ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN
TRUNCATED SPACES!
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In this paper we investigate some properties of point estimates when an upper
or lower bound for the parameter, or unknown state of nature, is given in ad-
vance. The point estimation problem is characterized as follows. On the basis of
an observation of a random variable z, with distribution function of the form
P,(z) = [Ze po(t) du(t), it is desired to estimate some function h(w). Here
Do 1s a density with respect to a fixed o-finite measure u. An estimate § = §(z)
of h(w) is desirable according to a criterion which minimizes, in some sense, the
risk. We take as loss function W, the square error, i.e., W(w, 8) = [6 — h(w)],
and consider two criteria of desirability of an estimate: minimaxity and ad-
missibility.

It is not unreasonable to assume that, often, some information about the
parameters in the form of a bound, is known before. These bounds may be fixed,
or may be of the form of orderings of parameters. In this paper we deal with
fixed bounds.

Let u be a o-finite measure on the real line with spectrum X. Assume ¥ is non-
degenerate to avoid trivialities. We consider the exponential family of densities
with respect to u, that is, the family of densities p, , where

Pu(z) = B(w) exp (zw),

all z, and w e T, where T = {w|B(w)™ = [z exp (zw) du(x) < »}. Assume z
is a random variable distributed according to p., . We wish to estimate ¢(w) =
E_{z} from a single observation. There is no loss of generality in the restriction
to a single observation, for a sufficient statistic for » observations from an ex-
ponential family is the sum of the observations, whose distribution is again a
member of the exponential family.

Our main assumption is that

(1) C={w|w=a CT,

where a is an interior point of T. For purposes of simplicity we take a = 0 and
proceed to develop admissible estimates for parameters in such truncated param-
eter spaces. The proof for a # 0 (or @ = {w|w = a}) follows the development
below.

T is a connected set, and 8(w) ™" = [ exp (2w) dw is positive and analytic at
each interior point of 7. For the exponential family we have

(2) o(w) = —B(w)/B(w).
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¢'(w) is the variance of . Therefore ¢’(w) > 0 and ¢(w) is a (strictly) increas-
ing function of w. For each real z, let G(z) = [¢ B(w) exp (zw) dw, (possibly
taking on the value + ). G(z) is convex, and {x | G(z) < o} is an interval
with left hand endpoint — and right endpoint b. Let £ = sup %. If z < &,
then it is simple to show that G(z) is finite. G(£), however, may not be finite.
In particular, G(z — 1/¢) < o, for ¢ > 0.

If x < %, then

(3) B(w) exp (zw) >0 as w—

as we show. Differentiation shows that 8(w) exp (zw) is monotone in w, for
large w. Thus, if 8(w) exp (zw) +> 0, we have that lim,,..., inf 8(w) exp (zw) > O.
Let € be such that x 4+ ¢ < Z. There are positive numbers M, and 4, such that
B(w) exp (zw) > M, for v > A. Since £ < b, we have that

© > @(z+¢) = [78(w)exp w(z + €) do > M [7 exp (we) do = .

Condition (3) follows from this contradiction.
Now, take as a prior: distribution,

Ao(w) = (1/0) exp (—w/a), we®,  A(w) =0, elsewhere.
Then, the Bayes estimate of ¢(w) is given by
%(2) = [[7 ¢(0)B(w) exp w(z — 1/0) dol/[[7 B(w) exp w(z — 1/0) do
=z — 1/o + B(0)/G(z — 1/0).

The second step follows application of (2), and integration in the numerator.
The risk is

p(3, w) = ¢'(w) + 28(0)Eu{z/G(z — 1/0)} — 2¢(w)B(0)E{1/G(z — 1/s)}
+ B(0)E{1/G'(z — 1/0)} — 2(8(0)/0)Ef1/G(z — 1/0)} + 1/o".

It is easily verified that all these terms are finite. The Bayes risk of 5,(z) is
given by r(&) = (1/¢) [o exp (—w/o)p(3 , w) dw. Integrating, and using (2)
we obtain

(6) r(s) = %fow o' () exp (—w/c) do — frO) fG(x _1 75

As ¢ > ©, §&(z) — 8(z) = z + B(0)/G(x). r(5), the average risk of § with
respect to A, is readily calculated to be

2 [0 e (—afo) do + EQ [FEZ 110 gy

ﬁ2(0> B(0) [G(z — 1/0)
— 980 fG()d()+2 f 2 due).

