FIRST EMPTINESS OF TWO DAMS IN PARALLEL'
By J. Gant

Australian National University

Summary. This paper considers the probabilities of first emptiness of two
dams in parallel, both subject to a steady release at constant unit rate, and fed
by a discrete additive input process such that unit inputs are always directed
to the dam with lesser content. The problem is equivalent to that of the single
dam fed by two ordered inputs, and a recurrence relation for the probabilities
of first emptiness in this process is obtained. Equations for the generating func-
tions of the probabilities are derived, and a formal solution to these is given.

A more convenient method of evaluating probabilities of first emptiness is
found by reducing the process to an associated occupancy problem; it is shown
how the probabilities of first emptiness for Poisson inputs are then obtained
by a rapid computational procedure.

The paper concludes with a general formulation of the problem when the
times of arrival for two ordered non-negative inputs of random size form a
Poisson process.

1. Introduction. Probability distributions of times of first emptiness in a
single dam (or times when the server is free in an equivalent queue) have been
considered in a variety of cases by Takécs [1], Kendall [2], Gani [3], and Gani
and Prabhu [4] among others. Recently, Haight [5] has studied the stationary
probability distribution p,, of the number of customers z, y, waiting in two
queues in parallel, such that new arrivals join the shorter queue, or a particular
queue if the queues are equally long.

The problem of first emptiness in the present paper is based on a model related
to Haight’s when the dam inputs (or equivalent queue service times) are of
constant size. Our concern, however, is with dam contents (or equivalent queue
waiting times) rather than with numbers of customers; some time-dependent
results are obtained which do not arise directly from Haight’s considerations.

Let D;, D, be two dams at initial levels z;, 2, respectively (22 > 21 > 0),
whose contents Z;(t) (¢ = 1, 2) at times 0 < ¢ < o are each subject to a steady
release at constant unit rate until emptiness occurs, when the release ceases.
There is a discrete non-negative input X(¢) = 0, 1, 2, - - - , during the interval
of time (0, ), unit inputs arriving one at a time and being fed into D, or D, ac-
cording to a rule specified below. The process X () is additive, with a probability
distribution

(1.1) fG, r) = Pr{X(7r) = j} (3=0,1,2,---)
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220 J. GANI

such that its probability generating function (p.g.f.) is of the form
(1.2) v(o, ) = 207G, 1) = (w(6, DY,

where 0 < 9 < 1 for simplicity. When the time parameter ¢ ranges continuously
over [0, «), the only distribution f(j, 7) which corresponds to a non-negative
integer valued stochastic process X (t) is the Poisson; however, for ¢ restricted
to the integers 0, 1, 2, --- other distributions f(j, r) exist. All formulae in
Sections 1, 2 apply to both the cases of discrete and continuous times, and it is
for this reason that the general notation (7, r) is used in what follows.

The input rule is the following: X (t) is first fed into D; , which has the lesser
initial content 2z , until the time (¢ = ¢ say) when Z;(t) = Z.(t); the next
input is then diverted into D, and thereafter unit inputs are fed alternately
into .D1 and Dz .

We are concerned with the time T of first emptiness of D;and D;,(z; = T <),
at which Min {Z,(T), Z.(T)} = 0 for the first time. If for simplicity, z; — 2z is
assumed non-integral’, the content of D; (¢ = 1, 2) until time T may be written
as

(1.3) Z;t) =+ Xi(t) -t (0=t=
where X,(t) 4+ X:(¢) = X(¢), and these inputs are given in 0

1 =1,2, by
o _ JouX (@) for X(t) S [ea — 2] + 1,
(14) Xt} = {al,([zz — 4l + 1) + X — [ — &l — 8] otherwise,
with &; = 1if ¢ = 1, or 0 if 2 = 2, and [y] indicates the integral part of y.
The processes (1.3) are illustrated in Figure 1; for all values of the time
bh<t=T

(where 8 is the first instant at which X (¢) = [22 — 2]), the dam contents differ
by less than one unit, the differences being alternately

T;i=1,2),
<t < Tfor

Contents
PAD)

L

Time ¢t ——

Fic. 1

a={Zy(to+0) — Zi(tr + 0)} < 1

2 If z — 2 is integral, the only difference is that when both dams reach the same level
a rule must be specified directing the next input into one particular dam.
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and 8 = 1 — a < 1. The time of first emptiness
T=z,a+1-,a+[n— a2l
a+z—al+En+Det+@Ens (n=12---),

is a point at which the minimal path Min {Z;(¢), Z.(t)} may touch the axis
z=0.

