THEOREMS CONCERNING EISENHART’S MODEL II

By FRANKLIN A. GRAYBILL AND RoBERT A. HULTQUIST

Colorado State University and Oklahoma State University

1. Introduction. Eisenhart’s Model II has been discussed in many papers [1],
[2], [3], and, since it has become quite important as a statistical model it seems
worthwhile to investigate it in some generality. The purposes of this paper are
(1) to study the covariance matrix of certain cases, (2) to give some theorems
concerning minimal sufficient statistics, (3) to give some theorems concerning
best quadratic unbiased estimation, (4) to give some theorems concerning
analysis of variance.

2. Notation, Definitions, and Assumptions. In this paper we consider
Eisenhart’s Model II [4] which can be described as follows. An n X 1 vector of
observation Y is assumed to be a linear sum of k¥ + 2 quantities,

k+1

(1) Y=;}X;@.-,

where 3o = p is a fixed unknown constant, §; (¢ = 1, --- k) is a vector of p:
random variables, 8,41 = e is an n X 1 vector of random errors, X, = j is an
n X 1vector of 1’s, X; (¢ = 1, - - - k) is a matrix of known constants, and X, = I
is the identity matrix.

Throughout this paper we assume all random variables in and between the
vectors B; are independent. 0 will denote the null matrix and 8; will be distributed
with mean 0 and covariance matrix o> I. The covariance matrix of the vector Y
will be denoted by V and W will denote E(YY’). Y’ denotes the transpose of Y.
Throughout the paper E is the operator denoting the expected value of what
follows. A; will denote X; X: and A; (¢ = 0,1, --- k£ 4+ 1) will be assumed linearly
independent. J will denote the matrix jj’.

Some of the following assumptions are made in certain sections of this paper.

(i) 8; (¢ = 1, -+ - k + 1) have multivariate normal densities.

«~+) Finite third (fourth) moments exist for all random variables and third
(fourth) moments are equal for all variables in a given vector 8. .

(iii) A; and A; commute (7,5 = 0,1, --- k 4+ 1).

(iv) The matrix X, is such that j», X; = rij;,‘. and X,‘j;,‘ = j., where r; is a
positive integer and the subscripts n and p; are the dimensions of the vectors j.

Many of the commonly used models satisfy most of the above assumptions.
Tor instance, the regression model is included in our discussion when assumptions
(iii) and (iv) are deleted. The experimental design models with equal numbers
in the subclasses satisfy the assumptions. These include the n way cross classifi-
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cation models with or without interaction, the n fold nested classification, the
split-plot models, etc.

3. Characterlstlc Roots of the Covariance Matrix. The covariance matrix of
Yis V = D %o} A, . Since the characteristic roots of V play an important role
in the sections to follow, we shall devote this section to a discussion of some of
the properties of those characteristic roots. Throughout this section we shall
assume that assumptions (iii) and (iv) hold.

Since Ag, Ay, - -+, Apy1, is a set of real symmetric matrices which commute
in pairs, there exists an orthogonal matrix P such that PA;P’ = D,
(4 =0,1,--- k + 1) where the D, are diagonal matrices [11] (p. 189). It is
clear from the relation of V to the A; that V is also diagonalized by P and
PVP' = ) ifsiD}.

The following theorems concern bounds on the number of distinct character-
istic roots of V.

THEOREM 1. The maximum number of distinct characteristic roots of V is 1 plus
the rank of the matriz [Xo, -+, Xil.

Proor: Let the rank of [X,, -+, Xi] be g. As a consequence of assumption
(iv), Dia X; X' also has rank g. Hence the matrix ) +; D; = S PX X P
has g characteristic roots not equal to zero. Since the A; are posmve semidefinite,
these g characteristic roots are positive which implies Z,=1 a; D; has ¢ positive
characteristic roots and n — q characteristic roots equal to zero. Now since
PVP' equals D s o3 D; + ¢’I, n — g of its n positive characteristic roots must
be ¢>. Thus the maximum number of distinct characteristic roots of Vis ¢ + 1.

We shall at times use the following theorem which we state without proof.

