ORDER STATISTICS OF PARTIAL SUMS!

By J. G. WENDEL
Unaversity of Michigan

1. Introduction. In recent years there have emerged a number of remarkable
identities, which connect the distributions of certain quantities arising in the
fluctuation theory of sums of independent random variables with the distribu-
tions.of much simpler quantities depending only on the individual partial sums.
Authors contributing to the theory include Baxter [1], [2], Pollaczek [4], Sparre
Andersen [5], [6] and Spitzer [7].

The present paper is a further study along these lines; its chief aim is to link
up certain results of Spitzer and Pollaczek, to be described in detail in the next
section. The method used is an extension of that presented in [8] and may be
described as algebraic, in contrast to Spitzer’s combinatorial approach and the
function-theoretic treatment by Pollaczek. A similar algebraic approach has
been developed by Baxter.

An outline of the paper is as follows. In Section 2 we collect definitions and
state the main results. These all stem from a fundamental integral equation,
whose derivation is the theme of Section 3. The algebraic tools required to treat
the integral equation are developed and applied in Section 4. In Section 5 we
give the proofs of the results stated in Section 2 and make some additional re-
marks. In Section 6 certain formulas for continuous-time additive processes are
obtained by a passage to the limit.

2. Definitions and chief results. Let {X,} be a sequence of independent
random variables with common distribution function f(z) = Pr {X < z} and
characteristic function ¢. Let {S,} be the sequence of partial sums, with S, = 0.
For a real number z let N,(z) denote the number of S;, 0 < k = n, that ex-
ceed or equal z, and write N, = N,(0 4 0), the number of positive partial
sums among the first n. The order statistics of the n 4 1 quantities So, S1, - -,
S, are designated by Rno = Ra1 = -+ = Ra,., and it is convenient to write

R, = maxogign St = Rap and R, = min Sy = R... For a real number z

 write 7 = max (z, 0), 2~ = min (z, 0) and e(z) = 1 or 0 according as z is
positive or not. Note that the order statistics of S¥, 0 < k =< n, are precisely
the numbers R} ;. If R and S are random variables we write

E(exp i[pR + o8]) = cf (R & 8),

suppressing the real arguments p and ¢ on the right, as may be done without
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ambiguity; similarly cf (R) is understood to be the characteristic function of R,
with argument p. Finally, for a random variable ¥ and event 4 we write

E(Y; A) = E(YL),

where I, is the indicator of A.

We can now state the results. The first theorem concerns relations between
generating functions of certain characteristic functions.

THEOREM 2.1. The following identities hold, if | w | and |z | are less than one:

> wt ;J 2 of (R & S,)

21a) " 3
= exp{Z; nw" of (St & S.) + (wz)" of (S & S,.)]}
iow"kznoz" of (RY:&S,) = {(1 —2)(1 — wep(a))}™
21y T 7

. {éxp[zw;n“’w"(l — 2" cf (St & S,.)] - z} |
(2.1¢) iow" cof (N, &8.) = exp iln"’w" cf (ne(S,) & 8S.).

The above remain true when the second argument, S, , is deleted from all ¢f symbols,
t.e. when o = 0.

Note that the cf’s appearing on the right are in principle determined solely
by the distributions of the individual S, ; thus, for example,

of (ne(Sn) & 8.) = [exp (ipn) — 1)E(exp(i0Sn); Su > 0) + ¢(o)™.

Formula (2.1b) provides the link between the results of Spitzer and Pollaczek
alluded to in Section 1. Spitzer [7] proved the case of (2.1b) in which z = 0,
namely, the identity

S ow"ef (RY & S.) = exp >, n™'w" of (Sf & S,),
n=0 ne=l

and deduced manyinteresting consequences. Pollaczek [4] obtained a version
of (2.1b) in which 8, is omitted (i.e. ¢ = 0), in the case where X, has a moment
generating function. (His formula differs in appearance from the present one,
in that he defined RY; = 0 for ¥ > n and carried the inner summation to
k = o, and he obtained the analogous exponent on the right-hand side of the
equation as a contour integral. However, the two expressions are readily shown
to agree.) ‘

Two identities are stated in the next theorem. The first of these enables the
joint distribution of an order statistic and the corresponding partial sum to be.
calculated from the joint distributions of extreme values and partial sums,
while the second can be viewed as relating the conditional distribution of S, ,
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given that a specified number of partial sums are positive, to conditional dis-
tributions given that all (resp. none) are positive. (See also equations (5.6)

below.)
THEOREM 2.2. The relations @nx = Gn—i 00 hold when either
(2.2a) Gng = of (Rap & S,)
or
(2.2b) Onx = E(exp (108.); No-= k).