Probabilities of first emptiness at the times T' = 2, , 21+ 1, -+« , 2 + [22 — 2],
are precisely those for a single dam (cf., Kendall [2], Gani [3]); they are given
generally by

(1.6) g(zr, T) = (&/Tf(T — 21, T),
or, when the input distribution is Poisson, by

@e—xr ()\T)T_"
T (T - 21)1 ’

There is thus no need to reconsider the problem for ¢ < #, ; we may, without
loss of generality, start with initial contents ze > z; > 0 such that

(1.5)

(1.7) g(z, T) =

n—an=a<l,
the times of first emptiness after n inputs then being
(1.8) T=a+@n+Det+En8 n=012---).

We see readily from the minimal path in Figure 1 that the problem is equiva-
lent to that of the single dam with ordered inputs0 < &, 8 < 1 (a + 8 = 1);
we shall discuss it more simply in this form.

2. First emptiness of the dam with ordered inputs. Consider a dam with
initial content z, fed by ordered inputs a, 8 > 0 (a + 8 = 1) such as that shown

cELL l n In-ll Ia lzl 1 ]o]
| T=z24[}n+1)]a+[4n] 8
Content ' \[\IB\I\
Z(t) a a
oo ,
Time t —
Fia. 2

in Figure 2, the input probability distribution being
Pr{X(r) = 3G + Dl + [218 = fG, 7) (j=012,---)
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as in (1.1). When « = B, this reduces to the simpler case of the dam with in-
puts of constant size « = 3, and the probabilities of first emptiness at times
T=z+4na(n=0,1,2,---) are of the form (1.6). These may be obtained
from the discrete analogue of Kendall’s [2] integral equation, namely

gfm, 2) (T =2),
2.1) 3 T) = {((T—2)a"1
( o L ; 1(j, 2)9(jo, T — 2) (T > 2).

This states that starting with a content z, if there is an input ja > 0 in time z,
the probability of first emptiness at T is the convolution (over j) of the in-
dependent probabilities of an input j« in time z and of first emptiness in the
remaining time T' — z, starting with the new content ja.

In the case where a # 8, a similar equation holds, though it is now necessary
to define two types of probabilities of first emptiness in time £, g.(z, t) and
gs(z, t), both starting from a content z > 0, but depending respectively on
whether the first input is « (with «, 8 alternating) or 8 (with 8, « alternating).
Using precisely the same argument as above, it is clear that the summation
formula for go(2, T) (T = 2z + [(n + )] + [$n)8,n = 0,1, 2, --- ) may be
written

9o(2, T) = g(2; 3(n + 1)]e, [37]8)

f(0,2) (T =¢2),
2.2 = { }(n+D)] '
@2 ; f(2j — 1,2)gs(ja + 78 — B, T — 2)

[3n]
+ 2 f(2), 2)ga(je + B, T — 2)  otherwise.
j=1

It is obvious from considerations of symmetry that for any initial content z > 0,
one obtains gs(z, t) at times ¢ = 2z + E(r + 1DIB + Frla(r = 0,1,2, --- ),
directly by an interchange of o and 8 in (2.2) so that

(2.3) 98(2, 2 + [3rle + [3(r + 1)1B) = g(z; G(r + 1)1B, [3r]a).

These equations can be used to evaluate the probabilities g.(z, T') successively
to any required value of T'; the method will be illustrated later for Poisson inputs.

Let us now define the p.g.f.’s of g.(z, t), gs(2, t) as ¢.(60 | 2), ¢s(6 | 2) respec-
tively, where

ba(0]2) = ¢(8; a, B2)
(24) - i gDl at il ga(z, 2 + [2(n + 1)]a + [3n] 8)

n=0

(0=<90

A

1)
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and ¢5(0 | 2) = ¢(6; 8, | z). Then, it follows from (2.2) that

mww>=¢mma4—gﬂ%—namwua+ﬁ—ﬂ>

+ 3125, 6.0 g + ),
(2.5) 3 ’
¢a(0]2) = 6°(f(0, 2) + ;f@j — 1,2)¢a(0 |78 + joa — @)

+ 312, 2)oal0 | ja + JB)),

where ¢,(0]2) = ¢5(0]2) = 0.

