FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK

By JOHN R. KINNEY

Lincoln Laboratory, Massachusetts Institute of Technology

Introduction. Let X(t), $t = 1, 2, \dots$, be independent integer-valued random variables such that $\Pr\{X(t) = i\} = p(i)$, with p(-m) > 0, p(i) = 0 for i < -m, and let $P(z) = E\{z^{X(t)}\}$. The solutions of the functional equation,

$$1 = wP(\lambda(w)),$$

have played a fundamental role in the work of several authors.

R. Otter [5] used this solution for the case m=1, in his study of multiplicative processes. T. E. Harris [4] used it in the examination of first passage times in random walk problems. L. Takács [7] and B. W. Conolly [2] have used the solutions to describe the distribution of the number of persons served during the busy period of a queue.

In the first section of this paper we introduce notation and state some preliminary lemmas. The second section deals with the sums

$$S(t) = S(0) + \sum_{i=1}^{t} X(i),$$

where S(0) is a random variable taking on nonnegative integer values and has $E\{z^{S(0)}\}=K(z)=\sum_{j\geq 0}k(j)z^j$. The third section deals with the sequence $S^*(t)$ defined inductively by $S^*(0)=S(0)$, $S^*(t)=\max{[S^*(t-1),0]}+X(t)$, and the sequence $Z(t)=\max{[S^*(t),0]}$. The generating functions of the distributions $\{S(t),\min_{0\leq i\leq t}S(i)\geq 0\}$, $S^*(t)$, and Z(t) are expressed in terms of the solutions of $1=wP(\lambda(w))$. The distribution of $\{S(t),\min_{0\leq j\leq t}S(j)\geq 0\}$ corresponds to the distribution of a discrete time queue during busy time, and that of Z(t) to the distribution of the transient queue.

The formulae we obtain could be deduced from those of F. Spitzer [6], but we give here a different approach.

1. Notation and Preliminary Lemmas. The following notation will be used.

For $i \ge 0$, a > 0, and $n \ge 0$, let

$$\begin{split} f(n,i,j) &= \Pr \left\{ S(j) = i, \min_{0 < k < j} S(k) \geqq 0 \big| S(0) = n \right\}, \\ F(n,z,j) &= \sum_{i \geqq 0} f(n,i,j) z^i, \qquad \mathfrak{F}(n,z,w) = \sum_{j \geqq 0} F(n,z,j) w^j, \\ \mathfrak{F}(z,w) &= \sum_{i \geqq 0, j \geqq 0} \Pr \left\{ S(j) = i, \min_{0 < k < j} S(k) \geqq 0 \right\} z^i w^j, \\ g(n,-a,w) &= \Pr \left\{ S(j) = -a, \min_{0 < k < j} S(k) \geqq 0 \big| S(0) = n \right\}, \end{split}$$

Received January 21, 1960; revised September 12, 1960.

¹ Operated with support from the U. S. Army, Navy, and Air Force.

$$G(n, -a, w) = \sum_{j>0} g(n, -a, j)w^{j}, \qquad g(n, z, w) = \sum_{a=1}^{m} G(n, -a, w)z^{-a},$$

$$\tau(n, w) = \sum_{j>0} \Pr \{S(j) < 0, \min_{0 < k < j} S(k) \ge 0 | S(0) = n \}w^{j},$$

$$\tau(w) = \sum_{j>0} \Pr \{S(j) < 0, \min_{0 < k < j} S(k) \ge 0 \}w^{j},$$

$$\mathfrak{F}^{*}(n, z, w) = \sum_{i \ge 0, j \ge 0} \Pr \{S^{*}(j) = i | S^{*}(0) = n \}z^{i}w^{j},$$

$$\mathfrak{F}^{*}(z, w) = \sum_{i \ge 0, j \ge 0} \Pr \{S^{*}(j) = i \}z^{i}w^{j},$$

$$T^{*}(n, w) = \sum_{j \ge 0} \Pr \{S^{*}(j) < 0 | S^{*}(0) = n \}w^{j},$$

$$T^{*}(w) = \sum_{j \ge 0} \Pr \{S^{*}(j) < 0 | S^{*}(0) = n \}w^{j},$$

$$\mathfrak{F}^{*}(z, w) = \sum_{j \ge 0} \Pr \{S^{*}(j) < 0 | S^{*}(0) = n \}w^{j},$$

$$\mathfrak{F}^{*}(w) = \sum_{j \ge 0} \Pr \{S^{*}(j) < 0 | S^{*}(0) = n \}w^{j},$$

and

$$H^*(z) = \lim_{t \to \infty} E\{z^{Z(t)}\}\$$

when this limit exists.

