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Summary. Tabular reconstruction of differences from a curtailed set of mo-
ments is ordinarily impossible because of a gap on the integral side of the differ-
ence table. This gap can be closed by substituting an associated polynomial for
the one that is being operated upon. The associated polynomial has, at the end
-of a contracted range, terminal differences and moments individually proportional
to corresponding differences and moments of the polynomial from which it was
derived. The function is applied to the problem of matching moments to form
least squares approximations.

Introduction. The problem of least squares polynomial approximation to a
set of n equally spaced observations reduces eventually to the problem of con-
structing a polynomial to have a given set of numbers for its moments. A cur-
rently favored procedure for this construction is to form a set of linear combina-
tions of the moments which-delivers the approximation arranged in terms of
Chebychef’s orthogonal polynomials. A practical method for applying Cheby-
chef’s functions to the case of equidistant intervals was described by Charles
Jordan in 1921 [1]. A more convenient variation was given by R. A. Fisher in
1928 in the second edition of his textbook [2], and several variations were de-
scribed by A. C. Aitken in 1932 [3]. Jordan published a revision of his own method
in 1932 [4]. Fisher’s method is the one known to most statisticians; rules for ap-
plying it are quoted in M. G. Kendall’s Advanced Theory of Statistics ([5], Vol.
2, p. 164). ‘

All of the procedures that employ Chebychef’s functions have the same incon-
venient feature; after obtaining the arrangement in orthogonal polynomials it is
then necessary to perform another operation of equal magnitude to obtain a
single numerical value or to tabulate the approximation over the given range.

" Another inconvenient detail is that the arrangement in orthogonal polynomials

requires extra figures to be carried from the very beginning to absorb arithmetical
error introduced by rounded quotients that occur early in the work.

In the present paper we will describe a method for recovering differences from
moments without the use of Chebychef’s functions. This is not a variation of pre-
viously known methods, it depends on the use of a new type of function. In ap-
plication the function makes it possible to obtain the rth degree least squares
approximation to a set of numbers in a form immediately useful for the substitu-
tion of numerical values or for tabulation. Incidentally, since the arithmetic does
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not require division operations until the last stage, arithmetical error is more
easily controlled.

The function that makes this computation possible is designed for use on the
difference table. We can assume the reader is familiar with operations on the
difference side of this device but the integral side is not as well known and a
foreword on the more extended use of the difference table may be helpful.

The Arrangement. The difference table is an instrument for computation.
When applied to ordered sets of discrete numbers the use of the table corresponds
to the use of a plotting linkage, or mechanical differentiator, or integraph in the
study of continuous functions. When both the integral and the difference side
are used together the device is capable of delivering, by simple arithmetic,
results that would require complicated algebra.:

A rectangular difference table is an array of positions connected by a rule of
operation. The positions are arranged in horizontal lines and vertical columns
and the rule of operation is that numbers are to be placed in the positions subject
to the tabular relation -

g+ b=c I
The relation holds uniformly throughoui: the table for any three positions in the
configuration @

This array of interlocked positions is a computing device. To operate it

1. Place on the table an initial setting, a pattern of starting numbers.

2. Begin with any available position and write in it the number that satisfies
the tabular relation. (In Table I, if any one of the numbers q, b, or ¢ is xmssmg,
its value can be written in by mspectlon)

3. Continue in this manner until a region of interest in the table is completely
filled in. Completion will proceed along a more or less devious path determined
by the pattern of starting numbers.

TABLE I
z Ay, Ay, Aug Uz Su, S?u, Séuz
-3
-2 a b
-1 X c
0
1 a b
2 a b ¢
3 c a b
4 c
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Not all patterns are admissible, since some would lead eventually to an in-
consistency with the tabular relation, but the number and variety of admissible
patterns is sufficient to make the device a useful and versatile instrument. It
has been used for many years and in many different forms. The initial setting
depends on the purpose to which the table is applied and the process of filling
in the blank spaces in the neighborhood of a given pattern is called differencing,
tabulating, summing, or computing moments, according to the region that is
filled in.