THEOREM 2. Onerow of the matrix P which diagonalizes A; (1 = 0,1, --- k + 1)
s a row of equal elements either ntor —n7h

TuEOREM 3. The number of distinct characteristic roots of W is not less than
E+ 2.

Proor: W = D 1o} A; where of is used to denote u’, and PWP’' =
S ot D;. Let h® be the vector composed of the diagonal elements of D; .
Suppose W has exactly s distinct characteristic roots dy, -+ -, d, then

k+1

2 oth? = (g, ooy dufu, o dog
where j, has dimension 7, equal to the multlpllclty of the characteristic root d., .
If we make the partitionh®" = [a{”’, ... h{", ,h{?'], such that h'” has the
dimension 7, for all Z, then we can write Efi& Uf h(') = dyju. Let b be the
rth and h$? be the tth element of h{”. We then assert that Z';*.% azhf];) = d, and

Hloinl = d,. Subtractmg we have Do o2(hsy — h%?) = 0. The above
equation 1mphes h(') = hYY for all r and ¢. Thus h” can be written
B = 081, -+, a5, - -+, alPj.] where al? is a scalar. The A; being linearly

g

independent 1mphes the D; are linearly independent which in turn implies the
h? are linearly independent. Thus the k + 2 vectors
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@, - al?) (6=0,---k+1)

form a matrix of column rank & + 2. This matrix must also have row rank
k + 2 which implies s = k& + 2.

Except for the first characteristic root d; , the characteristic roots of V are
identical with those of W hence the number of distinct characteristic roots of V
is s or s — 1, the latter happening only when the characteristic root P; VP is
not equal to some other of the s — 1 roots.

4. Minimal Sufficient Statistics. In this section we exhibit minimal sets of
sufficient statistics for the model defined in Section 2 under assumptions (i) and
(iii) and we obtain their distribution. Conditions are also given for a set to be
complete.

As in the previous section let the number of distinct characteristic roots of the
matrix W be s. By the proper choice of P the matrix PVP’ can be written
Dla,g [dl, dglz, .. d Iu, .. ,d IS] where dl = d1 -_ np. a,nd dl,dz, ity ds
are the s distinct characteristic roots of W. The dimension of I, is equal to the
multiplicity of the root d,, .

Consider now the joint distribution of %, -+, y.. The quadratic form
is Q@ = (Y — ju)’V(Y — ju) which can be rewritten in the following manner.

(2) Q = (PY — Pju)'(PVP')7(PY — Pijp).
Partition P as follows. P’ = [P} N A , P, y P,] where the dimension
of P,isn, X n. Then since P;j = n* and P,j = 0 (v > 1) Q can be written
P.Y —nlu l/d: P.Y —nly
P, Y (1/dy)1, 0 P, Y
@) |py (1/d)L - P.Y
: 0 . :
P Y (1/d)1, P Y

orQ = di (P, Y — nlu) + > 2 di'Y'P, P, Y. This last form of @ exhibits
according to Koopman [5], a set of s sufﬁment statistics namely

YP,P, Y (=2 -5

and P1

P Yis dlstrlbuted as a univariate normal with mean P, ju = n*u and variance
P, VP d In order to obtain the distribution of the remaining statistics we
note the follow1ng (a) P, P, V/d, is idempotent. (b) The non-centrality pa-
rameter X = 4uj’Py, P, ju = 0 (u = 1). (¢) The rank of P, P, V is n, . These
conditions according to Theorem 5, Section 3 of [6], are sufficient for
Y'P., P, Y/d, to be distributed as a central chi square variable with 7, degrees
of freedom. Since for u # v, P, VP, = 0, we have P, P, VP, P, = 0, which is
sufficient [6] to imply the independence of YP, P, Y and Y'P, P,Y and the
independence of P, Y and Y'P,, P, Y.
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The following theorem establishes the minimal property of this set of statistics.
TareoreM 4. If W has s distinct characteristic roots, then the s statistics,

YP,P,Y (u =2, -5)

and P,Y form a minimal sufficient set.

Proor: Two cases must be examined: (i) d is not equal to some other of the
s — 1 roots; (ii) d is equal to ds .