In the computations in the subsequent sections we will need LEMMA 1.

$$\begin{split} \Pr \left\{ S(t+i) \, = \, k \, - \, a, \min_{t < u < t + i} \, S(u) \, \geqq \, k | S(t) \, = \, n \, + \, k \right\} \\ &= \, \Pr \left\{ S(i) \, = \, -a, \, \min_{0 < u < i} \, S(u) \, \geqq \, 0 | S(0) \, = \, n \right\} \, = \, g(n, \, -a, \, i) \\ \Pr \left\{ S(t+i) \, = \, k \, + \, j, \, \min_{t < u < t + i} \, S(u) \, \geqq \, 0 | S(t) \, = \, n \right\} \\ &= \, \Pr \left\{ S(i) \, = \, j, \, \min_{0 < u < i} \, S(u) \, \trianglerighteq \, 0 | S(0) \, = \, n \right\} \, = \, f(n, j, i). \end{split}$$

The same expressions hold when we replace S(t) by $S^*(t)$.

PROOF. Since the X(t) are all independent and have the same distributions, the set of random variables $X(t+1), \dots, X(t+i)$ has the same joint probability distribution as $X(1), \dots, X(i)$. The equations are simple consequences of this. The second statement is a consequence of the fact that

$$\{S^*(i+t)=m, \min_{0\leq u\leq i} S^*(u+t)\geq 0, S^*(t)=n\}$$
 and
$$\{S(i+t)=m, \min_{0\leq u\leq i} S(u+t)\geq 0, S(t)=n\}$$

impose the same restrictions on $X(t+1), \dots, X(t+i)$, for either positive or negative m.

Lemma 2. For |w| < 1, the functional equation $1 = wP(\lambda(w))$ has m solutions, $\lambda_1(w), \dots, \lambda_m(w)$, within the unit circle.

PROOF. For $|\lambda| = 1$, $|\lambda^m| = 1$ and $|w\lambda^m P(\lambda)| \leq |w\sum_{i \geq -m} p(i) = |w|$. Hence we may use Rouché's theorem [1] to see that $\lambda^m - w\lambda^m P(\lambda)$ has m zeros within the unit circle for $0 < |w| \leq 1$. It may be seen by inspection that $\lambda = 0$ is not one of these, so the same is true of $1 - wP(\lambda)$.

Lemma 3. For small non-zero w, the functional equation $1 = \mathcal{G}(0, \lambda(w), w)$ has m distinct solutions, $\lambda_1^*(w), \dots, \lambda_m^*(w)$, all different from zero. Proof. In $g(\lambda, w) = \lambda^m - \lambda^m G(0, \lambda, w)$ we let $w = s^m, \lambda = s\zeta$. We obtain

PROOF. In $g(\lambda, w) = \lambda^m - \lambda^m G(0, \lambda, w)$ we let $w = s^m$, $\lambda = s\zeta$. We obtain $g(\lambda, w) = s^m h(\zeta, s)$. Since the G(0, -a, w) have no constant terms in their power series expansions, it is easy to see that

$$\lim_{s\to 0} h(\zeta, s) = h(\zeta, 0) = \zeta^m - g(0, -m, 1) = \zeta^m - p(-m),$$

and $\lim_{s\to 0} h'(\zeta, s) = h'(\zeta, 0)$, uniformly in $|\zeta| \le 1$. The zeros of $h(\zeta, 0)$ are $r_j = [p(-m)]^{1/m} e^{2\pi i j/m}, j = 1, \dots, m$. Let c_j be the circle $|r_j - \zeta| = \epsilon$,

$$\epsilon < \min_{j \neq k} [|r_j|, |r_j - r_k|/2, 1 - |r_j|].$$

Since the limits are uniform in $|\zeta| \leq 1$,

$$\lim_{s\to 0}\int_{c_j}\frac{h'(\zeta,s)}{h(\zeta,s)}\,d\zeta=\int_{c_j}\frac{h'(\zeta,0)}{h(\zeta,0)}\,d\zeta=2\pi i \qquad j=1,\cdots,m.$$

Hence, for s sufficiently small, $h(\zeta, s)$ has one of its zeros in each of the c_i , which were chosen so as not to overlap, to avoid zero, and to remain with $|\zeta| < 1$. Since $h(\zeta, s)$ is a polynomial of degree m, this proves the lemma.