We now show that §(x) is admissible. The method is essentially that of Blyth
[1]. Suppose, by way of contradiction, that 3(z) is not admissible. Then, there

(4)

du(z) + }2

(6)
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is an estimate §*(zx), such that p(8* w) = p(8, ), for all w £ Q, and strict in-
equality for some w. Now, p(6* w) is continuous. Hence, for some ¢ > 0,
p(8% w) < p(3, w) — ¢ for w belonging to some interval (w, @). Consider the
quantity

(7 [r(3) — r(8%))/[r(8) — r(&)],

where r(8), r(8*) are the average risks with respect to A, , of the estimates 6(x)
and 6*(x), respectively.

The denominator of (7) is clearly non-negative. We will show that for some,
sufficiently large values of o, the ratio (7) > 1. This implies r(6*) < (&), a
contradiction. Noting that G(x — 1/¢) is an increasing function of o, we have

(8) r(8) — r(8,) < 8 (0) f[G(x — 1~ 6@ )] du(z) +

To establish that the first term of (8) tends to zero as ¢ — «, we notice that
the integrand is positive, tends to zero as ¢ — =, and, for ¢ > 1, is bounded
by 1/G(x — 1). Since 1/G(x — 1) is integrable, the desired result follows by
the Lebesgue dominated convergence theorem. This implies that 7(8) — (&)
iso(1/s) as ¢ — . The numerator of (7) > (e/0) J8 exp (—w/o) dw > K/o,
where K is a positive constant. Thus, (7) = K/[s0(1/c)]— © as ¢ — «. For
some o, sufficiently large, (7) > 1. This is the required contradiction.

In conclusion we state the result more generally.

TuroreM 1: If condition (1) s satisfied, then an admissible estimate for o(w) =
E {x} 1s

8(z) = = + B(a)-lexp (az)l/[[2 B(w) exp (wz) dw).

In order to investigate minimaxity, we rely upon the following theorem (ec.f.,
Lehmann [6]). Let A, , ¢ > 0, be a set of distributions over Q. Let 8, be the Bayes
solution and r(8,) the Bayes risk corresponding to N, . If r(8,) —r, as ¢ — =,
and & is any estimate with p(8, w) = r, then 6 is minimax.

Binomial: @ = {p|p = a} Straightforward calculation gives

(1 —a)""
’
f pz-l(l _ p)n-x—l dp

A simple example, n = 1, a = %, shows that minimaxity cannot be concluded
by the cited theorem.
Poisson: @ = {A| X = a}. This estimate is

(na)%e ™

n f (nA)* ™™ d

8(z) =z +

R =01, ---n

8(x) =2+ =012 ---

Examining the condition for minimaxity, it is readily shown that every estimate
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is minimax. In the untruncated case, this is a well-known property of estimates,
if the loss is square error.
Normal: @ = {w]| » = 0}. The estimate is
8(z) =z + 2P (=2"/2)
exp (—1/2) dt

=z + »(z).

The properties of » are summarized in the following lemma.
Lemma 1.: (i) z 4+ »(z) > 0,
(ii) ¥(z) = —»(2)[z + »(2)],
(iii) 1 — »(z)[x + »(z)] = &(z) 2 0,
(iv) v 1s convex.
Proor: (i) This is obvious, from the way 8(x) was derived.
(ii) Differentiation readily gives this relationship.
(iii) and (iv) Sampford [7], has proved that the function g(z) =
F'(z)/[1 — F(z)], where F(z) = (2r)} [%w exp (—£°/2) dt is convex and
0 <g¢g'(z) <1. We have that w(x) = F'(z)/F(x) = g(—z). Therefore,
0> (z) = —¢g'(z) > —1, yielding (iii). Similarly »'(z) = ¢’(—2z) > 0,
all z, and thus » is convex.
Instead of proving that the estimate is minimax, by the method of the previous
examples, we proceed as follows.
A complete class of estimates for the risk function