Like its graphical analogues the difference table delivers its results without
requiring the use of algebra; its operation is mechanical. But to design an initial
setting for the table, or to explain why the setting will deliver a certain result, it
is necessary to use algebra. The indexing arrangement shown, the uniform tabular
relation, and the off-set position of the sum adjacent to any column, automati-
cally provide the necessary additive unit in the upper limit of a finite integral.
This establishes in the algebra a convenient correspondence with the familiar
notation used for definite integrals in the infinitesimal calculus. For a definite
finite integral
(1) Ezuz = Sub - Sua )
where, by definition, v

b—1

(2) e = D Uy

In the columns on the right side of the table the prefix S is not a mechanical
operator, it is an identifying prefix in the compound symbol that represents a
set, or any member of a set, which is a particular (finite) integral of the set of
numbers in the column adjacent on the left. The particular integral represented
by the symbol S‘u, is the set of numbers in the column with that heading. Any
initial setting consistent with the tabular relation can be used to construct a
particular integral and the symbol with prefix S is then used to indicate the
result. It is necessary to distinguish between the operation and the result when
one construects a particular integral.

The Operators A and =. A correspondence between the members of two sets
is observed by substituting one set for the other in the attention of the analyst.
In the algebra that has been attached to the difference table the attention of the
analyst is directed. from the numbers in a given column to the corresponding
numbers in another column of the same table by the substitution operators A
and 2. When prefixed to a symbol representing the set of numbers in a given
column A directs the attention of the analyst to the adjacent column on the left,
2 directs the attention to the adjacent column on the right. These operators
can also be applied to a literal expression conditioned to describe the numbers
in a given set. The operators are distributive with respect to algebraic addition
and they commute with constant multipliers other than zero. Repetitions of the
operations are indicated by positive integer superscripts that obey the law of
addition for exponents.
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There is no symbolic operator that deletes numbers from the difference table.
Application of the operator A to an expression u, , conditioned to describe a set
of numbers on the table, will remove a constant term from the attention of the
analyst in that expression but it does not remove it from the position it occupies
on the table. Application of the operator  to an expression for the set Awu, will
restore the constant in the attention of the analyst, either (1) as an additive
integration constant, or (2) as a term in a conditioning equation that accom-
panies the algebraic description of the result of the substitution.

The substitution operators A and =, when applied to a specific table, commute
with each other. But when the operators are applied to an abstract algebraic
expression not conditioned to relate to a particular table the commutative
property is lost. ~

It is important to observe that the result of the operation = applied to a set
U, i8 Su, , not Su, + C. The set represented by the symbol Su, contains at least
one member which was originally a part of the initial setting and was selected
without reference to the set u,. The addition of another integration constant
would be incorrect. To identify the particular integral represented by the sym-
bol it is necessary to look at the difference table the algebra is intended to de-
scribe or to refer to a conditioning equation that identifies the set. The necessary
integration constant must, of course, be written in a detailed algebraic descrip-
tion of the set, but it does not appear in the compact symbol.

Repeated substitutions of sets on the difference table may replace a set having
prefix S with a set having prefix A, or a different substitution may have the
reverse effect. The possible changes are exhibited well enough by the arrange-
ment of the columns in the table, but in detail they are

p<g p=4g p>q
Ap( Aq ) _ Ap’+q Ap+q Ap+q
: Uz) = Uz Uz Uz
AP(8%,) = 8" Pu, U, AT,
2P(A%;) = A" u, Uy ST,

Ep( S"u,) — Sp+qu$’ Sp+quz Sp+quz .

(3)

- Reduced Factorial Powers. Any ordered set of # numbers can be represented
exactly by a conditioned polynomial of some degree less than », and for some
purposes the polynomial expression may be more convenient than the direct
representation of the set on the difference table. A polynomial to be used as a
description of a set of numbers on the difference table is arranged, for conven-
‘ience, in factorial powers or reduced factorial powers. The nomenclature reduced
is due to A. C. Aitken ([3], p 56). In the notation of Whittaker and Robinson
([6], Ch. 1, Sec. 6; Ch. 3, Sec. 28) a descending factorial power is written with
square brackets and an exponent: [z + a]” means the product

(z4+a)z+a—1)(z+a—2)---
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to p factors, ending in (¢ + @ — p + 1). A reduced factorial power is written
as (z + a), meaning [z + al’/p!.

We assume the reader is acquainted with the effects of the operators A and =
on the sets represented by polynomials arranged in terms of these functions.