The case (2.2a) [with ¢ = 0] was proved combinatorially by Bohnenblust,
Spitzer and Welch, and was brought to the author’s attention by Spitzer; see
also Theorem 5.1 below. Sparre Andersen [5] proved (2.2b), also with ¢ = 0.

3. The integral equation. Let z be a complex number, |2| < 1, and let ¢ be real.

Define
Bn(z) = ha(z, 2, 0) = E(2"® exp (i68,)).

The functions h,(z) are left-continuous and have total variation on
— ® < z < « not exceeding one. Then

gn(2) = ha(2) = ha(— ) = ha(z) = 2""e(0)"

can be considered as the distribution functions of uniformly bounded complex-
valued measures g, on the real line.

A recurrence relation for h, can be easily obtained by calculating E(---)
as E(E(--+|X1)), and using the facts that if X; = y then

Noyi(z) =1 —e(x) + Nu(z —y), Sopr = St + 1y,

where the starred quantities depend on X3, Xs, « -+, Xat1 in the same fashion
that the original ones do on X;, X,, -+, X, . Setting

H(z) =27 = e(z) + (1 — e(x))z

we have the immediate relations ho(z) = t(z),
han(2) = €z) [ ale = 4) exp (ioy) df(y).

In terms of the g, this becomes

(3.1) go(z) = t(z) — 2 = (1 — 2)e(2)
(32)  gau(z) = (1 = 2)2" (o)™ + t(x) _[: gn(x — y) - exp (doy) df(y).

For |w| < 1 let g(z) = X mow"ga(x), the generating function of the g,. It
is again left-continuous and of bounded variation. Multiplying (3.1) by w"",
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summing on n = 0, 1, --- and using (3.1) we obtain

(33)  g(&) = celz) + wilz) [ gl — u) exp (ioy) df(w)

where for brevity we have written ¢ = (1 — 2)(1 — wzp(o))™". This is the basic
integral equation. (The discontinuous factor ¢(z) gives it a kind of ‘“Wiener-
Hopf” flavor; however, we shall not discuss (3.3) in that context. The author
has recently learned that Widom' has treated an equation similar to (3.3) by
Wiener-Hopf techniques in order to obtain new probabilistic limit theorems.)

4. Algebraic considerations. Let & be a commutative Banach algebra with
identity e. For f € X the elements exp f, (¢ — f)™ and log (¢ — f) are defined
by their Maclaurin series, the latter two only when || f|| < 1. Then

exp (fi + f2) = (exp f1)(exp f2)

and (e — f)*' = exp {=log (¢ — f)}. Let P be a bounded linear operator on
% and let f be a given element of X. In order to discuss operations of the form
P(fg), PIf(P{fg})], - - - , acting on g & X, it is convenient to introduce the oper-
ator F, which sends g into fg. Then alternating multiplications by f and opera-
tions by P can be simply expressed as powers of the operator PF. If g is an un-
known element of & satisfying the equation ¢ = e + P(fg) then, leaving aside
questions of uniqueness, existence and convergence for the moment, the solution
ought to be given by g = Y, (PF)", or, more compactly, by g = (I — PF)7 e,
where of course I is the identity operator. More generally, we are going to want
to solve an equation of the form

(4.1) g = ce + P(fig) + (I — P)(f9),

where ¢ is a constant and f; , f2 are given. The following theorem gives a special
set of sufficient conditions under which g can be found explicitly. As shown by
Baxter, at least when f; = 0, the conditions are stronger than necessary, but
adequate for our purposes.

TurorEM 4.1. Let P be a projection on X, t.e. P* = P, such that PX and
(I — P)X are subalgebras, then mecessarily closed in norm. Suppose that the
elements fi, fo and the operator PF, + (I — P)F: have norms less than one.
Then (4.1) has the unique solution

(4.2) g =cexp[—Plog (¢ — fi) — (I — P) log (¢ — f2)].

If ¥ is a continuous homomorphism of X to complex numbers, i.e. a multiplicative
linear functional on X, then '

(43) ¥a) = coxp 33w Y(ER + (I = PIfD).