If fis the joint frequency distribution function of 41, - - - , ¥ , then for case (i)
a straight forward application of the procedure of Lehmann and Scheffé [7]
(pp. 327-329) to K(Y, Yo) = f(Y)/f(Y,) estabhshes the theorem.

Case (ii) differs from case (i) only in that di = d,. However, LLemma 1, the
proof of which follows, implies (P;Y — Piju)’ — (P,Y, — Piju)’ + Y’PngY —
YP:P;Y, = 0. However, since this is an identity in u we have P,Y = P,Y, and
Y'P;P,Y = Y.P:P;Y,. Thus in this case also the set described is a minimal
sufficient set of statistics.

LemMa 1. If the distinct positive quantities d, (u = 1, , k), are of the form
d, = l. + a # 0 and a s functionally independent of each lu , then the quantities
d; (u =1, , k), are linearly independent.

PROOF Cons1der the set of constants ¢,; (v = 1, , k), such that

k ica'd, = 0. It follows then that Y .., (cuH.,#ud) = 0 or equivalently

Zu_l [cuH.,,é., (I, + a)] = 0. Expanding and collecting coefficients of powers
of a we have a system of k£ equations which can be written as BC = 0 where
C' = (¢, ,ck) and

1 . 1 . 1
2k 2L 2
v 1 * vEU * v =k
(4) B — v;l l"l lvg . ”§‘ l"l lvg . v;‘ l”l va
v1<vg . v1<v2 . nu<re
LI 13 lk ll * lv * lk ll ll lk~1
vFEU
If k = 2, then |B| = (i — ). Assuming for k = m that |B| = | |%<; (L. — ;)
it readily follows that for & = m + 1, |B| = [[%%} (I. — ;). Since the d, are

distinct the I, are also distinct. Thus by induction |B| 5 0. This implies C =
which asserts that the quantities d;'; (v = 1, - -+ k), are linearly independent.

In order to prove a result concerning completeness we prove the following.

LemMmA 2. If the number of distinct characteristic roots of W is k + 2 then the
distinct characteristic roots dy - -+ diyo are functionally independent.

Proor: Consider the equation PWP’ = D i 62 PA,P’. Let D* and D be the
vectors of the diagonal elements of the dlagonal matrices PWP’ and PA;P’ re-
spectlvely Then D* = > ¢ 4D} = (Dy, D}, --- Diy1) = where ¥’ =
(0%, -+, crs1). Since the A, are linearly 1ndependent matrices the D} are linear ly
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independent vectors which implies the matrix (Dg, D!, ---, Di,1) has rank
k + 2. This together with the fact that £ has & + 2 functionally independ-
ent elements implies D* has & + 2 functionally independent elements. These
clearly are the k& + 2 distinct elements dy , - - - , diys .

THEORFM 5. If W has k + 2 distinct chamctemslzc roots then the & + 2 statistics
Y'P,P.Y; (u = 2, k4 2) and P.Y form a complete sufficient set.

Proor: By applymg the result of Lemma 2 to a theorem due to Gautschi [8]
the result follows.

5. An Example. Consider the model y;; = u + 8; + 7, + e;;; ¢ = 1, 2)
(G=1,2);GE=3,4)7 =3, 4) In matrix notation Y = uj + X,8 + Xor + e.
Quppose E@B) =0,E(83) = i1, E(7) = 0, E(r7') = 31, E(e) = 0, E(ee’) =
a31. The observation vector and the matrices can be written

- - —~ -

Yu
Y2
Ya1

Y = Yoz H X= [jy x17 x2] =

S oo

Y3s
Ya3
L Yaa_] L J

Ay = J (8 X 8); A, = Diag.[J, J, J, J] where J here is (2 X 2);
and A, is Diag. (M, M) where :

0

1

0
) 1
Matrix multiplication will verify that A, A;, and A, commute in pairs. If we
choose P to be