Some Properties of the Table. The difference table of a polynomial % , tabu-
lated for integer values of the independent variable z, is distinguished by a
column of zeros for all of the differences of order r + 1, where r is the degree of
the polynomial. In practical applications this column of zeros may be part of
the starting pattern written explicitly in the table. Some of the useful properties
of the difference table of a polynomial will be applied in the present work. We
consider a completed table that contains related sets of differences, values, and
particular iterated sums of a polynomial, tabulated for integer values of z,
positive, negative, and zero. The lines of the table are indexed by the value of
the independent variable and we refer to the numbers on a given line of the
table as the numbers on line ¢, meaning the numbers on the line for which
z = a. We select a certain column in the table and refer to the numbers in that
column as the function of interest. The function of interest might be, at one
time the set A%, , at another time it might be the set u, itself, or at another
time it might be the set S*u, , the particular iterated sum of that order which is
exhibited on this table. The property is as follows:

The numbers on any line a extending from the left, to and including the
number in the column of interest, are the coefficients of the function of
interest when it is arranged in reduced factorial powers (z — @), . The
terms are in descending order from left to right, ending in a constant for
the last term.

Another property applied in the present work relates specifically to the in-
tegral side of the table. This second property is not restricted to the table of a
polynomial but applies to any ordered set of numbers.

Given, as the initial setting on the table, a column of » numbers v,, z = 0
to n — 1 inclusive, and a line of zeros on line zero in the positions S'v so
that S’y = O for ¢ = 1,2, 3, --- as far as desired. When the right side of
this table is filled in the sums on line n will be reduced factorial moments
of the form .

A

(4) » 8%, = (—1)‘-‘200; —nt+t— 1), (t > 0).

The first property is the basis of Newton’s formula for interpolation with for-
ward differences ([6], Ch. 1, Sec. 8) ; the second is an example of the computation
of moments by summation, an operation introduced by G. F. Hardy in the late
1800’s in the work of graduating the British mortality tables ([7], Ch. 3, Sec. 9).
Ordinarily these two properties are used separately; our present object is to
establish a simple arithmetical link between them and compute differences from
moments in the same way we compute moments from differences.
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Matching Moments. In the normal equations which impose the least squares
condition on an rth degree polynomial u. to approximate a set of n observations
v, the numerical coefficients are moments, sums of products. The set of normal
equations reduces to the statement that a set of » + 1 moments of the poly-
nomial must equal the same set of moments of the observations.

We have freedom of choice in selecting the type of moment to be matched.
The only requirement is that the moment multipliers be a linearly independent
set of polynomials derivable by a non-singular transformation from a set of
polynomials of degrees 0 to 7 in z. This set can be chosen to suit the convenience
of the analyst. ’

When r < n — 1 the normal equations have a unique solution and the different
types of moments that can be matched all deliver the same approximating poly-
nomial but, depending on the method of solution, the terms may be arranged in
different ways. The usual choice for matching is a set of reduced fac-
torial moments since these are so easily computed by iterated summation of the
set of observations.

In practice the degree r of the approximation is hmlted to values less than
n — 1. This is a practical, rather than a mathematical, limitation. One can
easily construct a least squares polynomial approximation for a degree r equal
to or greater than n — 1 by direct differencing. The polynomial will coincide
precisely with the set and the coefficients of the unnecessary terms of higher .
degree (e.g., the differences on line 0 of order greater than n» — 1) may be chosen
arbitrarily. A set of » numbers does not have more than # linearly independent
power moments (and it may have less than n). Moments of order higher than
n — 1 are linear combinations of the lower order moments and contain no new
information.

We will use a type of factorial moment which is zero for all orders greater than
n — 1. (Equation 4).

Rearranging the Solution. So far as algebra is concerned any computation of
the first » 4+ 1 moments of the set », completes the construction of the approxi-
mating polynomial u, . The numbers are taken as the first » + 1 moments of
the polynomial. They are also the coefficients of the polynomial when it is
‘arranged in terms of a complementary family of polynomials orthogonal to the
moment multipliers in the given range. For the commonly used types of moments
(those that are easiest to compute) the complementary polynomials are not
well suited for the substitution of numerical values or for tabulation. For these
purposes it is more convenient to have the polynomial arranged in reduced
. factorial powers and rearrangements of this kind are most easﬂy performed by
operating directly on the difference table.