2. The Sequence S(t). In this section the functions G(n, -a, w) are expressed in terms of the solutions of $1 = \mathcal{G}(0, \lambda(w), w)$. These solutions are then shown to satisfy $1 = wP(\lambda(w))$. Finally $\mathfrak{F}(n, z, w)$ is expressed in terms of the P(z) and G(n, -a, w).

Define the matrix $L = ||L(a, n)|| = ||\lambda_a^{*-n}(w)|| \ 1 \le a, n \le m$. This matrix has an inverse, since it has a Vandermonde determinant and the $\lambda_a^*(w)$ are distinct and different from zero. Let $A = ||A(a, n)|| = L^{-1}$.

THEOREM 1. The functions G(n, -a, w) are given by

(2.1)
$$G(n, -a, w) = \sum_{i=1}^{m} A(a, j) \lambda_{j}^{*n}(w).$$

PROOF. If S(i) = -a, $\min_{0 < u < t} S(u) \ge 0$, S(0) = n, there must be a least $k \le i$ for which $\min_{0 < u < k} S(u) < n$. The following decompositions can be made. For n > m - a,

for
$$n \leq m - a$$
,

$$\{S(i) = -a, \min_{0 < u < i} S(u) \ge 0, S(0) = n \}$$

$$= \{S(i) = -a, \min_{0 \le u < i} S(u) \ge n, S(0) = n \}$$

$$\cup \bigcup_{k=1}^{i} \bigcup_{s=1}^{n} \{S(k) = n - s, \min_{0 \le u < k} S(u) \ge n, S(0) = n \}$$

$$\cap \{S(i) = -a, \min_{k \le u < i} S(u) \ge 0, S(k) = n - s \}.$$

Take conditional probabilities and apply Lemma 1 to obtain

$$g(n, -a, i) = \sum_{s=1}^{\min[n,m]} \sum_{k=1}^{i} g(0, -s, k)g(n - s, -a, i - k) + g(0, -n - a, i)\delta(n, [1, m - a])$$

where $\delta(n, [1, m-a]) = 1$ if $1 \le n \le m-a$, 0 otherwise. For the functions G(n, -a, w) this implies

(2.2)
$$G(n, -a, w) = \sum_{s=1}^{\min[n,m]} G(0, -s, w)G(n - s, -a, w) + G(0, -n - a, w)\delta(n, [1, m - a]).$$

For $n \ge m$, (2.2) is a set of difference equations, and for n < m, a set of boundary conditions. Since $\lambda_1^*(w)$, \cdots , $\lambda_m^*(w)$ are the distinct solutions of $1 = g(0, \lambda, w)$, the solutions of (2.2) can be expressed in the form

(2.3)
$$G(n, -a, w) = \sum_{j=1}^{m} B(a, j) \lambda_{j}^{*n}(w),$$

where the B(a, j) are chosen to make the G(n, -a, w) consistent with the first m equations of (2.2).

Define the following matrices:

$$B = \|B(a, n)\|, \qquad M = \|M(a, n)\| = \|\lambda_a^{*^{n-1}}(w)\|,$$

$$G = \|G(a, n)\| = \|G(n - 1, -a, w)\| \qquad 1 \le a, \quad n \le m$$

$$G^* = L^{-1}M = \|G^*(a, n)\| = \|G^*(n - 1, -a, w)\|, \qquad 1 \le a, \quad n \le m,$$

$$H = \|H(i, k)\|, \qquad H(i, k) = G(0, -(i - k), w),$$

$$0 < i - k < m, \quad 0 \text{ otherwise,}$$

$$K = \|K(i,k)\|, \quad K(i,k) = G(0,-i-k,w),$$

$$1 \leq i + k < m$$
, 0 otherwise.

The first m equations of (2.2) may be written G = GH + K. The first m equations of (2.3) may be written G = BM.

