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Introduction. Let X (), ¢t = 1, 2, - - -, be independent integer-valued random
variables such that Pr{X(¢) = 4} = p(¢), with p(—m) > 0, p(¢) = 0 for
i < —m, and let P(z) = E{z*?}. The solutions of the functional equation,

1 = wP(Mw)),

have played a fundamental role in the work of several authors.

R. Otter [5] used this solution for the case m = 1, in his study of multiplicative
processes. T. E. Harris [4] used it in the examination of first passage times in
random walk problems. L. Tak4cs [7] and B. W. Conolly [2] have used the solu-
tions to describe the distribution of the number of persons served during the
busy period of a queue.

In the first section of this paper we introduce notation and state some pre-
liminary lemmas. The second section deals with the sums

8(t) = S(0) + Z_:l X(2),

where S(0) is a random variable taking on nonnegative integer values and has
E{Z® = K(2) = X iso k(j)z’. The third section deals with the sequence
S*(t) defined inductively by S*(0) = S(0), S*(¢) = max [S*(¢ — 1), 0] + X(¢),
and the sequence Z(t) = max [S*(t), 0]. The generating functions of the dis-
tributions {S(), mineci<¢ S(7) = 0}, S*(¢), and Z(t) are expressed in terms of
the solutions of 1 = wP(A(w)). The distribution of {S(t), minecj<c S(j) = 0}
corresponds to the distribution of a discrete time queue during busy time, and
that of Z(t) to the distribution of the transient queue.

The formulae we obtain could be deduced from those of F. Spitzer [6], but we
give here a different approach.

1. Notation and Preliminary Lemmas. The following notation will be used.
For7 = 0,a > 0,andn = 0, let

f(n,4,7) = Pr{S(j) = 4, min S(k) = 0[S(0) = n},
0<k<j
F(n’ z) j) = Z f(n) i) j)zt, 5‘(71‘7 z) w) = Z F(n) Z’ j)wJ’

iz0 iz0

F(z,w) = >, Pr{S() =i, min S(k) = O}z'w’,

120,j20 0<k<j
g(n, —a,w) = Pr{8(j) = —a, min S(k) = 08(0) = n},
0<k<j
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G(’I’L, —a, w) = Z g(n) —a)j)wj) g(”) 2, w) = i}. G(’I’L, —a, w)z—a’

1>0

r(n, w) = Z) Pr{S(j) < 0, min_ S(k) = 0[8(0) = njw’

r(w) = 2, Pr{8() <0, mln S(k) = 0}w’,

i>0
F*(n, 2, w) = Pr {S*(j) = 4|S*(0) = njz'w’,
20720
F*(z, w) = Pr{S*(j) = i}z'w’,
i20720
T*(n, w) = Pr{S*(j) < 0|S*(0) = njw’
iz0
T*(w) = Pr {S*(j) < O}w’
Y
(2, w) = Pr{Z(j) = dz'w’,
» 120,720

and
H*(z) = lim E{z""}

t>0

when this limit exists.
In the computations in the subsequent sections we will need

Lemma 1.
Pri{S(t+7) =k — a, mm S(u) = k|S@) =n + Kk}

<t+1

= Pr{8(i) = —a, mln'S(u) = 0|8(0) = n} = g(n, —a, 7)
Pri{S(t+17) =k+ j, mln S(u) 0|S(t) = n}
= Pr{S(z) =, 02112- S(w) = 0[8(0) = n} = f(n,J, 7).

The same expressions hold when we replace S(t) by S*(t).

Proor. Since the X (¢) are all independent and have the same distributions,
the set of random variables X (¢ + 1), ---, X(¢ + <) has the same joint prob-
ability distribution as X (1), - -+, X(¢). The equations are simple consequences
of this. The second statement is a consequence of the fact that

{S*(1 + t) = m, m1n S*(u +t) = 0, S*(t) = n} and

<u<i
{S({+¢t) = m, min S(vw+¢) =0, 8(t) = n}
0<u<i
impose the same restrictions on X (¢ + 1), -+, X(¢ 4 ), for either positive or

negative m.
LemMa 2. For |w| < 1, the functional equation 1 = wP(X(w)) has m solutions,

M(w), -, An(w), within the unit circle.
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Proor. For \| = 1, \"| = 1 and [w\"P(\)| £ [wD_iz—mp(i) = |w|. Hence
we may use Rouché’s theorem [1] to see that A™ — wA™P(\) has m zeros within
the unit circle for 0 < |w| = 1. It may be seen by inspection that A = 0 is not
one of these, so the same is true of 1 — wP()).

