0))

where D_;%, indicates that summation is to be effected over those j from the set

(0,1,2, ---, k) for which ¥ — j is even, and
Ij...1 = j—1 | = y 4y )y
@) (z) = f(z)Hj(2) (G=12 )
Ii(z) = —F(2),

H;_;(z) being the Tchebycheff-Hermite polynomial of degree j — 1 in z. In
particular, for the even moments of y,

par(y) = 1:3 -+- (2r — 1) — {G(w)}™"

(28) - 3@+ D(em +2) -+ (2)/( = m) 1) Hans(w)
' (r=12---)3

However, equation (25) seems to be more convenient for the purpose of com-
putation. The first ten moments of y are given by equation (25) as

(29) wi(y) = {f(0) — f(w)}/G(w),
(30)  pa(y) = 1 — wf(w)/G(w),
(31)  wa(y) = {2f(0) — 2f(w) — wf(w)}/G(w),
(32) wily) =3 — (v° + 3w)f(w)/G(w),
(33)  wi(y) = {8(0) — 8f(w) — 4uw'f(w) — wf(w)}/G(w),
(34)  wa(y) = 15 — (w° + 50" + 15w)f(w)/G(w),
(35)  wi(y) = {48(0) — 48f(w) — 24w’f(w) — 6w'f(w) — w'f(w)}/G(w),
(36) pa(y) = 105 — (w' + T’ + 35w + 105w)f(w)/G(w),
uiy) = (384f(0) — 384f(w) — 1920'f(w) — 48w'f(w)
— 8w'f(w) — wf(w)}/G(w),
(38)  wio(y) = 945 — (v’ + 9w’ + 63w’ + 315w’ + 945)f(w)/G(w).

The even moments of Zi”l y; required in formula (20) may be obtained from
the moments of y by using the relationship

(37)

sForr = m, @m + 1) @m + 2) --+ (2r) is to be interpreted as 1.
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(39)

= (2r)! > ﬁﬂl,c;/kil

k1o thp_1=2r j=1

where m',,. refers to mi,.(y).
This gives for the first three even moments of Sy,

(40) w(Xy:) = (v — Duz + (v — Da(m)’,
wi(Cy) = (n — Dt + 4(n — L)apaur + 3(n — 1)a(us)’

(41) e ¢ ’\a
+ 6(n — 1)3(#1) ue + (n — 1);(#1) )
u(Ty) = (0 — Vg + 6(n — Dyuip + 15(n — Dsinz’
(42) + 10(n — 1)s(us)® + 15(n — 1)s(m)’se + 60(n — 1)suiuzus

+ 15(n — 1)a(us)® + 20(n — 1)a(u1)’us + 45(n — 1)a(p1)*(us)”
+ 30(n — 1)s(u1)’us + (n — 1)e(m1)’,
where (n — 1), = (n — 1)(n — 2) -++ (n — r).

3. Concluding remarks. It may be useful to conclude with some remarks con-
cerning further possible research on the distribution of the range in normal samples.

The distribution function of the range has been expressed in terms of the
probability content of a parallelotope relative to a centered spherical normal
distribution with unit standard deviation in any direction (equation (9)). Here
the latter probability content was subsequently represented as an infinite series
(equation (20)). It would be desirable to obtain alternative expressions for the
probability content and, in particular, suitable approximations for both moderate
and large n. It seems likely, for example, that (15) should provide good approxi-
mation formulae for the distribution and its percentage points. One such ap-
proximation is obtained by replacing T,-2(2; w) by the (n — 2)-dimensional
sphere of equal volume-content and, correspondingly, the @-function by the
distribution function of a chi-square with n — 2 degrees of freedom (or an In-
complete Gamma Function).

Two further approximations worthy of further study may be obtained in the
following manner:

(a) The volume-content of the parallelotope R in (9) is n ™, and the
center C or R is at the point ({(n — 1)/n}'w/2, 0, --+, 0) in ¢*-space. This
suggests that R may be replaced approximately by a sphere of volume n ™!
and with center at C. It will be noted that-this is equivalent to approximating
the distribution of w® by a non-central x* with n — 1 degrees of freedom.

(b) Replace R by a spherical sector of equivalent volume-content with its
pole at the center O of the spherical normal distribution and with its n — 1
bounding flats determined by the n — 1 faces of R which meet at O (the dihedral
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angle between any two of the bounding flats is then 27/3). This is equivalent to
approximating w by a multiple of x with n — 1 degrees of freedom (cf., [14]).
Preliminary computation indicates that this approach yields good approxima-
tions for the moments of w, provided = is not too large.
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