To finish the proof, it will be sufficient to show $B = A = L^{-1}$. That

$$1 = \sum_{i=1}^{n} \lambda_{j}^{*-s}(w) G^{*}(0, -s, w) \qquad 1 \le j \le m$$

may be seen by observing the first row of the product $LG^* = M$. Hence the polynomial $\lambda^m - \sum_{s=1}^m \lambda^{m-s} G^*(0, -s, w)$ has the same zeros as

$$\lambda^m - \lambda^m g(0, \lambda, w).$$

Therefore $G^*(0, -s, w) \equiv G(0, -s, w), 1 \le s \le m$. Multiplying

$$1 = G(0, \lambda_{\alpha}^{*}(w), w)$$

by $\lambda_{\alpha}^{*^n}(w)$ yields

$$\begin{split} \lambda_{\alpha}^{*^{n}}(w) &= \sum_{s=1}^{m} \lambda_{\alpha}^{*}(w)^{n-s} G(0, \, -s, \, w) \\ &= \sum_{s=1}^{n} \lambda_{\alpha}^{*}(w)^{n-s} G(0, \, -s, \, w) \, + \, \sum_{s=n+1}^{m} \lambda_{\alpha}^{*^{-(s-n)}}(w) G(0, \, -s, \, w) \\ &= \sum_{b=0}^{n-1} \lambda_{\alpha}^{*^{b}}(w) G(0, \, -(n-b), \, w) \, + \, \sum_{b=1}^{m-n} \lambda_{\alpha}^{*^{-b}}(w) G(0, \, -n-b, \, w) \end{split}$$

for $0 \le n < m$. In matrix notation this is M = MH + LK. Since L has an inverse, $L^{-1}M = L^{-1}M + K$, so $G^* = G^*M + K$. Hence $G^*(n, -a, w)$ satisfies the first m equations of (2.2). However, these equations are a recurrence relations which define the G(n, -a, w) uniquely once the G(0, -a, w) are known. Hence $BM = G = G^* = L^{-1}M$. The matrix M has a Vandermonde determinant and the $\lambda_j^*(w)$ are distinct and not equal to zero, so M has an inverse. Therefore, $B = L^{-1} = A$.

THEOREM 2. The solutions of $1 = g(0, \lambda(w), w)$ satisfy $1 = wP(\lambda(w))$. Proof. For i > 0,

$$\begin{split} \{S(i) \, = \, -a, \, \min_{0 < u < i} \, S(u) \, & \geq \, 0, \, S(0) \, = \, 0 \} \\ & = \, \bigcup_{k \geq 0} \, \{X(1) \, = \, k \} \, \ln \, \{S(i) \, = \, -a, \, \min_{1 \leq u < i} \, S(u) \, \geq \, 0, \, S(1) \, = \, k \}. \end{split}$$

Apply Lemma 1 after taking conditional probabilities to obtain

$$g(0, -a, i) = \sum_{k \ge 0} p(k)g(k, -a, i - 1).$$

For
$$i=1, g(0,-a,1)=p(-a).$$
 For the $G(n,-a,w),$ then,
$$G(0,-a,w)=w[p(-a)+\sum_{k\geq 0}p(k)G(k,-a,w)].$$

Multiply by $\lambda_i^{*-a}(w)$, sum for $1 \le a \le m$, recall that $1 = \mathfrak{g}(0, \lambda_i^*(w), w)$, and apply (2.1) to G(k, -a, w) to obtain

$$1 = w \left[\sum_{a=1}^{m} p(-a) \lambda_{j}^{*-a}(w) + \sum_{k=0}^{\infty} \sum_{a=1}^{m} \sum_{\alpha=1}^{m} p(k) \lambda_{j}^{*-a}(w) A(a, \alpha) \lambda_{\alpha}^{*k}(w) \right].$$

Since $A = L^{-1}$, this reduces to

$$1 = w \left[\sum_{a=1}^{m} p(-a) \lambda_{j}^{*^{-a}}(w) + \sum_{k=0}^{\infty} p(k) \lambda_{j}^{*^{k}}(w) \right] = w P(\lambda_{j}^{*}(w)).$$

Since j was arbitrarily chosen, the theorem is proved. From the above theorems, we may deduce

COROLLARY 1. The set of solutions of $1 = \mathcal{G}(0, \lambda(w), w)$ and the set of solutions of $1 = wP(\lambda(w))$ within the unit circle are identical.

