THIRD ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS!

By NorMAN R. DRAPER

Mathematics Research Center, United States Army, Madison, Wisconsin

0. Summary. Two recent papers by Bose and Draper [1] and Draper [3] showed
how it was possible, by combining certain sets of points, to construct infinite
classes of second order rotatable designs in three and more dimensions. In this
paper, third order rotatable designs in three dimensions are discussed. First, a
general theorem is proved that provides the conditions under which a third
order rotatable arrangement of points in k¥ dimensions is non-singular. The four
previously known third order designs in three dimensions are stated; it is then
shown how some of the second order design classes constructed earlier [1] may
be combined in pairs to give infinite classes of sequential third order rotatable
designs in three dimensions. One example of such a combination is worked out
in full and it is shown that two of the four known designs are special cases of
this class. A summary of further third order rotatable design classes that have
been shown to exist, and that have been tabulated by the author, concludes the

paper.

1. Introduction. The technique of fitting a response surface is one widely used
(especially in the chemical industry) to aid in the statistical analysis of experi-
mental work in which the “yield” of a product. depends, in some unknown
fashion, on one or more controllable variables. Before the details of such an
analysis can be carried out, experiments must be performed at predetermined
levels of the controllable factors, i.e., an experimental design must be selected
prior to experimentation. Box and Hunter [2] suggested designs of a certain type,
which they called rotatable, as being suitable for such experimentation. Such
designs permit a response surface to be fitted easily and provide spherical in-
formation contours. A second order rotatable design aids the fitting of a second
order (i.e., a quadratic) surface, and a third order rotatable design aids the fit-
ting of a third order (i.e., a cubic) surface.

Let us assume that the measurements of ‘the % factors have been coded, per-
mitting the use of cartesian axes in. k-dimensional space to describe an experi-
mental design for k factors. Suppose that, in an experimental investigation with
k factors, N (not necessarily distinct) combinations of levels are employed. Thus
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the group of N experiments which arises can be described by the N points in k
dimensions " ’

(1.1) (Tru s Tau s ***  Tow), w=12 ---,N,

where, in the uth experiment, factor ¢ is at level 2., . This set of points is said
to form a rotatable arrangement of the third order in k factors if

fou = e = Exlzm ='>‘2N’ (Sa'Y),
(1.2) 2 @y = 32, ¥hafu = 3\N,  (say)
Z x?“ = 52 xfuxfu = 152 xguxgux?u = 15)‘6N7 (Sa'Y),

wheres,7,l =1,2, -+« Jk,i#£j=1%#4,u=12, ---,N,and all other simi-
lar sums of powers and products up to and including order six are zero. Condi-
tions (1.2). and the condition variance §(x) = f(x'x) are equivalent. The N
points of the arrangement are said to form a rotatable design of third order if
they give rise to a non-singular X’X matrix. By convention, the scale of the
design is normally adjusted so that A, = 1. (This adjustment is a convenience
[1] and not an essential. In this paper designs are presented in terms of a param-
eter and scaling, which merely fixes this parameter, has not been performed.)
The conditions for non-singularity of the XX matrix for the third order arrange-
ment are

(1.3) M/ > k/(k + 2),

(this, alone, is the condition that the matrix for a second order design should be
non-singular) and

(14) Mo/ > (K + 2)/(k + 4).

. These conditions are derived by Gardiner, Grandage and Hader [4], Note that
the left members of (1.3) and (1.4) are independent of the scale of the design.
For a third order design, the determinant of X’X is proportional to
[(k 4+ 2)\ — EMJ[(k + 4)Aeh2 — (k& + 2)AI]. Thus, if either of these factors is
zero, XX is singular and some of the coefficients in the third order polynomial to
be fitted by least squares to the experimental results are not estimable. (These
coefficients are given by b = (X'X)™'X'Y, in the usual notation, when X'X is
non-singular.) If either factor is very near to zero, some of the variances of the
" estimates are large and the design is said to be almost singular. It is impossible
for either factor to be less than zero, i.e., for either of the inequalities (1.3) and
"(1.4) to be reversed,. as will be shown.