Proor: It is plainly enough to consider the case ¢ = 1. If @ is any operator
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such that || @ || < 1 it is well known that (I — Q)" exists as a bounded opera-
tor. It follows that ¢ = (I — [PFy, + (I — P)F,])™"e is the unique solution
to (4.1) (withe = 1). Let h denote the right member of (4.2). Then (¢ — fi)k =
h exp log (¢ — fi) has the form exp (I — P)h, . Expanding the exponential
function and using the fact that (I — P)X is a closed subalgebra it, follows that

(4.4) (e —fiyh =e+ (I — P)h,
for some hy € %. In a similar way we have
(4.5) (e — fa)h = e + Phy

for some h; £ X. Apply P to both sides of (4.4) and (I — P) to (4.5), then
add the resulting equations. The result is
Pl(e — fi)h] + (I — P)[(e — f2)h] = e

which on rearrangement shows that ¢ = h satisfies (4.1), thereby proving (4.2).
Equation (4.3) follows at once, being included in the statement only for ease

_of reference.
The next theorem gives an explicit formula for Pg in the subcase that we will

actually confront. : . ,
TaEOREM 4.2. If in addition to the hypotheses of the previous theorem we have
Pe = ¢ and fo = z#f; for a scalar z %1 then:

(46) Pg=c(l —2)fexp —Pllog (¢ — f) — log (e — f2)] — 24};
if ¥ 1s a homomorphism on PX then
@n  wro) = o1 = 9 e[ St - wEm | - of.

Proor: We write (4.1) (with ¢ = 1) in the form

(4.8) g =-e+ 219+ (1 —2)P(fig).
Applying P to (4.8) we obtain
(4.9) Pg = ¢ + P(fig);

then eliminating P(fig) between (4.8) and (4.9) yields (4.6). Relation (4.7)
is immediate.

We shall now show that the integral equation (3.3) can be viewed as an in-
stance of the algebraic equation (4.1), the conditions of Theorems 4.1 and 4.2
being satisfied ; temporarily, however, we have to restrict the moduli of w and
z somewhat more severely than required in the derivation of (3.3).

Let % be the algebra of bounded complex-valued measures on the line, with
convolution as product operation and norm equal to total variation. & has
identity element e, representing a unit mass at the origin; of course the distribu-
tion function corresponding to e is the function e(x) defined in Section 2. P will
be the operation that throws all mass lying to the left of the origin onto the
origin; expressed in terms of distribution functions P sends g(z) into e(z)g(x)
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[ordinary multiplication!]. The measures of the form Pg are those whose support
is contained in 0 < z < «; the convolution of two such measures is easily
seen to be another of the same kind. Thus PX is a sub-algebra. Similarly,

I - P)x
is a subalgebra, for its elements g are characterized by having — o <z <0

as support and g{(— », 0]} = 0. Clearly Pe = e¢and || P || = 1. For a bounded
measurable function k(z) we note the formula

(410) [ Ha) aeo@) = [ k") dg(a).

Let w and 2 be complex numbers such that |z| < 1 and
lwlflz]| +]1—2]} <1.

Let-f; be the measure whose distribution function is
z—0
@) = w [ exp (o) df(y).

It is easy to see that the n-fold convolutions of f; and f are related by the equa-
tion

z—0
(4.11) i (z) = w* Lo exp (toy) df ™ (y).

Let fo = #f. Clearly [|[fill = |w| <1, |All S |wz| <1 and |fi —foll =
|w|[1 —2|. Then the operator PF, + (I — P)F, = F, + P(F, — F,)
has norm not exceeding |w||z| 4+ |w||1 — 2| < L _

Recalling that ¢(z) = e(z) + 2(1 — e(x)) we can write (3.3) in the form
g = ce + P(fig) + 2(I — P)(fig), as claimed. Hence its solution is given by
(4.2), and the projection Py is given by (4.6). The solution is unsatisfactory in a
certain sense, because its corresponding distribution function g(z) is only deter-
mined after performing a rather large number of convolutions: g has the form
exph = e+ h + h’/2! 4+ -+, and each term A" stands for an n-fold convolu-
tion. However, we only need the transforms (4.3) and (4.7), and these will be
evaluated explicitly in the next section.

6. Proofs and remarks. We begin by deriving the equation (2.1a). The (ran-
dom) function N,(z) is constant except at the points * = z; = R, ; clearly
N.(xz; — 0) = Na.(xx) = k + 1, while Nu(zx + 0) = k. Then the quantity
2" jumps by an amount 2(1 — 2) as = moves from left to right across z .
Hence for the Fourier-Stieltjes transform we have

-]

(5.1) [ exp (ipz) d.2""° = (1 — 2) kzo exp (spxr) 2",

a formula which persists even if several x; happen to coincide.
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Multiplying (5.1) by exp (¢¢8S.) and interchanging expectation and trans-
form signs, as is clearly legitimate, we obtain

[: exp (4pz) dhn(z) = [: exp (ipz) dga(z) = (def.) ¥(ga)
= (1= 2) Y of (Rus & Su)5
k=0

it is of course well known that ¢ is a continuous homomorphism on the algebra

of bounded measures.
Then by (4.3) we have for the left side of (2.1a)

2”: w" i of (Rai & Sn)2" = (1 — 2)7¥(g)

n=0 k=0

(5.2)

(1 — &)™ exp 3o WD) + (1 — 2 H(PAD))
= exp 3 n7(w) ()" + 2R + (1 = WP,

since ¢ = (1 — wazp(a)) (1 — 2). To evaluate ¢(Pf) we have, by (4.10) and
(4.11),

v(PfT) = [o exp (ipz™) dfi” (z) = w* [o exp (ipz* + dox) df ™ (z)

w” cf (SI & Sn).