COROLLARY 2.

$$G(n, -a, w) = \sum_{\alpha=1}^{m} A(a, \alpha) \lambda_{\alpha}^{n}(w)$$

$$\tau(n, w) = \sum_{\alpha=1}^{m} G(n, -a, w) = \sum_{\alpha=1}^{m} \sum_{\alpha=1}^{m} A(a, \alpha) \lambda_{\alpha}^{n}(w).$$

Setting $\lambda = 1$ in $\lambda^n - \lambda^n \Im(0, \lambda, w) \equiv \prod_{\alpha=1}^m (\lambda - \lambda_{\alpha}(w))$, and recalling that $\tau(0, w) = \sum_{\alpha=1}^m \Im(0, -a, w) = \Im(0, 1, w)$, we see Corollary 3.

$$\tau(0, w) = 1 - \prod_{\alpha=1}^{n} (1 - \lambda_{\alpha}(w)).$$

THEOREM 3.

$$\mathfrak{F}(n, z, w) = \{z^{n} - \mathfrak{G}(n, z, w)\}/\{1 - wP(z)\}$$

$$\mathfrak{F}(z, w) = \left\{K(z) - \sum_{a=1}^{m} \sum_{\alpha=1}^{m} z^{-a} A(a, \alpha) K(\lambda_{\alpha}(w))\right\} / [1 - wP(z)].$$

PROOF. Note that

$$\begin{split} \{S(i) &= j, \min_{0 < u < i} S(u) \ge 0, S(0) = n \} \\ &= \bigcup_{k = 0} \{S(i - 1) = k, \min_{0 < u < i - 1} S(u) \ge 0, S(0) = n \} \cap \{X(i) = j - k \} \end{split}$$

and

$$\begin{aligned} \{S(i) &= -a, \min_{0 < u < i} S(u) \ge 0, S(0) = n \} \\ &= \bigcup_{k = 0} \{S(i - 1) = k, \min_{1 < u < i - 1} S(u) \ge 0, S(0) = n \} \cap \{X(i) = -a - k \}. \end{aligned}$$

Apply Lemma 1 after taking conditional probabilities to obtain

$$\begin{split} f(n,j,i) &= \sum_{k \geq 0} f(n,k,i-1) p(j-k), j > 0; \\ g(n,-a,i) &= \sum_{k \geq 0} f(n,k,i-1) p(-u-k), a > 0. \end{split}$$

This implies

$$\begin{split} F(n,z,i) \; + \; \sum_{a=1}^m g(n,\,-a,\,i) z^{-a} \; &= \; \sum_{j \, \geq \, 0} \; \sum_{k \, \geq \, -m} f(n,j,\,i\,-\,1) p(k\,-\,j) z^k \\ &= \; \sum_{j \, \geq \, 0} f(n,j,\,i\,-\,1) z^j \sum_{k \, \geq \, -m} p(k\,-\,j) z^{k-j}. \end{split}$$

Since p(-i) = 0 for i > m, this last sum is P(z), so

$$F(n, z, i) + \sum_{a=1}^{m} g(n, -a, i)z^{-a} = F(n, z, i - 1)P(z).$$

It follows easily that

$$\mathfrak{F}(n,z,w) - z^n + \mathfrak{G}(n,z,w) = wP(z)\mathfrak{F}(n,z,w).$$

This implies the first statement of the theorem. The elimination of the condition S(0) = n yields $\mathfrak{F}(z, w) = \{K(z) - \sum_{n=0}^{\infty} k(n) \mathfrak{g}(n, z, w)\}/\{1 - wP(z)\}$. It suffices to use (2.1) and rearrange the sum to obtain the second equation of the theorem.

3. The sequences $S^*(t)$ and Z(t). First $T^*(n, w)$ and $T^*(w)$ are found in terms of $\tau(n, w)$ and $\tau(w)$. Then $\mathfrak{F}^*(n, z, w)$, $\mathfrak{F}^*(z, w)$, and $\mathfrak{F}(z, w)$ are expressed in terms of $T^*(n, w)$, $T^*(w)$, $\mathfrak{F}(n, z, w)$, and $\mathfrak{F}(z, w)$. Finally $H^*(z)$ is expressed in terms of $\mathfrak{F}(0, z, 1)$ and $\mathfrak{F}(z)$.