QSO OOOO
—_—0 o o000
O~ O, OO0 O

CoOoOoO~R~=OO
SO OO O RO~
SO OO, OO

e T T T g ey
SO ODOO O - =

_o = OO

M=

O = O -
— 0o = O
O = O -

1 1 1 1 1 1
-1 -1 -1 -1 1 1 1
—1 1 -1 1 -1 1

1 -1 1 -1 -1 1 -1
-1 -1 1 1 -1 -1 1

1 1 -1 -1 -1 -1 1

1 -1 -1 1 1 -1 -1
-1 1 1 -1 1 -1 -1
then PA,P’ and PA,P’ are diagonal and PVP’ has the following characteristic
roots each of multiplicity two: 2af + 205 + ob , 205 + o3 , 2af + o5, o . Hence
there are five statistics in a minimal set of sufficient statistics. Since we have
four parameters it follows that these statistics are not complete.

etk ko kot

|
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6. A Theorem on the Analysis of Variance. It is well known that for Eisenhart’s
Model I [4] with n observations the total sum of squares can be partitioned into
n sums of squares, each sum of squares being independently distributed as non-
central or central chi-square. For the model IT case in which there appear k& + 2
unknown parameters ¢; ({ = 0, - -+, k + 1) we make the definition:

DEeriNiTION 1. An analysts of variance will be said to exist under assumption (i)
if matrices B; of known constants exist, such that

(1) YY = 25 YBY

(2) YB:Y/e; (. = 0,1, .-+ ,k + 1) isdistributed as a noncentral chi-square
variate with p; degrees of freedom and noncentrality parameter A;.

(3) By=J/nand po = 1

4) YBY(:=0,1,---,k + 1) are pairwise independent.

(5) Thee; (i =1,2,---,k + 1) aredifferent linear functionsof the parameters.

LemMmA 3. If an analysis of variance exists then the B; : (a) Commute with V'
(b) are idempotent; (¢) are disjoint.

Proor: Y'B.;Y being independent and distributed as chi-square implies
B.VB,V = ¢;B;V and B;V/c;-B,V/c, = 0 (¢ ¢ h) [6]. Since V is nonsingular
thlS 1mphes B:,VB, = CiB,' and BiVBh =0 (’I, # h) NOW Z::(l)BzVBh =
> i BiVB, + B,VB; = ¢;B; but ) i B;VB, = B, V) % B, = B,V hence
B.V = ¢;B;. Likewise summing over ¢ instead of & we obtain VB, = ¢,B,.
Together these results imply that the B; commute with V: VB; = B,VB; =
VB.B: . Hence B; = B;B; and B; is idempotent.

Since the B; commutes with V and V is nonsingular, we have B;VB, =
B.B.V = 0 hence B;B;, = 0; (¢ # h). Thus the B, are disjoint.

THEOREM 6. A mecessary and sufficient condition for an analysis of variance to
exist is A, and A; (r,7 = 0,---,k 4+ 1) commute and W has k + 2 distinct
characteristic roots.

PROOF OF THE NECESSITY STATEMENT: B; and V commute as do B; and By and
since W can be written in the form W = V + nu’By, then B; commutes with
W. We write BW = B,D oA = (D255 03A;)B; = ¢B: + u'nBiB;.
Equating coefficients of ¢ we have BA; = A;B; = ¢;;B; where ¢;; are constants
and not functions of the parameters. Summing over ¢ we obtain A; = »_;¢;B;.
AA, = (2it:B:) (2o treBy) = 2itsiteiBs = 2ititiBi = AA;.

If we define ¢¥ to equal ¢; ; (¢ # 0) and cg to equal ¢, + n4’, then we can write
BW =¢iB;;(:=0,1,---,k -+ 1). Consider then the equality PB;P'PWP =
c¥PB,P’ where P is orthogonal and simultaneously diagonalizes B; and W.
Letting D = PWP’ and D; = PB;P’ we have D.D = ¢iD; . B; being idempotent
implies that the diagonal elements of D; are unity or zero. Since the rank of B;
is p; unity must appear p; times in the diagonal elements of D; . Thus D,;D is a
diagonal matrix with p; nonzero diagonal elements all equal to c7. Sipi=n
[6]. This together with the fact that p; = 1 implies that the ¢} are the charac-
teristic roots of W. The ¢; were assumed to be distinct hence W has k& + 2 distinct
characteristic roots.