LemwMmaA 3. For small non-zero w, the functional equation 1 = G(0, AM(w), w) has
m distinct solutions, A1 (w), -+, )\,,.(w), all different from zero.

Proor. In g(\, w) = \™ — )\"’G(O N\, w) we let w = s™, A = s¢. We obtain
g\, w) = s"h(¢{, s). Since the G(0, —a, w) have no constant terms in their
power series expansions, it is easy to see that

l‘lllgh(f,s) =h((:0) =§‘m_g(0y —mal) =§‘m_p(_m))
and lim,.o A'($, ) = R'($, 0), uniformly in |¢| < 1. The zeros of h(;, O) are
= [p(=m)]""™ j = 1, ... m. Let ¢; be the circle |ri — ¢ =

e < min [|rj], |r; — ml/2, 1 = |rj|].
F

Since the limits are uniform in |§] <1,

[ ORGs) (5,0
m | %G9 o; B(,0)

Hence, for s sufficiently small, h(¢{, s) has one of its zeros in each of the ¢; , which
were chosen so as not to overlap, to avoid zero, and to remain with |¢| < 1.
Since h(¢{, s) is a polynomial of degree m, this proves the lemma.

di = d¢ = 2me J=1,---,m.

2. The Sequence S(f). In this section the functions G(n, —a, w) are expressed
in terms of the solutions of 1 = g(0, A(w), w). These solutions are then shown
to satisfy 1 = wP(A(w)). Finally $(n, 2, w) is expressed in terms of the P(z)
and G(n, —a, w).

Define the matrix L = ||L(a, n)|| = |2 "(w)]| 1 < a,n < m. This matrix
has an inverse, since it has a Vandermonde determinant and the A\» (w) are
distinct and different from zero. Let A = ||A(a, n)|| = L™

TureoREM 1. The functions G(n, —a, w) are given by

2.1) G(n, —a,w) =3 A(a, HNE"(w).

Proor. If S(z) = —a, minecy<: S(u) = 0, S(0) = n, there must be a least
k = 4 for which minocu<x S(u) < n. The following decompositions can be made.
Forn > m — a,

{8(4) = —a, min S(u) = 0, S(0) = n}
0<u<i

1 min[n,m]

=U U (Sk)=n—s, Omink S(u) = n, S(0) = n}

k=1 8=1

n{S(¢) = —a, min S(u) 2 0, S(k) = n — s};
ksu<i
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forn = m — g,

{S(i) = —a, min S(u) = 0, S(0) = n)
<u<i

= {8({) = —a, min S(u) = n, S(0) = n}

0<u<i
v U U({S(k) = n — s min S(u) = n, S(0) = n}
k=1 s=1 0su<k

n{S(7) = —a,kmiq S(u) =2 0, S(k) =n — s}.

<u<t

Take conditional probabilities and apply Lemma 1 to obtain

min[n,m] 1

g(n: —a, /L) = Z E g(O: -, k)g(n - S, —a, T — k)
8=l k=1

+ g(OI -n —a, i)a(n) [17 m — a])

where 6(n, [I, m — a]) = 1if 1 £ n < m — a, 0 otherwise. For the functions
G(n, —a, w) this implies

min[n,m]

(22) G(n, —a,w) = 2., GO, —s, w)G(n — s, —a, w)

8=1
+ G0, —n — a, w)é(n, [1, m — a]).
Forn = m, (2.2) is a set of difference equations, and for n < m, a set of boundary

conditions. Since )\f(w), cee, )\:.(w) are the distinct solutions of 1 = G(0, A\, w),
the solutions of (2.2) can be expressed in the form

(2.3) G(n, —a, w) = 2 B(a, )N (w),
i=1
where the B(a, j) are chosen to make the G(n, —a, w) consistent with the first

m equations of (2.2).
Define the following matrices:

B = |B(a,n)ll, M = |M(an)]| = N""(wl,

= |[|G(a, n)|| = ||G(n — 1, —a, w)|| 1Za, n=m
G* = L7'M = ||G*(a, n)|| = |G*(n — 1, —a, w|, 1<a nZ=m,
H = |HG k), H@G k) =G0, =G — k), w),

0 <17 —k <m, O0otherwise,

~
I

1274+ k <m, Ootherwise.