THEOREM 4.

$$T^*(n, w) = \tau(n, w)/(1 - \tau(0, w)), \quad T^*(w) = \tau(w)/(1 - \tau(0, w)).$$

Proof. Following methods introduced by Feller [3] in his discussion of recurrent events, we observe that

$$\{S^*(t) < 0, \, S^*(0) = n\} = \bigcup_{0 < i \le t} \{S^*(i) < 0, \, S^*(0) = n\}$$

$$\cap \{S^*(i) < 0, \, \min_{i < i < t} \, S^*(j) \ge 0, \, S^*(t) < 0\}.$$

It may be seen from the definitions of S(t), $S^*(t)$ that

$$\begin{split} \Pr\left\{S^*(t) < 0, & \min_{i < j < t} S^*(j) \geqq 0 | S^*(i) < 0\right\} \\ &= \Pr\left\{S(t-i) < 0, \min_{0 < j < t-i} S(j) \geqq 0 | S(0) = 0\right\}. \end{split}$$

Hence, if we take conditional probabilities and introduce generating functions we find

$$T^*(n, w) = T^*(n, w)\tau(0, w) + \tau(n, w).$$

The first equation of the theorem follows from this, and the second follows by eliminating the condition S(0) = n.

THEOREM 5.

$$\mathfrak{F}^*(n, z, w) = \mathfrak{F}(n, z, w) + T^*(n, w)[\mathfrak{F}(0, z, w) - 1]$$

$$\mathfrak{F}^*(z, w) = \mathfrak{F}(z, w) + T^*(w)[\mathfrak{F}(0, z, w) - 1]$$

$$\mathfrak{F}(z, w) = \mathfrak{F}(z, w) + T^*(w)\mathfrak{F}(0, z, w).$$

Proof. Note that

$$\{S^*(t) = i, \, S^*(0) = n\} = \{S^*(t) = i, \, \min_{0 < j < t} \, S^*(j) \ge 0, \, S^*(0) = n\}$$

$$\cup \bigcup_{0 < k < t} \{S^*(t) = i, \, \min_{k < j < t} \, S^*(j) \ge 0, \, S^*(k) < 0\} \, \ln \{S^*(k) < 0, \, S^*(0) = n\}.$$

Since

$$\begin{split} \Pr \left\{ S^*(t) \ = \ i, \ \min_{k < j < t} \ S^*(j) \ \geqq \ 0 \big| S^*(k) \ \leqq \ 0 \right\} \\ &= \Pr \left\{ S(t) \ = \ i, \ \min_{k < j < t} \ S(j) \ \geqq \ 0 \big| S(k) \ = \ 0 \right\} \ = f(0, \, i, \, t - \, k), \end{split}$$

taking conditional probabilities yields

$$\Pr \{S^*(t) = i | S^*(0) = n \}$$

$$= f(n, i, t) + \sum_{i=0}^{t-1} f(0, i, t - k) \Pr \{S^*(k) < 0 | S^*(0) = n \}.$$

For the generating functions this implies

$$\mathfrak{F}^*(n, z, w) = \mathfrak{F}(n, z, w) + T^*(n, w) \{\mathfrak{F}(0, z, w) - 1\}.$$

Elimination of the condition $S^*(0) = n$ yields the second equation of the theorem.

Since
$$Z(t) = \max [S^*(t), 0], \{S^*(t) = i\} = \{Z(T) = i\} \text{ for } i > 0 \text{ and } \{Z(t) = 0\} = \{S^*(t) = 0\} \cup \{S^*(t) < 0\}.$$

For the generating functions, this implies $\mathfrak{K}(z, w) = \mathfrak{F}^*(z, w) + T^*(w)$. If the expression for $\mathfrak{F}^*(z, w)$ is substituted here, the third statement of the theorem is obtained.