PROOF OF THE SUFFICIENCY STATEMENT: Let P be orthogonal with first row
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j'n .Z = PY isdistributed as an n variate normal with a mean vector containing
zeros except for the first element equal to n'u. Let E, be the matrix with unity
in the »th diagonal place and zeros elsewhere. Let D = PVP’ be the diagonal
covariance matrix of Z and let d, be the »th diagonal element of D. Z’'E,Z/d, ;
(v = 2, -+ n) is distributed as a central chi-square variate with one degree of
freedom and Z’'E,Z/d, is distributed as a noncentral chi—square variate with one
degree of freedom and noncentrality parameter nu’/2d; . Since the d are the
characteristic roots of V the characteristic roots of W are then d, + u* and d, ;
(»=2,---n). Letdy + p*and b;; ( = 1, - Ic+1)bethek+2d1st1nct
characterlstlc roots of W. Let S; be the set of » where d, = b; and let p; be the
number of roots equal to b; . Then
(5) 2 Z'EZ/b; = 'Y, E,Z/b; = Z’F,Z/b; = Y'P'F;PY/b;
veSy veSg
where F is defined by the equation. This statistic, since it is the sum of p, inde-
pendent chi-square variates, is itself a chi square variate with p; degrees of free-
dom. If we let B; = P’F;P condition (2) of the definition is satisfied for 7 =
k41 and letting By = P’E,P we have condition (2) satisfied for ¢ = 0.

Since By = [n7Y, 0]P = J/n has rank one we have condition (3) satisfied. The
b; were defined to be distinct characteristic roots of W thus satisfying condition
(5). Since DX Y'B.Y = 2 YP'F.PY = Y Z'FZ = Y P ZEZ =
Z'Z = Y'Y, condition (1) is satisfied. Condition (4) is satisfied by applying
Theorem 5, page 684 [6]. Therefore an analysis of variance exists.

The following corollaries follow from Theorem 6.

CoROLLARY 1. The termsc; which appear in the analysis of variance are the distinct
characteristic roots of the covariance matriz V.

CoroLLARY 2. The quadratic forms Y'B;Y/c; are central chi-square variates with
p; degrees of freedom. (7 = 1)

CoroLLARY 3. The A; are linear combinations of the B

CoroLLARY 4. The B; are linear combinations of the A; .

7. Best Quadratic Unbiased Estimators. In this section quadratic estimates
of variance components are considered. Hsu [1] under certain conditions has
shown that the best (minimum variance) quadratic unbiased estimate of ¢ is
given by the analysis of variance method of estimating o7 . Graybill [9] has shown
for the general balanced nested classification in the Model II situation that the
method in [10] gives best unbiased estimates. In this paper we state conditions
under which the best quadratic unbiased estimates of variance components can
be obtained from the analysis of variance.

TurorEM 7. If under assumption (i) the following analysis of variance exists for
a vector Y of observations: Sum of Squares = Y'B,Y; E(YB,Y) = o; ¢ =
O 1, y k + 1; then Y'B;Y 4s the uniformly best quadmtw unbiased estimate of
o} under assumptwns (ii) and (iv).

This theorem states that if an analysis of variance exists under the assumption
of normality for the random variables, then uniformly best quadratic unbiased
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estimates of the parameters exist when less stringent assumptions (ii) and (iv)
are imposed in place of the assumption of normality.

Proor: Let the general quadratic estimate of af be &}, let the symmetric
matrix C; be defined by the equation &} = Y'B;Y + Y'C,Y, and let the elements
of C; be constants. We wish to restrict this general quadratic estimate to the
class of all unbiased estimates and then obtain the estimate with variance less
than that of any other unbiased estimate of of .