Since the left member of (1.3) is of order N, this first inequality may always
bé satisfied merely by an increase in N which leaves the original points unaltered
and which adds nothing to the sums of powers and products, namely by the
addition of center points. However, the left member of (1.4) is of order zero in
N and depends only on the points (z1u, - * , Tku), ¥ = 1,2, -+ , N. Thus, if a



3RD ORDER ROTATABLE DESIGNS IN 3D 867

third order arrangement is singular (i.e., gives rise to a singular matrix) because
equality is attained in (1.4), the situation cannot be altered by the addition of
center points. The question now arises: under what conditions is a third order
arrangement singular? An exact answer to the question may be given as follows.

THEOREM: A third order rotatable design in k dimensions is singular if and only
if all of its points, excluding center points, lie on a k dimensional sphere centered at
the origin. '

Proor: Let

N
8 =" ah,, i=1,2--,k.
u=1
- Then, if the points (1.1) satisfy the conditions (1.2),

N N
(4) 4 2 2
S4 = Zl Ty = 3 Zl LiuLju,
U= U=

N N ' N
- (?) 6 4 2 2 2 2
SG = Zl Liy = 5 Zl TiuLlju = 15 z; LiuLjuLiu
S u= U= u=

44,1 =1,2 -,k i#j#15iand S may be denoted by S; since it
is independent of 7 if conditions (1.2) hold. It follows that

ko N ok N
kS = leé’) =sz§u=zl(xfu+x§u+ coe )

u=1 {i=1

It
M=

8
I
-

2 2 3 4 2 2 2 2
[(xlu + -+ xku) ) Z Tiulju — Z xiuxjuxlu]
,. = )

1
M=

N N _
u=1 u=l .

S
I
-

I
M=

S — 3k(k — 1)8s/5 — k(k — 1)(k — 2)Ss/15

u=1
where 7 = 2%, + %5 + -+ + Ziu. Solving for S and referring to (1.2), We
obtain
N .
15\ N = 8o = 152 r3/k(k + 2)(k + 4).
u=1
Similarly
N N
3NN = Sy = 3D ri/k(k + 2), NN =8 =) r/k
u=1l v u=l
Hence
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(This expression is equal to k/(k + 2) if and only if all points lie on a sphere
and it can be increased merely by an increase in N, i.e., by an addition of center

points.) Also
{2z
Mg= 1;7'1; u-lrqu+2=F’k+2
N {iri}“ k+4 k+4’

say.

u=1
Now, by the Cauchy-Schwartz inequality [5], the factor F is greater than unity
unless all the non-zero r, are equal, when unity is attained and the right hand
side reduces to (k + 2)/(k + 4). Thus the arrangement is singular if and only
if all its points (excluding center points) lie on a sphere in k dimensions.
Hence in order to get usable third order designs, we must combine at least
two spherical sets of points with different positive radii.

2. The known third order rotatable designs in three dimensions. We may
divide third order designs into two groups, sequential and non-sequential. A
sequential design can be performed in two parts. One part is a second order ro-
tatable design which may be run first; then, if the second order polynomial
approximation is found to be inadequate, the trials of the second part may be
run and a third order surface fitted. Such designs are more useful in practice
than the non-sequential type, of which all the trials must be run at .one time in
order to make a rotatable least squares fitting possible.

Only four third order designs are known in three dimensions [4]; these con-
tain points which are the vertices of

(a) icosahedron plus dodecahedron (32 points),
(b) cube plus two octahedra plus cuboctahedron (32 points), -
@.1) (¢) (cube plus octahedron) plus (truncated cube plus octahedron)
: (44 points),
(d) (cube plus doubled octahedron) plus (truncated cube plus octa-
hedron) (50 points).

Bose and Draper introduced [1] a point set notation in which the 24 points
(£p, £gq, £r), (&g, %7, £p), (&7, £p, £q) were denoted by G(p, g, ).
The eight points (==a, #a, =a) were then denoted by 3G(a, a, @), since G(q, a, a)
consists of the eight points (+a, 4=a, +a) three times over. Other sets of points,
derivable from G(p, ¢, r) by setting some of p, ¢ and r zero or equal to one
another, were similarly described. If we translate the designs (2.1) into this
notation, they become

(8) 3G(p1, @1, 0) + 3G(p2, @2, 0) + 3G(a, a, a), -

(b) 3G(a, a, a) + 3G(c1, 0, 0) + 3G(c:, 0, 0) + 3G(f, f, 0),
(¢) [3G(a, @, @) + 1G(ar, 0, 0)] + [G(p, ¢, @) + iG(es, 0, 0)],
(d) [3G(a, a, @) + 3G(e1, 0, 0)] + [G(p, ¢ @) + 1G(a, 0, 0)],

(2.2)
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where in each case the values of the parameters are determined by the rota-
tability conditions, and will not be quoted here.