The first m equations of (2.2) may be written G = GH + K. The first m equa-
tions of (2.3) may be written G = BM.
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To finish the proof, it will be sufficient to show B = A = L. That

1 =2 A""(w)G*0, —s, w) I1<Sjsm

8=1

may be seen by observing the first row of the product LG* = M. Hence the
polynomial A™ — >, A" °G*(0, —s, w) has the same zeros as

A™ — A"g(0, A, w).
Therefore G*(0, —s, w) = G(0, —s, w), 1 = s £ m. Multiplying

1 = g(0, Aa(w), w)
by A" (w) yields

A (w) = f; A (w)"*G(0, —s, w)

= D Na(w)"°G(0, —s, w) + 2o ATV (w)G(0, —s, w)
8=1

s=n+1

m—n

= A W)GO, —(n = ), w) + 5 A W@)GO, —n — b,

for 0 < n < m. In matrix notation this is M = MH + LK. Since L has an
inverse, LT'M = L7'M + K, so G* = G*M + K. Hence G*(n, —a, w) satisfies
the first m equations of (2.2). However, these equations are a recurrence rela-
tions which define the G(n, —a, w) uniquely once the G(0, —a, w) are known.
Hence BM = G = G* = L'M. The matrix M has a Vandermonde determinant
and the )\;(w) are distinet and not equal to zero, so M has an inverse. Therefore,
B=L"=A.
TurEOREM 2. The solutions of 1 = G(0, AM(w), w) satisfy 1 = wP(A(w)).
Proor. For 7z > 0,
{8(¢) = —a, min S(w) =z 0, S(0) = 0}

<u<i

= U {X(1) =k a{SG) = —a, min S(u) = 0, 8(1) = k.
<Ku<s

k>0

Apply Lemma 1 after taking conditional probabilities to obtain
(0, —a,7) = k}g:op(k)g(k, —a,1— 1).
Forz = 1, g(0, —a, 1) = p(—a). For the G(n, —a, w), then,
G(0, —a, w) = wlp(—a) + kZZ:o p(k)G(k, —a, w)].

Multiply by Af™*(w), sum for 1 < a < m, recall that 1 = G(0, \j (w), w), and
apply (2.1) to G(k, —a, w) to obtain

U= | S p(-an ) + 5 35 5 p0N (e ') |.

=0 a=1 a=
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Since A = L7, this reduces to

= W[Z p(—a)\f “(w) + go p(k)k’}‘k(w)] = wP (A (w)).

a=1

Since j was arbitrarily chosen, the theorem is proved. From the above theorems,
we may deduce

CoROLLARY 1. The set of solutions of 1 = G(0, M(w), w) and the set of solutions
of 1 = wP(\(w)) within the unit circle are identical.

COROLLARY 2.

G(n, ~a, w) = 3 Ala, aP\i(w)

r(n, w) = 2 G(n, —a, w) = 2 ai“A(a, a)\a(w).

Setting N\ = 1in A" — A"g(0, A\, w) = ] o (A — Ae(w)), and recalling that
7(0, w) = D my G(0, —a, w) = G(0, 1, w), we see
COROLLARY 3.

(0, w) =1 — 1_1(1 — Ae(Ww)).

THEOREM 3.

F(n, 2z, w) = {2" — G(n, 2, w)}/{1 — wP(2)}

5 w) = (K@ — B 5400, 0K0uw))} /11 = wP )

a=1 a=1

Proor. Note that
{S(2) =7, mln S(u) = 0, S(0) = n}

= U{S¢¢—1) =k min S(u) =0, 8(0) =n} n{X((%) =7 — kl

k=0 <u<t—1

and

{S(2) = —a, oxélir<1. S(u) = 0, 8(0) = n}
= U{8(: —-1) =k, mln S(u) 2 0,8(0) =n} n{X(Z) = —a — k.
k=0 u<li—1

Apply Lemma 1 after taking conditional probabilities to obtain

g(n) —a, 1’) = §0f<n) k) T — l)p<—u - k)) a > 0.
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This implies
F’(n) 2, 7’) +;g(n) —a, i)z-a = Z Z f(n) j: i — l)p(k - j)zk

720 kz—m

= Z f(n7j7 T — 1)27 Z p(k —j)zk—j-
iz0 k>-—m
Since p(—17) = 0 for ¢ > m, this last sum is P(z), so
F(n,z,7) + >, gn, —a, )z = F(n, 2,1 — 1)P(2).
a=1

It follows easily that
F(n, z, w) — 2" + G(n, 2z, w) = wP(2)F(n, z, w).

This implies the first statement of the theorem. The elimination of the condition
S(0) = n yields F(z, w) = {K(2) — 2_n=0k(n)G(n, 2z, w)}/{1 — wP(2)}. It
suffices to use (2.1) and rearrange the sum to obtain the second equation of the
theorem.

3. The sequences S*(¢) and Z(¢). First T*(n, w) and T*(w) are found in terms
of 7(n, w) and 7(w). Then F*(n, 2, w), F*(2, w), and 3C(2, w) are expressed in
terms of T*(n, w), T*(w), F(n, 2, w), and F(z, w). Finally H*(z) is expressed
in terms of G(0, 2, 1) and P(z).