We verify that where « = $, the equation (2.5) reduces to the well-known
form given by Takécs [1]. For then ¢.(0|2) = ¢s(8]2) = ¢(6]2) and (2.5)
becomes

(2.6) $(012) = 61f(0,2) + 2,1, 2)8(68| ja)-
Now in this case the random variable T increases by independent increments
when z increases, or

(2.7) 6(6]2) = {¢(0| 1)} = {o(6)}".
It follows from (2.6) that ¢(6) is the solution of

o(0))" = o‘{gﬂj, 2(e(0))77) = Fw(6™(9)))"

or of the equation
(2.8) ¢(0) = 0y(¢°(9))
for which ¢(0) = 0.

Such a simplification is not possible when « 5 B, since the increments of 7'
corresponding to an increase of z are now no longer independent. We may, how-
ever, give a formal solution to the equations (2.5) for ¢.(8|2) and ¢5(6 | 2).
Consider the infinite row vector

(2.9) ¢ = {¢a(0]21), ¢p(0 | 22), Pa(0 | 25), bp(60 | 20) - - - }
of p.g.f.’s appearing as coefficients in the expressions (2.5), where the
Z2j-1, 25 (G7=12,--+)
are respectively
21 =30+ DB+ (2 + Dle,

(2.10) . :
2, = 3G + Dl + [1(2/ + 1)18.
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We obtain from (2.5) for these various values of z that

where A is the infinite column vector {6”f(0, z.)}(r = 1,2, --- ), and B the
infinite matrix {b,} defined by

0 °f(1, B) #°1(2, 8) 0 'I
0°f(1, @) 0 0 0% (2, a)

(212) B = """ ot (1 0t B) 672, a+B8) 0

whereinrow 2j — 1 (j = 1,2, -+ - ) the elements are
b2j—l.4m—3 = sz—1,4m = 0,
bejc1am—sz = 0°7f(2m — 1, 29;1)

67 f(2m, 221) (m=1,2---)

bgj1,4m—1
whileinrow2j (j = 1,2, --+)
b2i,4m-—3 = 0’“f(2m - 1, sz),

bsjam—2 = bajam- = 0,

byjam = 07%f(2m, 2o;) (m=1,2---).
It follows that
(2.13) (I — B)p = A.
Now since >y b = 6{1 — (0, 2)} < 6 for all r, and 6" < 1 for all
0<0=1,

the matrix I + 2 < B™ exists in this range and is the unique two-sided re-
ciprocal of (I — B) so that formally

(2.14) 6= (I+ ZIB”)A.
Since the coefficients in the expressions of ¢.(6|2), ¢s(6|2) are now known,
we see from (2.5) that these p.g.f.’s are fully defined.

3. Probabilities of first emptiness for ordered Poisson inputs. Suppose that
the input process X (¢) is Poisson with constant parameter X > 0, such that

(3.1) G, m) = e ()i (G=012-")
with the p.g.f.
(32) 9o, r) = {7 0=0=1).
We illustrate the evaluation of g.(2, T') from equation (2.2) for values of

T =z+ B(n+ 1]+ [3n6 n=0,1234,5,6.

We first have from (2.2) and (2.3) that
(33) ga(2,2) = ¢ = gs(2, 2)
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so that from (2.2)
(34) 9a(2, 2 + @) = Tz,
It follows that gs(z, 2 + B8) = e ")z, and thus for z = « that

gﬂ(a: a+ B) = e—)\(a+ﬂ)xa,
so that

ga(2, 2 + o + B) = ¢ “Nags(a, @ + B) + ((\2)*/2)ga(a + 8, a + B)}
(3.5) = ¢ TN /20)2(2 + 20).
Proceeding step by step in this manner, we derive further that
(36) galz, 2 + 2a + B) = e PON\Y/302(2" + 32(a + B) + 3(c” + 208)}

(3.7) 9a(2, 2 + 2a + 28) = PP (\/41),
XS+ 48Q2a + B) + 62(30” + 408 + ) + 4(4d° + 9078 + 3a6%))

ga(2, 2 + 30 + 28) = e T ONE/B)2 X {2 + 52 (2 + 28)

(3.8) 4+ 102(4d” + 8aB + 36°) + 102(7a" + 214’8 + 188" + 48°)

+ 5(11a* + 440°8 + 540°8° + 1608°)}

galz, 2 + 30 + 38) = e T TONE /612 X {25 + 62'(3a + 28)

+ 152°(8a° + 1208 + 48%)
(3.9) + 202°(200° + 484’8 + 3308 + 78°)

+ 152(43a" + 144a°8 + 1622’8 + 7208° + 118%)
+ 6(81a” + 3500’8 + 520a°8" + 2900°8° + 5548%)}.