Design (a) is such that the radii of the two spheres on which all its points lie
are very nearly equal. In fact, AA/A; = (1.00028)5/7, which means that the
design is almost singular. Thus the variances of the linear and cubic coefficients
are very large. This design is of the sequential type. Design (b) is a combination
of our basic generated sets and is non-sequential. Designs (¢) and (d) are both
sequential; (¢) is almost singular, as was noted in the original presentation.

3. The construction of infinite classes of third order rotatable designs in three
dimensions. We shall now show how to obtain infinite classes of third order
designs of the sequential type by making use of the previously derived [1] second
order classes. In order to do this, we shall find it necessary to construct addi-
tional functions similar to the excess function previously introduced in [1].

We recall that

(31)  EadG(p,q,)] = 80" + ¢' + ' — 3p°¢ — 34" — 3"p).
Additionally we define . '

AzlG(p, ¢, )] = 8(8" + ¢ + 1),

GG, &, )] = 8T + ¢7 + 1P — P — &' — PpY),
(32) HalG(p, g, )] = 8(p° + ¢ + 1* — 45p°¢%),

Iz[G(p, g, )] , -

= 4(p'¢ + ¢ + P’ + p'd + o' + p' — 18p°¢T).

Note that, for the point set G(p, q, 1),

2 vl = Ax(@), | 2w = 80"+ ¢+,

| Z,,: zadi = 3(0°¢ + ¢r° + 1°p’),

i

(33) X ot zh = 8(2'¢ + o' + r'p),

u i>]
2 du 25 = 8(0°¢" + o' + 'pY),
W i>j
Dol =80+ ¢ +17), Xl = 240°¢7,
where s # j # 1 # 4,%,7,l = 1,2,3and u = 1,2, - -+, N; the notation ¢ > j
here denotes that ¢ is before j in cyclic order, i.e., 1 > 2,2 > 3,3 > 1. Con-
sideration of (3.2) and (3.3) together with (1.2) shows that if
(3.4) Ex(@) = Gx(@) = Hx(@) = Iz(G) = 0,

then the points of G(p, g, r) form a rotatable arrangement of the third order.
All of the excess functions we have defined operate linearly on sets of points of
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the form G(p, ¢, r) and fractions of G(p, ¢, r), that is-to say Qu( > 8) =
>": Qx(8S;), where Q represents any of E, G, H or I. Thus if the four functions
of (3.4) are zero for any aggregate of points, then this aggregate forms a third
order rotatable arrangement. The arrangement will be a design provided that
the non-singularity conditions are satisfied.

Listed in Table I are the generated sets of the form G(p, ¢, r) or fractions
thereof which were used previously [1], together with the values of the excess
functions for each set.

It is, of course, possible to form non-sequential third order designs and classes
of designs by a skillful combination of these sets. We have already said that
design (2.1)(b) is of this type. We shall leave aside this possibility and instead
form some infinite classes of designs that may be performed sequentially. Since,
for sequential performance, each of the two parts of the design must be itself
a second order design, we shall employ some of the infinite classes of second
order designs already obtained. Table II contains a number of unscaled second
order design classes which may be used, and the values of the various excess
functions for each class are shown. Since each class satisfies the second order
conditions, Exz(class) = 0, as is indicated in the table. The classes we shall
consider, which are obtainable from the basic generated point sets, have
Gz(class) = 0. Each class contains three parameters which give rise to two
ratios connected by one equation (Ez = 0). If we combine two such classes and
apply the other conditions of (3.4), we shall have a set of points with six pa-
rameters giving five ratios connected by four equations. Thus we shall obtain

Tsble I:  Generated Point Sets.