Unbiasedness implies that E(Y'C;Y) = 0 and “best” implies E[a}]} =
E[Y'B,Y]’ + 2E[Y'B,Y] [Y'C,;Y] + E[Y'C,Y]" is a minimum. By straightforward
evaluation of the expected values involved it can be shown that if £(Y'B;Y) =
0, then E[Y'B;Y] [Y’'C,;Y] = 0. We shall not present the numerous details of the
proof of this statement but using this fact we can write E[&’ = E[Y'B;Y]" +
E[Y'C,Y’. E[4)} then takes on its minimum value when E[Y'C.Y]? = 0.
E[Y'C.,Y] and E[Y'C,Y] both equal to zero implies C; = 0. Hence the best
quadratic unbiased estimate of of is Y’B;Y.

8. An Example. An examination of the matrices for various experimental
designs reveals that most of the commonly used designs with equal numbers in
the subclasses possess the conditions of Theorem 7. Consider the randomized
block design with interaction having b blocks of ¢ treatments. The treatments
and blocks can be labeled in such a way that in the model Y = uj + Xi8 +
Xor + €; Xy(bt X b) = Diag.[ie, je, -+ ,dd; Xa (bt X b) =[I,, I, -+, L]
A (bt X bt) = Diag.[Je, Je, -, J); and Ax(bt X bt) = [Xp, Xz, -+, Xy,
Matrix multiplication will verify that A;, Az, and J commute. It then follows
that W = 4’J + oiA; + o3A; + oiI, where oI = E(88), o3l = E(ee') and
a3I E(ee ). The characteristic roots of W can be shown to be o} , to} + o3,
bos + o3, and thy® + to} + bos + o . Since k in this model is 2 the number
k + 2 = 4 agrees with the number of distinct characteristic roots. Thus if 8, =,
and e have distributions satisfying assumption (ii), then minimum variance
quadratic estimates of o1 , ¢ 3, and o3 can be obtained by the analysis of variance
technique.

9. Estimable Functions. In this section we shall define estimable functions for
our model and give a necessary and sufficient condition for the o7 to be estimable.

DEerFINITION 2. The parameter o+ is said to be estimable if a quadratic form Y'BY
extsts such that E[Y'B¥Y] = o2

THEOREM 8. A necessary and sufficient condition that the o: arc estimable is that
the A, are linearly independent.

Proor. If the o are estimable there exists matrices By ; (s = 1 -k + 1)
such tha,t E[Y X, 8 I'BJ[2 X8 = 5. It then follows that D o7 trX B X; =
> oitr ABY = cr, . If the coefﬁcmnts of a,, are equated we obtain tr A;B; = 0,
(7 # s) and tr A, B = 1. Now let co, cl, . ck+1 be any set of constants such
that > i+t cfA; = 0, then }_:'fié citr A;B, = c., hence tr B} (Z'fi.(‘, ciA ) =cr
which lmplles s = 0 Butifc, =0;(s =1, --- k + 1), then since E,,,o ;A=
O we also have ¢; = 0, which implies the A; are hnearly independent.
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To prove that the of are estimable consider E(YY’) = > et} Ao?. Define
Zrq¢ = YrYq and let the [n(n 4+ 1)/2] X 1 vector Z be defined by

!’ __ !
Z = (211,"‘211,,522,"‘221),"'pr)-

Z has as elements the quantities on and above the main diagonal of YY’ ordered
in a particular fashion. Now let the rgth element of A; be denoted by ar, and
let the [n(n + 1)/2] X 1 vector a; = (a};, als, - “alp,ak, - C g, Ahp) .

The expected value of Z is Dt ooa; . By hypothes1s the A are hnearly inde-
pendent, thus since the elements of ; are elements in A;, the «; are also linearly
independent. Denoting the [n(n + 1)/2] X (k 4+ 2) matrix [ao, * -+ exq] by @
and the vector (o}, -+ 0t41)’ by = we can write E(Z) = «X. a has column
rank k£ + 2 and hence has row rank ¥ + 2. Let o* be the (k + 2) X (k + 2)
matrix which consists of & + 2 linearly independent rows of «. Let Z* be the
corresponding rows of Z, then E(Z*) = o*X. Now o* has an inverse so that
(e*)T'E(Z*) = X. Thus (e*)™'Z* is an unbiased estimate of £ = [¢}]. This
completes the proof.

Of course, if the A; are linearly independent, then this implies certain condi-
tions on the X;, but this will not be discussed here.
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