When n = r + 1 it is evident that the difference table of a polynomial gwen
in terms of its moments can be reconstructed in reverse order, but when 7 is
greater than » + 1 there is a gap on the integral side that cannot be filled in
directly. This gap can be closed by substituting, for the polynomial u, which is
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to be rearranged, an associated polynomial u, of the same degree and operating
on the associated polynomial in the contracted range + = O tox = r + 1. In
this range differences can be recovered from moments simply by reversing the
summation process ordinarily used to compute the moments.

The Participating Functions. The complete process which we are now in a
position to describe deals with differences and particular finite integrals of three
distinet functions: v, , u, and u, .

The set of observations v, is a set of n discrete numbers, known only for z =
0,1,2, --- (n — 1). Nothing is known or assumed about possible values of v,
at values of x other than these. The only part played by the set v, is to furnish
the moments that determine the approximating polynomial.

The approximation u, is a polynomial of degree r. This polynomial is simply
an algebraic form in which numbers can be substituted. The form is pinned to
the set v, at the n valuesz = 0,1, 2, --- (n — 1) by the least squares condition
but it has no assigned connection with possible values of v, at points other than
these: It should be clear that extrapolation with a function chosen to suit arith-
metical convenience has no mathematical justification. Although it is true that,
when r £ n — 1 the rth degree least squares polynomial approximation to a
given set is unique, there is an unlimited number of different least squares
approximations having the same number of parameters based on functions other
than polynomials.

We assume the approximating polynomial will be used to summarize experi-
mental information, such as a frequency distribution. In practical applications
the degree r will be some integer less than n» — 1. If the analyst has observed
that a set of differences Ay, is approximately constant and the variations are
assumed to be due to chance the choice of a polynomial to describe the distribu-
tion function is reasonable. The observed distribution is itself empirical and the
use of an empirical formula to summarize the distribution has the advantage of
conveying the useful information in a smaller number of terms.

The particular integral S, is a polynomial of degree r + ¢. In the present
application it will be the particular finite integral of the polynomial u, charac-
terized by the values S'up = O fort = 1, 2, 3, - - - as far as desired.

Similarly, S'u, will be the particular finite integral of u, characterized by the
same set of initial values S U = Ofort = 1,2, 3, - as far as desired.

Both polynomials u, and u, will be tabulated for integer values of x but the
range of tabulation for u, is = 0 to n. The range of tabulation for uzisz =0
tor -+ 1.

The associated polynomial u, is a polynomial of degree r derived from the
polynomial u, . The terminal differences and the sums of u, on line r 4 1 are
individually proportional to those of u, on line n. After reconstructing the
differences from the sums of the associated polynomial the proportionality
factors can be removed, leaving the terminal differences of the desired poly-
nomial. We construct the associated polynomial from a special set of particular
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integrals of the original polynomial. This is the set obtained by choosing zero
for the initial values of all of the sums on line zero. ’

For a given polynomial u, the associated polynomial u, is defined by the fol-
lowing equation:

(3) u, = AM(x —r — l)n—(r+l)S'+lu=}-

Then the proportionality factors are given by
(6) S%Urs1 = (0 = &) neir41S Un (t>0)
(7 Atu:i-l = (% + )n-r4) AUn (¢ =0).

Here S'u, is the tth iterated sum of u, formed from the partlcular set of initial
values S o = Ofort=1,2,3, --- as far as desired, and S* u,, is the tth iterated
sum of u, formed from the partlcular set of initial values S'u; = O for ¢ = 1,2,

3, - -+ as far as desired. The proportionality factors are reduced factorial powers
of the descending kind and can be obtained from. a table of binomial coefficients.

Algebraic Demonstration. In numerical computation the construction of the
associated polynomial consists merely in applying the proportionality factors to
the set of moments. The only need for algebra is to identify the proportionality
factors. To explain why the process delivers its intended result by such simple
means we will use one of the difference calculus analogues of Leibnig’s theorem,
but this algebra is not used in the performance of the computation.