- * 1 ( 0)
int 1 26(psa, 1
. 0(pq,7) L B e L Jo(e,8,0) [ate,0,0)
No. of]
Toines 2“, 12 24 24 12 8 6
= 8(p2+q5r?) b(p%q%) 8(p%+¢%) 8(p%20%) 8r 82 22
. L4 L
. 8(p+q+r
Ex 22.22.22 b(p'sa"-3%02) 8(p"sa"-3p%?)| 8(p"-a"-6%%) | ue* | 16" 2t
=3p q -3°T-3rp")
ox o' eeals 'y u(p¥a2-p2Y) 0 0 0 0 o
pa-paq .
LTS
6 6 6
8(p +q +r
Bx 222 u(p%a%) 8(o%a%)  [8(pS2abusp®ety| &® | 11268 | 26
-45p°q°r")
Bp'aharor'son)| ' b2 2h [0 he 6.2 6 6
Bl o W(p'e®rPa") [8(p'aPra 8% )| #° | a6 0
8(p%a "+a°r +r%p*-0p%0°r %) LpPq

# For these two sets a unique
expression for Ix does not exist since
there is a lack of symmetry. The two
possible values of the expression Ix
are shown; they are equal when p = q.
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Tabde II: Second Order Rotatable Design Classes.

Reference] D.l 02 1)5 Dk D5 D6
Set %G("”':‘) §°(51"p°1) %G(t:t;o) %0(1',{,0)‘ 6(p,q,9) 6(p,9,9)
compo - .
sitlon | + §0(¢,,0,0) |+ Jo(apsepue)l+ 30(c1,0,0)| + 30(a,6e) | 4 Folen0) |+ 30(c,0,0)
[ N
class + %G(ce,o,o) + %a(q,o,o) + %c(ca,o,o) + -,];'c(c,o,o)
No. of i
points 20 22 2k 26 32 30
Ax 8aPs2(c2rel) | Bladradeac? | Brla(cBrel) | Br%vearac? | 8(rPr2ae®) | B(piraq®pac?
B 2(cfrep-ta’) |2(c*-8(agrag))| 2(chreg-2r®) fo(ct-2r-8a") | B(5"-a"-60%7) | B(p"-a"-6r%0)
(zero) -1&" +2c.“
Gx (4] (] [ [ (] (4]
By a(af-n:g)-nz«6 2c6-112(afng) 2(cf+c2)+8:6 Tc6+836-112.6 8(p6+2q6-h5p2q") 8(p82q5-Usp2e")
11248 +acb
Ix -160.6 -16(&%&2) kfs l0t6-16«6 B(puq2+q6-892qh) S(Puqef 6-81;2q,]‘)
’ 6
-16a

a single infinity of third order rotatable arrangements dependent on one pa-
rameter ratio.

We shall now illustrate by an example the formation of infinite classes of third
order rotatable arrangements by the combination, in pairs, of certain of D,
D,, -, Dg and the application of conditions (3.4).

Consider the combination D; 4+ Ds, containing 50 points. These points form
a sequential rotatable arrangement in three dimensions if all the excess func-
tions are zero, namely if

(3.5) Ex(Dy) = Ex(Ds) = Gz(Dy+ Ds) = Hz(Dy + D) = Iz(Dy + Ds) = 0.
In full, these equations are
i + c§( — 8a* =0,
4(p' — ¢ — 6p°¢) + ' =0,

(36) ¢t + cs — 56a° + 4(p°® + 2¢° — 45p%") + ¢° = 0,
—2a° + p'd + ¢° — 8p’¢* = 0.
Make the substitutions
(B7) c=ad, o=y, p=u’ ¢ =0 =1t
Since equations (3.6) are homogeneous, they may be put in the form
24+ =8,
w—6uw—1"+1=0,
(3.8) '

2+ 3 — 56 + (4 + 8° — 18w’ + 1)t = 0,
— 2 4 (W + o* — 8wt = 0,
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a system of four equations in five unknowns; thus if one variable is specified,
the values of the other variables are determined. However, we are interested only
in solutions for which z, y, u, v and ¢ are all real and positive. Only in such a
case will a rotatable arrangement exist. Simple algebraic solution of the equa-
tions (3.8) is not possible. We proceed by selecting one variable and obtaining
the others successively, applying the conditions for positive solutions as we go.
Select v = 0. Then from the second equation, w = 3v & (400" — 1)‘}. From
the fourth equation, 26" = Fo*(400* — 1)} — 40° — v/4. Now ¢ = 0. Thus
the top root alternative is impossible, which means that

(3.9) w = 3v — 3(40/° — 1)}
and
(3.10) C2 = V(400 — 1) — 4° — /4.