Similarly, ¥(f7) = w" of (S, & S,). Then the expression in braces can be
written

w" of (St & S,) + (we)"[ef (0 & Sa) + cf (Su & S) — cf (St & S,)]
= w"cof (8% & S,) + (wz)" of (S7 & Sa),

which, inserted on the right side of (5.2), yields the equation (2.1a). Since both
sides converge for |w| < 1, | z| < 1, analytic continuation shows that (2.1a)
holds throughout that region, as well as in the smaller region of Section 4.

We remark that an analogous formula can easily be found for the order statis-
tics R 4 of the first n partial sums omitting So . In fact, if X (with distribution
function f) is independent of the pair R,_1x & S, then

X4+ Ruax &X + Saar
have the same joint distribution as Rx.. & S, . Hence
cf (R:,k & Sn) = ‘P(P + 0') cf (Rn—l,k & Sn—l),

and the generating function can be quickly written down.
The relation (2.1b) follows from (4.7) by the same method applied to Pg.
In order to prove (2.1c) we observe that for measures of the form Py the mass
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at the origin defines a continuous homomorphism ¢ on PX, given by ¢o(Pg) =
(Pg)(0 4+ 0) = g(0 4+ 0). With this definition of ¢ it follows easily that

Yo(Pga) = E(2"" exp (i08,)) — 2" p(0)"
and therefore that

(53)  w(Pg) = > wBE exp (i08)) — (1 — wep(e))™
Combining (5.3) with (4.7) we see that
(54) ’g w"E(2"" exp i6S,) = exp”Z:1 n (1 — 2")Wo(PfT) + w"2"0(a)"}.
Clearly
0+0
W) = 70+ 0) = " [ exp (ioy) ()

= w"E([1 — e(8Sn)] exp 70S,).
Then the expression in braces can be written as
wE([(1 — 2")(1 — e(8,)) + 2"] exp icS,) = w"E(2"*® exp 0S,).
We substitute this on the right side of (5.4) and obtain

(5.5) g w"E (2™ exp i0S,) = exp 7; 1w E (2" exp i0S,).

Setting z = r exp ip and letting r — 1 — 0 yields (2.1¢).

We turn now to the proof of Theorem 2.2. Both parts follow from the simple
observation that if a double power series D _¢ w" Do @ax2" can be written as a
product (D¢ baw™) (D¢ ca(w2)™) with a@eo = bo = ¢o = 1 then ano = bn,
@nn = Cs a0 Gup = Gni,otx,i . Applying this remark to (2.1a) we obtain
(2.2a) immediately. The relation (2.2b) follows from (5.5) by noting that
E(Z™Y) = 2 0 E(Y; N, = k) and’

E(z**"Y) = E(Y; 8, £0) + 2"E(Y; 8, > 0),
where Y = exp 708, . As by-products of the argument we have the relations

; w" of (R, & S,) = exp ; nw” of (8§ & S,)
(5.6)

L

> w"E(exp 108, ; N,, =1n) = exp 2 n 'w"E(exp ic8s; Sn > 0)
0 1

and analogues with R, replaced by R., St by Sz, N, = n by N, = 0 and
S, > 0 by S, = 0. The first of these is of course Spitzer’s formula, since

R. = R;.
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In concluding this section we point out that various combinatorial identities
can be derived from (2.1), (2.2) and (5.6), by a method sketched in [8]. To
minimize the amount of new notation required we illustrate the idea on just
one case. ,

Let a1, as, -+, a, be arbitrary real numbers, and let = be a permutation of
1,2, .-, n Applying = to the a’s we obtain ara), Gr@), *** , Grmy . We set
Si(w) equal to the sum of the first k of these, and So() equal to zero. These
sums arranged in descending order of magnitude are designated by R, ;,( ).

Fix k, and let D stand for an arbitrary n — k-element subset of 1,2, .-, n;
D’ is its complement. Let 7, wp’ be arbitrary permutations of the sets D D,
Let R,—i(7p) and Ri(wp) be defined as the greatest and least of the obv10us
partial sums. Then we have the following combinatorial identity, presumably
already known to Bohnenblust, Spitzer and Welch.