Referring to equations (3) it will be observed that repeated application of the
operator = to the defining equation for u, reduces the exponent of the operator
A on the right, and that differencing increases it. We apply the operator Z°,
or the operator A’, to the defining equation (5) and expand the right side by
using one of the difference calculus forms (8], Ch. 2, Art. 10, Ex. 3) for the
difference of a product

p . .
(8) AP (way.) = ,Z (P) A" WAy .

This glves, for the particular sums of the associated polynomial, with initial
values S'uo = 0 for all ¢ > 0,

n—t

(9) Stu, = Z; (n— £);A" " (@ = r — D)peiriS™ ™ Ugynsey .
J=

In this expanded form all but one of the terms will contain the factor
(z — r — 1) and will vanish at z = r + 1. The single non-vanishing term is the
one in which that factor has been reduced to unity by repeated differencing;
this is the term for whichj = r + 1 — ¢. Writing out that term for z = r + 1,

(10) Su,.,.l = (n - t)r+1_.gS Un .«

Using the relation (a)s = (@)s-s, the proportlonahty factors for the sums can

be written more conveniently as (n — &) n—r41) -
The proportionality factors for the differences of the associated polynomial
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at = r + 1 may be verified similarly. The factor for A%, is obtained by operat-
ing zero times on equation (5) and expanding the right side. For any integer
¢t = 0 the expansion is

nt
(11) A Z (n + t) A”H_J(x —-r- l)n—(r+1)A S uz+n+t—:

Repeated differencing of the last factor on the right reduces the order of the S
to zero and for j = r -+ 1 the factor is a difference: A”"*” of the object function
u. At = r -4 1 the single non-vanishing term is the one for whichj = r 4+ 1 + ¢
and the result is

(12) Aupyy = (1 + ) nirinAUn .

So the differences and sums of %’ on line » + 1 of its difference table are indi-
vidually proportional to the corresponding differences and sums of % on line n
of the difference table of u. It is only these terminal values that are proportional,
the others are not.

Integration constants are an important part of the process and the associated
polynomial is designed for use only with the particular set S‘uo = 0. In practice
the index ¢ will not be greater than r 4 1. This is a practical rather than a mathe-
matical restriction. The index ¢ can be greater than r + 1 but equations (6) and
(7), though still true, become vacant identities. In equation (7) the index ¢ can
be zero with the usual interpretation of A’u, as identical with u, .

We avoid the use of negative exponents with A and = because, when these
operators are expressed as matrices, they are singular and have no reciprocals.

Numerical Demonstration. The application of the associated polynomial to
least squares approximation can be more easily understood by following the
steps in a numerical example.

To construct a second degree least squares polynomla,l, to represent the set of
‘seven “‘observations”

P 0o 1 2 3 4 5 6

Uz 6 8 14 27 50 86 138

The process requires the following 5 steps:

1. Compute the moments to be matched.

2. Apply the proportionality factors to the moments.

3. Reconstruct the terminal differences of the associated polynomial.

4. Remove the proportionality factors from the differences.

5. Tabulate the result.

Three of the steps are tabular computations. In each of these the arithmetic
consists in (1) writing down the pattern of starting numbers, (2) filling in the
blank spaces with the numbers necessary to preserve the tabular relation.

The example printed here is shown as it appears when completed. The starting
numbers are shown in bold face.
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STEP 1

Computation of the Nécessary Moments
z A3 A? A Uz S S? S3
0 6 0 0 0
1 8 6 0 0
2 14 14 6 0
3 27 28 20 6
4 60 55 48 26
5 86 105 103 74
6 138 191 208 177
n=7 329 399 385
STEP 2 Multiplying by: 15 5 1
Gives the sums: 4935 1995 385

of the associated polynomial.

STEP 3
Reconstruction of the Differences from the Sums of the Associated Polynomial
z Uz
0 0 1260 840 385 0 0
1 0 1260 2100 1225 385 0
2 0 1260 3360 3325 1610 385 0
r+1=3 0 1260 4620 6685 4935 - 1895 386
STEP 4 Dividing by: 126 70 35
Gives the differences: 10 66 191
of the approximating polynomial.
STEP 6
Tabulation of the Values of the Approximating Polynomial
x Uz
0 0 10 —4 9
1 0 10 6 5
2 0 10 16 11
3 . 0 10 26 27
4 0 10 36 53
5 0 10 46 89
6 0 10 56 135
n=17 0 10 66 191
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CHECK )
Apply Step 1 to the Result of Step 5

The s1_im of the squared differences between the observations and their ap-
proximations can be obtained by taking advantage of the least squares relation-
ship. '

(13) 25 (0 — )" = 23 vz — 20 U

when u, is a least squares polynomial approximation to v, in the range of summa-
tion. The absence of a cross product term is the advantage here.