Now u = 0 implies that 0. 025 = »* £ 0.25and ¢ = 0 implies that 0.143187 < +".
Thus we shall require

(3.11) 0.143187 < v* £ 0.25

in order *hat all of ¢, u, and v shall be real and positive. By substituting for u
and ¢ in the third equation we find that 2° 4+ 3° = f(v), where

) = 4[2(16v — T+ 1) + (1 + 8 — 240°) (400" — 1)]
v = (384" — 482 — 1) - ‘

But since 2 + ¢ = 8, real, non—negatlve solutions exist for z and y only when
16 < f(v) < 16(2)* = 22.627424. The range of v for this to be true is more
difficult to find and involves considerable computation. We find, considering
only points in the range (3.11), that f(0.419894) = 16, f(0.466316) = 16(2)?,
and f(v) increases monotonically from its lower value (16) to its upper value
[16(2)*] for v in the indicated range. This may be observed from the summary
table of solutions to be presented later. Thus we see that whenever

(3.12) 0.419894 < v < 0.466316, ie., 0.176311 < +* < 0.217451,

then equations (3.8) have a solution that gives rise to a third order rotatable
arrangement. We have already obtained both ¢ and u in terms of v. It remains
only to express z and y in terms of ». We recall that

(3.13) f+y=8 2+ =10).
Set
(3.14) z+y =20, ay=¢;

then, substituting in (3.13), we find 46(6 — 6*) = f(v), a cubic which, given v,
may be solved for § = 6(v), either iteratively or by the trigonometric method
for solution of cubics. From (3.13) and (3.14), z,y = 0 = (4 — ¢*)}, which
are functions of v only. These calculations were carried out for 12 values of v
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TABLE III
A Third Order Rotatable Design Class
? u t x ¥ AeNa=2 | ANa™4, AeNa-s M/NN 7\6)\:/)\2
0.419894 | 0.029596 | 61.248478 | 2 2 51.200493 | 33.005920 | 15.670698 | 0.012542 | 0.737934

0.420 0.029553 | 61.069211 | 2.073576 | 1.923612 | 51.264057 | 32.963451 | 15.640735 | 0.012543 | 0.737912
0.425 0.027503 | 53.553302 | 2.438052 | 1.433843 | 49.742964 | 31.187123 | 14.384946 | 0.012604 | 0.735680
0.430 0.025484 | 47.517331 | 2.563986 | 1.194143 | 48.418222 | 29.705827 | 13.373640 | 0.012671 | 0.733796
0.435 0.023497 | 42.568299 | 2.640568 | 1.013607 | 47.249791 | 28.449362 | 12.542421 | 0.012743 | 0.732211
0.440 0.021539 | 38.440873 | 2.695576 | 0.856661 | 46.195292 | 27.368099 | 11.847274 | 0.012825 | 0.730679
0.445 0.019610 | 34.949405 | 2.735256 | 0.719982 | 45.242534 | 26.428609 ' 11.257215 | 0.012912 | 0.729171
0.450 0.017709 | 31.960134 | 2.765977 | 0.500668 | 44.359086 | 25.599301 | 10.750681 | 0.013010 |-0.727717
0.455 0.015834 | 29.374247 | 2.790168 | 0.463593 | 43.531524 | 24.864635 | 10.310955 | 0.013121 | 0.726003
0.460 0.013984 | 27.117168 | 2.809441 | 0.327169 | 42.726269 | 24.208077 9.925752 | 0.013261 | 0.723665
0.465 0.012159 | 25.131560 | 2.824930 | 0.140614 | 41.867093 | 23.617604 9.585751 | 0.013474 | 0.719494
0.466316 | 0.011682 | 24.648331 | 2.828428 | 0 41.462397 | 23.471355 9.502710 | 0.013653 | 0.715197