THEOREM 6. If P'(1) < 0, $\tau'(0, 1) < \infty$, and $\lim_{t\to\infty} E\{z^{Z(t)}\} = H^*(z)$, then for real z and w, 0 < z, w < 1,

$$H^*(z) = \lim_{w \uparrow 1} (1 - w) \Re(z, w) = \frac{1}{\tau'(0, 1)} \frac{1 - \Im(0, z, 1)}{1 - P(z)}.$$

Proof. If P'(1) < 0, an application of the law of large numbers shows

$$\lim_{t\to\infty} \Pr\left\{S(t) \ge 0\right\} = 0 \quad \text{and so} \quad \lim_{w\to 1} \tau(w) = 1.$$

Since

$$\Pr\left\{S(t) \geq 0, \min_{0 < j < t} S(j) \geq 0\right\} + \sum_{k=1}^{t} \Pr\left\{S(k) < 0, \min_{0 < j < k} S(j) \geq 0\right\} = 1,$$

an elementary computation with generating functions shows that

$$(1-w)\mathfrak{F}(1,w) + \tau(w) = 1.$$

Hence, for z and w real, 0 < z, w < 1,

$$\lim_{w \uparrow 1} (1 - w) \mathfrak{F}(z, w) \leq \lim_{w \uparrow 1} (1 - w) \mathfrak{F}(1, w) = \lim_{w \uparrow 1} 1 - \tau(w) = 0.$$

However, w = 1 is a simple pole of $T^*(w) = \tau(w)/(1 - \tau(0, w))$. Hence, using the third statement of Theorem 6 together with Theorem 3, we have

$$\begin{split} \lim_{w \uparrow 1} \left(1 \, - \, w \right) \mathfrak{K}(z, \, w) \, &= \, \lim_{w \uparrow 1} \left(1 \, - \, w \right) \frac{\tau(w)}{1 \, - \, \tau(0, \, w)} \, \frac{1 \, - \, \mathcal{G}(0, \, z, \, w)}{1 \, - \, w P(z)} \\ &= \frac{1}{\tau'(0, \, 1)} \, \frac{1 \, - \, \mathcal{G}(0, \, z, \, 1)}{1 \, - \, P(z)} \, . \end{split}$$

For an arbitrary $\epsilon > 0$, take $N(\epsilon)$ so large that for $t > N(\epsilon)$,

$$|E\{z^{Z(t)}\} - H^*(z)| < \epsilon.$$

Then for z and w real, and z < 1

$$\lim_{w \,\uparrow \,1} |(1\,-\,w)\,\mathfrak{IC}(z,\,w)\,-\,H^*(z)| \,=\, \lim_{w \,\uparrow \,1} |(1\,-\,w)\,\sum_{t=1}^\infty \,[E\{z^{Z(t)}\}\,-\,H^*(z)]w^t| \,\leqq\,$$

$$\lim_{w \uparrow 1} |(1-w) \sum_{t=0}^{N(\epsilon)} |E\{z^{Z(t)}\}| + H^*(z)| + \lim_{w \uparrow 1} (1-w) \cdot \epsilon \cdot \sum_{t=N(\epsilon)}^{\infty} w^t = \epsilon,$$

since $E\{z^{\mathbf{z}(t)}\}$ and $H^*(z)$ are bounded for |z|<1. Since ϵ was arbitrary, the theorem is proved.

The author is indebted to I. S. Reed and W. L. Root of Lincoln Laboratory for many helpful discussions.

REFERENCES

- [1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1953.
- [2] B. W. Conolly, "The busy period in relation to the single server queuing system with general independent arrivals and Erlangian service time," J. Roy. Stat. Soc., Ser. B, Vol. 22 (1960), pp. 89-96.
- [3] W. Feller, An Introduction to Probability Theory and its Application, 2nd ed., John Wiley and Sons, New York, 1957.
- [4] T. E. Harris, "First passage and recurrence distributions," Trans. Amer. Math. Soc., Vol. 73 (1952), pp. 471-486.
- [5] R. Otter," The multiplicative process," Ann. Math. Stat., Vol. 20 (1949), pp. 206-224.
- [6] F. SPITZER, "A combinatorical lemma and its application to probability theory, Trans. Amer. Math. Soc., Vol. 82 (1956), pp. 323-339.
- [7] L. TAKÁCS, "Investigation of waiting time problems by reduction to Markov processes," Acta. Math. Acad. Sci. Hung., Vol. 6 (1955), pp. 101-125.