The evaluation of g.(z, T') can be continued to any required value of 7'.
The pf.g.’s ¢(0]2), ¢s(8 | 2z) for this process will be defined by the equation
(2.14) for the coefficients of the vector ¢, where f(j, r) is now given by (3.1).
It will be noted that for « = B, the equations (3.3)—(3.9) reduce to the result
(1.7) of the form

(3.10) g(z, 2 + na) = OO\ N2(z + na)™ ! (n=01,---).
with the p.g.f. $(8) which is the solution of
(3.11) $(8) = 6{¢™" %)

such that ¢(0) = 0. It has not proved possible to obtain an expression as simple
as (3.10) for g.(2, 2z + [3(n + 1)]a + [3n]8). However, we present an alternative
approach, in which the interpretation of the process as an occupancy problem
leads to a simpler method of evaluating these probabilities.

4. First emptiness as an occupancy problem: Poisson inputs. When the inputs
are of uniform size (a = @), it has been shown (cf., Gani, [3]) that first emptiness
may be characterized as an occupancy problem subject to certain restrictions.
With some minor modifications, the same formulation can be used in the case
of ordered inputs (a # 8).
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Consider Figure 2, where the time of first emptiness is
T =z+ [3(n+ 1la+ [3nl6;

let the region between times ¢t = 0 and ¢t = z be thought of as cell n, and that
betweent = z + [2(n — f)]a + [2(n — 7 — 1)]8 and

t=z+[Gmn -7+ Dla+ G(n—7)8

ascellj (j=0,1, ---,n — 1). Then the non-negative number of inputs z; in
each cell ( =0, 1, - - - n) must satisfy the conditions

(4.1) PIETER (2;20;0=0,--+,n—1)
=0

together with

(4.2) >z = n.
i=0

The probability of such input arrangements is the sum of all those coefficients
of terms 65° - - - 67" for which the x; satisfy conditions (4.1)—(4.2) in the p.g.f.

(43) Pn+l(00’ Tty 01') = ¢(0n, Z) III.¢(0”—I"’ T”—i) (O = 00: D) 0, = 1)7

where @iy = @, Ta2; = B =1,2, -+, [F(n 4 1)]), and 70 = a or B de-
pending on whether # is odd or even.

In order to illustrate the method clearly, we consider ordered inputs having
the Poisson distribution (3.1), with p.g.f. (3.2). Then

Poyi(60, -+ ,0:) =exp {—=A(z+ [5(n 4+ 1] a+ [Bnl )}

(44) exp (NOuz + Oy + 002 B+ -+ + 8 B)} ifn = 2r
exp (MOn2z +0nya+02B+ - +ha)}ifn=2r4+1
wherer = 0, 1, --- .
Let us consider the case where n is even (n = 2r) for which 7o = 8, and define
the following set of polynomials

Hg(9)

(4.5) s )

= exp (—MBG + Dl + B + DB} 2 G/t (1=0,1,--)
such that

Hpo(e) = e—)‘ﬁ
(46) Hgi(8) = {exp{—A(1 — 0)

{(3GE + D] = FDe + (3G + 2)] = 3¢ + DDBY
Hgia(0)) (0=1,2,---)
where the brackets ( ) indicate the truncation of all terms in 6 of degree higher
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than the 7th. Let us define further, for n = 2r, the polynomial Hg (6, z) as
(4.7) Hp (8, 2) = (¢ " Hp01(0));
it is clear then that Hjp (6, 2), itself not a p.g.f., is that part of

®B2041(0) = Porya(6, 6, -+, 0)

satisfying the conditions (4.1), while the probability of the input arrangements
also subject to (4.2) is

(4.8) ga(z, 2 + r(a + B)) = e 00 0 (2)/(2r)!

Cs.2-2-(2) being the coefficient of 6” in Hp .. (8, 2).
If the number of cells n is odd (n = 2r + 1), so that 7 = «, the corresponding
set of polynomials

Has(0) = exp (—MG + 2]+ BG + D16} 3 0},

(4.9)
(i=01,---)
may be obtained directly from (4.6) by an interchange of « and 8. For
n=2r+1,
the polynomial H,s11(6, 2) is then
(4.10) Haoa(6,2) = (M "H,1(68))

and the probability
go(2,2 + (@ + B) + a)
= e_)“z+r(a+ﬂ)+a]Ca,2r+l,2r+l(z)/(2r + 1)!