in the range (3.12), including the end points of the range, and the results are
shown in the first five columns of> Table III. Any line of the table gives five
ratios which may be employed in (3.7) to give five of the parameters ¢, , ¢,
a, p, ¢ and ¢ in terms of the sixth. (After the addition of any center points to
be used, the sixth parameter can be fixed by applying the scaling condition
A; = 1.) Thus we obtain a rotatable arrangement which is a design if the non-
singularity conditions are satisfied. Since the first of these can be satisfied by
the addition of center points, it need not he considered further. We require, then,
that A\e/Af > 5/7 = 0.714286. By our theorem, this will be so unless all the
points lie on one sphere. Now each design consists of five separate point sets of
squared radii 3%, ci, ¢z, p* + 2¢° and ¢’ or 3a’, za’, ya®, (v + 2v)c* and o
It is ‘easy to see from the table that the various radii are different. The actual
values of the parameters are given by:

NN = d*(8 + 2z + 2y) + (8(u + 2v) + 2)¢,
MN = 8a* + (16w + 8°)c,
AN = 8a® + 24uw’ct.

Since ¢® = ta®, these values may be found in terms of a, as shown in Table III.
We now examine further the extreme cases of the table. The bottom line gives
a design consisting of

[3G(a, g, a) + 1G(c1, 0,0) + £G(0, 0, 0)] + [G(p, ¢, ¢) + 1G(c, 0, 0)]

with values of the parameter ratios as derived above. Reference to (2.2) will
show that this is known design (c¢) with six center points (represented by
1G(0, 0, 0)). The top line gives a design consisting of

[%G(a’ a, a) + %G(C], ) O) 0) + %G(cl ) 07 0)] + [G(p1 9, Q) + %G(C, O) O)]

with the values of the parameter ratios as derived above. Reference to (2.2)
will show that this is known design (d). The details of the verifications will not
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be reproduced here. Thus the infinite class of third order rotatable designs ob-
tained has, as its two extreme cases, two of the designs already known, and the
passage from one extreme to the other is by a continuous infinite sequence of
new third order designs for which the second non-singularity condition becomes
successively stronger.

The class of designs just obtained was chosen for a detailed presentation be-
cause of its link with the only sequential type designs known previously (ig-
noring the claims of design (2.2) (a) which is almost singular).

4. Further classes of third order rotatable designs in three dimensions.
Several other combinations of D, , D, , ---, Dg also give rise to infinite classes
of third order designs. Of the 15 possible pairs, D; 4 D, , D, + Ds, D; + Ds,
.Dz + D4, Dz + De, Da + D4, Ds + D5 and .Da + De all provide third order de-
signs and these have been tabulated in the same way as the example of the pre-
vious section. The combinations Dy + D, , Dy + Ds, D; + Ds and D, + D5 do
not give third order designs. The remaining three combinations, Dy + Ds, Dy
+ Dg and D5 + Dg have not yet been investigated.

The intention of this paper is to show how the design classes can be constructed
and to indicate which classes are known to exist. It is hoped to present, in a
future report, some specific single designs (selected from the infinite classes
mentioned above) in a form in which they can be used conveniently by experi-
menters.

B. Acknowledgment. I am grateful to Dr. R. C. Bose for his guidance and
encouragement during the preparation of this paper.

REFERENCES

[1] R. C. Bose aND NorMaN R. DraPER, “‘Second order rotatable designs in three dimen-
sions,” Ann. Math. Stat., Vol. 30 (1959), pp. 1097-1112.

[2] G. E. P. Box anp J. S. HUNTER, “Multi-factor experimental designs,’”” Ann. Math. Stat.
Vol. 28 (1957), pp. 195-241.

[3] NormaN R. DraPER, “Second order rotatable designs in four or more dimensions,”
Ann. Math. Stat., Vol. 31 (1960), pp. 23-33.

[4] D. A GARDINER, A. H. E. GrRanpaGe aNp R. J. HaDER, “Third order rotatable de-
signs for exploring response surfaces,”” Ann. Math. Stat., Vol. 30 (1959), pp.
1082-1096.

[5] G. H. Harpy, J. E. LirrLewoop AND G. P6Lya, Inequalities, Cambridge University
Press, 1952.