THEOREM 5.1. There is a 1 — 1 correspondence = <> (D, wp , mp') carrying the
numbers R () into the sums R,_i(wp) + Ri(wo’).

Proor: Let p1, p2, -+, p» be nonnegative numbers with sum one; let the
common distribution of independent random variables X, be specified by
Pr{X = a} = p:. We form the partial sums S,, the order statistics R, ,
and apply the identity (2.2a) with ¢ = 0. In the resulting formula we equate
the coefficients of the product pip; - - - p, , and obtain

2 exp ipRup(m) = 3 exp ip{Buai(mp) + Bi(mp)},

D,mp,mp
which proves the result.

6. Continuous case. Let z: be a centered separable process with stationary
independent, increments, starting at the origin; E(exp dox;) = exp tw(s). For
a real number z let L,(x) be the occupation time of the half-line [z, =), i.e.
the measure of the set of r, 0 < 7 < ¢, for which z, = z, and let

Lg = Lt(O + O),

the length of time during which z, is positive.

Let X, be independent, each having the distribution of za, A > 0. Then
the partial sum S, has the distribution of z.a , and it is natural to expect that
if A—0,n— o, nA —t > 0 then the behavior of the first n partial sums will
closely approximate the behavior of the process on the interval [0, ¢]. This is of
course a well-known idea that has been exploited by many authors; the treat-
ment here is close in spirit to that of Baxter and Donsker [3], who studied 7, =
SUPo<,<@; . We have the following result, which in principle yields the joint
distribution of L; & z; :

TurEoREM 6.1: The Laplace transform of cf (L. & x.) is given by the relation

(6.1) sf et of (L, & x,) dt = exp f e [ef (te(z,) & z,) — 1] dt.
0 0

Proor: In the identity (2.1c) let w = ¢™°%, replace p by pA, and multiply
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both sides by 1 — ¢**. There results’

(1 — &) i ¢ E (exp i[pAN, + ¢8,])
(6.2) "
= exp 21; w7 ™ E (exp ilonde(S,) + oSu]) — 1).

It is not hard to show that as A — 0, nA — ¢, AN, approaches L; in the mean of
order one; hence the joint distribution of AN, & S, tends to that of L, & z:.
Then the left side of (6.2) approaches that of (6.1). The integral on the right
side of (6.1) clearly exists, because the quantity in square brackets can be
written

[exp (ipt) — l]E(e);p tox; ;e > 0) + exp tw(o) — 1

which is O(t) as ¢t — 0. Hence the right side of (6.2) approaches that of (6.1)
and the proof is complete.

We remark that in a special case formulas of the “arcsine law”’ variety are
recovered. In fact, if we put ¢ = 0 in (6.1) and write Pr{z; > 0} = p: we ob-
tain :

(6.3) s[ e of (L) dt = expf ¢ (exp ipt — 1)p, dt.
o o

For some interesting processes p; is constant, say p: = p, 0 < p < 1. Writing
g =1 — p (6.3) then reduces to

(6.4) f e ef (L) dt = (s —ip) s

0
It follows at once from (6.4) that L = ¢ 'L, has probability density f(L) given
by

f(L) = «# *(sin ap) L™(1 — L)7%, 0<L<I;

this density appears in Spitzer [7] and Sparre Andersen [6], in connection with
the limiting distribution of "N, .

One can also ohtain a formula for the general case L.(x), or rather, for a
transform on the variable z. The formula is

s foo et dt fw exp (ipr) d. E (exp [—AL,(z) + toz])
(6.5) - | |
= NMs+N)" exp {jo e [(ef (aF &) — 1) + ¢ ™ (of (a7 &) — 1)]dt} .

We are led to this by writing the left side of (2.1a) in the form

1= [ exp (ipz) d. E(2""® exp i08S,),
0 ©



1044 J. G. WENDEL

then multiplying both sides by (1 — w)(1 —2) = [(1 — 2)(1 — wz)7]
(1 — w)(1 — we), setting w = ¢*4, z = ¢, and letting A — 0. As before,
the left side converges, to the left side of (6.5), and therefore the right side
converges too. Its limit is the expression on the right of (6.5); the integral exists

because the bracketed quantity can be written
(1 — ™) of (aF &) + e M + 60 — 1] — 1,

which is O(t) as t—0.
Letting A — « in (6.5) we obtain formally

s [ ¢ of (7, & x,) dt = exp f ¢ (cf (af & @) — 1) dt,
o 0

which in effect extends the result of Baxter and Donsker to the joint distribu-
tion,
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