where C 4 2:41.2: +1(2) is the coefficient of ¢+ in (4.10).
We find that

Hp(0) = €7
Hau(0) = (1 + (\a)6}
Hg(6) = e "1 + Ma + 8)0 + (\*/2)(8" + 2a8)6’)
Hs(0) = e P11 + \M2a + 8} + (\F/2)(3d° + 4B + £°)6°
+ (\*/31) (40 + 92’8 + 3a”) 6%}
Hs(0) = e 01 4 \(2a + 28)6 + (N*/2)(4F° + 8Ba + 3a7) 6"
+ (\*/3)(4a® + 184°8 + 2108 + 76°)6°
+ (A'/4) (118" + 448’ + 546°a" + 168a°) 6%
Hs(6) = (1 4 X\(3a + 28)0 + (\}/2)(46° + 1208 + 8a")6’
+ (\*/31)(206° + 484’8 + 33a8" + 78°)6°
+ (\'/41)(118" + 726°% + 1626°%" + 1448a° + 43a")6*
+ (A*/51)(81a° + 350a'8 + 520a°8" + 2900°8° + 55a8")6%,

(4.11)

(4.12)
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and these, together with the corresponding set of polynomials
Hao(O), MR} Ha5(0)9

on using (4.7) and (4.10) result in precisely those values of g.(2, T') given in
(3.3)-(3.9).

A recurrence relation for the Cg;; (7 fixed) in the polynomials Hg:(6) (or
Cijin H,;(0)) permits a rapid evaluation of these coefficients. For it is readily
seen from (4.6) that foranyz > j (j =1,2,---)

Csi; = coefficient of 67/7! in
{expN{[3( 4+ D+ [2(i+2)8=BG+ D]«
—~ 33+ 2)18) 1 Hg;(6) },

= & ()0 A BG + DI =BG+ DDe
. + (BGE+21-BG+2D8)
D> (J,c)ca.j-l,k NG+ D] = Bie

+ (3G +2)] =BG+ D)8y

Thus, given the coefficients Cs,;1% (K = 0, --- ,7 — 1) in Hg,;—1(0), it is pos-
sible by a straightforward algebraic procedure to obtain all the coefficients
Cpi; in the polynomials Hg(60) (¢ = 4,5 + 1, --- ).

(4.13)

6. A general formulation of the dam with ordered inputs. Consider the dam
with initial content z, fed by ordered inputs whose alternate magnitudes

Ta,28 >0

are random, with distribution functions (d.f.) H.(u) and Hg(u) respectively,
and such that their times of arrival form a Poisson process with constant param-
eter \. Then, precisely as in (2.2), we may obtain the probability distribution
of first emptiness times dG.(2, T') (z = T < ), starting with an a-type jump,
as

{e"" (T = 2)
dG.(2,T) =5 < { - _ ()™ (2n+1)
(5.1) e n2=0 -/; dGs(u, T 2) (—2‘n—+—1—)' dHooa ™" (u)
T—2 2n+2
[ a0 Q2 ang @} (>0

where HZ2 ™ (w), HS*? (u) indicate d.f.’s for the (2n 4+ 1)thand (2n + 2)th
convolutions of the type

H®™W(u) = HyxHg % -+ x H,,
fo2p"+2)(u) = H,* Hg * ccc %k Hﬁ .
An equation similar to (5.1) with « and g interchanged holds for dGs(z, T').

(5.2)
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The generating function for dG.(z, ) is

80/2) =0+ [ 0 dGT) (0s0s1)
z+40

(63) = e“*‘{o‘ + f w[ [o G, T —2) 30 DT qpanin

n=0 (2 + 1)'
T—,
for (7\3) (2n+2) ]
+ [ oo T~ 5 B aH ()
and on changing the order of integration, this reduces to
2n+!
a0l =0 14 [T 010 3 DT e ()
(5 4) 0 n=0 (2 + 1)'
' ® (A2)™* (2n+2)

+ -/0’ ¢a(0 | u) E (2 + 2)' dH“ﬂ (u) ’
where ¢.(0|z) = 0. A similar equation with « and 8 interchanged holds for
¢80 | 2).

It is seen directly that these give the well-known equation for the p.g.f. in
the case where H,(u) = Hg(u). For here, ¢.(0|u) = ¢3(6 | u) = {¢(8)}*, so
that from (5.4)

@y = @ { 1+ [t S, 0 o)

(6" { > Q) <¢<o>>}

n=0

= {gexp {— Ml — nlz(d»(o))}}‘
or
(5.5) #(8) = fexp {—{1 — ¢¥(4(6))}},
such that ¢(0) = 0.
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