If one requires only an algebraic expression for the approximating polynomial
Step 5 can be omitted. Step 4 delivers the coefficients of the polynomial in a
form convenient for the substitution of any numerical value that may be of
interest. In the example illustrated the polynomial approximation is delivered
by Step 4 as S :

(14) U = 10(x — 7)2 + 66(x — 7) + 191.

If Step 5 is completed the difference table presents the coefficients of the
approximating polynomial in all of the different arrangements that are described
graphically in a Fraser diagram. For example, taking the numbers on line 0 as
the coefficients, another arrangement of the solution is

(15) U, = 10(z): — 4z + 9.

The arrangement of a polynomial in continuous powers z” is familiar through
habit and custom but it has no mathematical pre-eminence. It is convenient
for multiplication and division but for other operations there are more convenient
arrangements. The arrangement in reduced continuous powers z, = z°/p! has
certain advantages in connection with differentiation and integration. An
arrangement in reduced factorial powers is convenient for operations connected
with the difference table and is equally convenient for the substitution of numeri-
cal values. :

An arrangement in continuous powers is seldom necessary in the calculus of
finite differences except in problems connected with interpolation or sub-tabula-
tion. If it is needed the expansion of the factorial powers and the collection of
terms is a minor arithmetical detail. In the illustration, from the arrangement in
equation (15), it can be performed by inspection.

(16) ' u, = 52* — 92 + 9.

In more complicated examples a collection in continuous powers would be
performed by writing out the expansions of the (un-reduced) factorial powers or,
what amounts to the same thing, by using a table of Stirling’s numbers.

It is interesting to observe in numerical examples that the degree r of the two
polynomials w, and u, may be redundant (the coefficient of the highest power
can be zero). Equations (6) and (7) will still be true and reconstruction of the
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difference table will automatically deliver the zero coefficients along with the
others. Of course both polynomials will be treated as being of the same degree
and both will be found to have the same number of terms with zero coefficients.

As an example for practice the reader may construct the fourth degree least
squares approximation to the set of seven numbers used in the numerical demon-
stration.

Arithmetical Error. The numbers in the example illustrated were chosen to
make the demonstration easy to follow; in practice the coefficients of the ap-
proximating polynomial (the differences on line n) will have recurring decimal
parts that must be rounded off. Rounding the coefficients introduces arith-
metical error in the values of the polynomial computed from them and for values
of z far from n the error may be greater than the value of the polynomial itself.
To absorb the arithmetical error one can carry extra figures in the results of the
division operations that remove the proportionality factors and then discard
the extra figures after tabulating the approximation. It can be shown by finite
integration that the maximum possible error in the last decimal place of wu,
when computed from an rth degree polynomial arranged in terms.of (x — n),
with rounded coefficients, is +0.5(n + 7),. To determine how many extra
figures should be carried in the differences of u. , write out-the numerical value
of this maximum and count the effective number-of figures in it to the left of the
decimal point. For example when n = 12, r = 4, the error in the last place of
any value in the range is not greater than 4-910. The effective number of figures
would be counted as four to permit the usual rounding process when discarding
the extra figures.

The control of arithmetical error by extra figures is satisfactory enough but in
-the present computation there is another method available. We.can postpone
all approximate divisions to the very end of the work by tabulating a multiple
ku, instead of wu, itself. The multiplier k¥ can be any common multiple of the
proportionality factors to be removed from the differences. The least common
multiple is convenient but any common multiple will do.

To tabulate ku, multiply all the terminal differences A, 41, including A%uyq,
by k before removing the proportionality factors. Then remove the proportional-
ity factors, which of course will divide out exactly since k& is a common multiple
of them. Tabulate the result and finally, as a last step, divide the individual
values by k, carrying out the division in each case to as many decimal places as
desired. All of the figures will be free of arithmetical error. This provides com-
plete control over the arithmetical accuracy of the computation.
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