THEOREM 4.

T*(ny w) = T(”) w)/(l - T(O) w))) T*<w) = T(w)/(l - T(Oy w))

Proor. Following methods introduced by Feller [3] in his discussion of recur-
rent events, we observe that

{S*(t) < 0, 8*0) =n} = U {S*{) <0, S*(0) = n}
0<i<t
n {S*(7) < 0, min S*(j) = 0, S*(¢) < 0}.
i<i<t
It may be seen from the definitions of S(¢), S*(¢) that
Pr{S*(¢t) < 0, min S*(j) = 0|S*(4) < 0}
1<j<t
=Pr{S(t —1) <0, min S@) = 0/S(0) = 0}.
0<i<t—i
Hence, if we take conditional probabilities and introduce generating functions
we find
T*(n, w) = T*(n, w)7(0, w) + 7(n, w).

The first equation of the theorem follows from this, and the second follows by
eliminating the condition S(0) = n.
THEOREM 5.

F*(n, z, w) = F(n, 2z, w) + T*(n, w)[F(0, 2z, w) — 1]
F*(z, w) = F(z, w) + T*(w)[F(0, 2, w) — 1]
3(z, w) = F(z, w) + T*(w)F(0, 2, w).
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Proor. Note that
(S*(t) = 1, 8*(0) = n} = {S*(¢) = 4, min S*(j) = 0, $*(0) = n}
<<t
u U {S*() =4, min S*(j) = 0, S*(k) < 0} n{S*(k) <O, S*(0) = n}.
0<k<t k<j<t

Since

Pr {S*(t) = 1, mi? S*(j) = 0|S*(k) £ 0}
k<j<t
=Pr{S@) =1, Iilin S@j) = 0|S(k) = 0} = f(0,4,t — k),
k<j<t

taking conditional probabilities yields

Pr {S*(t) = i|S*(0) = )
= f(n 1) + 50,5, £ = B)Pr{S*(R) < 0}S*(0) = nl.

For the generating functions this implies
F*(n, 2, w) = F(n, z, w) + T*(n, w){F(0, 2z, w) — 1}.

Elimination of the condition S*(0) = = yields the second equation of the
theorem.
Since Z(¢) = max [S*(¢), 0], {S*(¢t) = ¢} = {Z(T) = 4} for + > 0 and

{Z(t) = 0} = {S*(t) = 0} u {S*(t) <O}

For the generating functions, this implies 3¢(z, w) = F*(z, w) + T*(w). If the
expression for §*(z, w) is substituted here, the third statement of the theorem is
obtained.

TaeoreM 6. If P'(1) < 0, +/(0,1) < =, and lim.,« E{z""} = H*(z), then
forreal zand w, 0 < z, w < 1,

1 1-g(0,21)
70,1) 1— Pk
Proor. If P/(1) < 0, an application of the law of large numbers shows

limPr{S(t) =2 0} =0 andso limr(w) = 1.

t-»00 w->1

H*(z) = liITn‘ (1 — w)de(z, w) =

Since

2
Pr{S(¢) = 0, min 8(j) = 0} + 2, Pr{S(k) <0, min 8(j) 2 0} = 1,
<<t 0<j<k

k=1
an elementary computation with generating functions shows that
(1 — w)F(1, w) + r(w) = 1.
Hence, for zand wreal, 0 <z, w < 1,

lim (1 — w)F(z, w) < lim (1 — w)3(1, w) = lim1 — r(w) = 0.
wtl wtl wtl
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However, w = 1 is a simple pole of T*(w) = +(w)/(1 — (0, w)). Hence,
using the third statement of Theorem 6 together with Theorem 3, we have

. ~ . _ r(w) 1 —g(0,2 w)
lim (1 — w)a(z, w) = lim (1 — w) —g— ——"75

1 1-g(0,21)
T 70,1) 1 — P(e)

For an arbitrary e > 0, take N (€) so large that fort > N (e),
|E{z"") — H*(2)| < e

Then for z and w real, and z < 1

1iITI§l(1 — w)X(z w) — H*(2)| = li?} (1 = w) f:; [B{z"°) — H*(2)lw'| <

N(e) )
lim |[(1 — w) X |E{z”Y) + H*(2)| + lim (1 — w)-e- 2, w' =
wll t=0 wtl

t=N (¢€)

since E{z””} and H*(z) are bounded for |z| < 1. Since e was arbitrary, the

theorem is proved.
The author is indebted to I. S. Reed and W. L. Root of Lincoln Laboratory
for many helpful discussions.
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