(3, w) = (2m)7 [3 [8(z) — o’ exp [—3(z — )] dz

is the collection of all monotone increasing functions. Let §(z) be monotone in-
creasing. We recall that p,(z) = 27! exp [—4(z — w)?] has a monotone likeli-
hood ratio, i.e., for z; > z, and w* > w we have P, (1) Pu(22) = Pw(Z1)Pur(T2).
Let A = p(3, w*) — p(8, w), where w* > w. Applying (9), with z; = z, 2, = 0,
it follows that 4 = 0. Thus p(3, w) is monotone increasing in w. The differen-
tial inequality procedure of Hodges and Lehmann [3] shows that a minimax pro-
cedure has risk =<1. Since p(z + v(z), w) = 1 — wE,{v(z)} is monotone in-
creasing for w > 0, and tends to 1 as w — o, it follows that the estimate
z 4 v(x) is minimax. In the same way, it is easy to show that the estimate
8* = max [0, z], with
p(% w) = 1 — (2m)7 [Lu (2" — 220) exp [~ }(z — «)’) dz,

is minimax.

We now take a second approach to Theorem 1. Theorem 2, below, gives a
sufficient condition for admissibility a.e., in the nontruncated case. The proof is
omitted. It is essentially embodied in a theorem by Karlin [4]. Theorem 3 gen-
eralizes Theorem 2 to the case of parameters in truncated spaces.

THEOREM 2: p,(x) is a density with respect to u, jointly measurable in x and w.
Q is an interval with ends points w, &. Q(w) 1s a positive measurable function on .
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8 7s an estimate with bounded risk. ¢ is an interior point of Q. If

b
1 -
oo>ch—(;)dw—>oo as b—q,

‘1
°°>famdw—>oo as @ — w,

and if there is a K > 0, such that

2l (2) = ¢()]Q(e)pu(2) de| = KIQ(D)ps(2) + Q(a)ps(2)],

forall o < a < b < &, and all z, then if 6* is an estimate satisfying p(8*, w) =<
p(8, w), all w & @, we have p(5*, w) = p(8, w), a.e. (Lebesgue).

THEOREM 3: p.(x) 7s a density with respect to u, jointly measurable in x and w.
Q is an interval [a, @). § is an estimate with bounded risk. Q(w) is a positive, meas-
urable function on Q, and

w>/j€ﬁdw—->oo as b — a.

If there is a K > 0 such that
12 18(2) — o()1Q(w)pu(z) du| = KQ(b)ps(x)
Jor all b ¢ (a, @), and all z, then if §* is an estimate satisfying
(10) p(8*, @) = p(8, w), all w £ Q,
we have p(8* w) = p(5, w) a.e.

Proor: (10) implies

[ @) — 3)Pput@) dua)
<2 [T 1@ — #*@16() — o()lpu(z) du().

Let T(w) = [25[6*(x) — 8(2)I"po(z) du(z). Note T(w) is measurable and
finite.

JaT(0)Q(w) do = 2 [2Q(w) [Zu[8(z) — 8*(2)][6(z) — ¢(w)]pu(z) du de
(11) = 2 [Z,[5(z) — 8*(2)] [2Q()B(x) — ¢(w)Ipu(z) do du(z)
2KQ(b) [Z.16(z) — 8*(z)|pe(z) du(z) < 2KQ(D)[T(D)].

The last step follows by Schwarz’ inequality.

We now show that H(b) = [2 T(w)Q(w) dw = 0 for all b ¢ (a, @). This im-
plies that T (w) = 0 for almost all w, further implying, p(6*, w) = p(§, w) for
almost all w, the desired result.

Suppose on the contrary, that there is a number ¢ ¢ (a, @), such that H(c) > 0.

IA
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Inequality (11) implies that
1 1 _ Q(b)T(b)

QD) S B cEb<e
or that
1 [° 1 ? Q(b)T(b) -

The left hand side of (12) approaches + « as B — ». We now show that the
right hand side is bounded as B — &, which gives a contradiction. Let

Q)T () 1
@(B) = f I EOR(k
Then G’(B) exists and is equal to 0, for almost all B ¢ [¢, ®). Also, G is abso-
lutely continuous on each interval [c, d] where ¢ < d < &. Hence, G is constant
on [¢, ®), implying that the right hand side of (12) is 1/H(¢) — 1/H(B), which
remains bounded as B — a.
We deduce, quite simply, Theorem 1 from Theorem 3. Take Q(w) = 1. Let
f(s) = [B(s) exp (28)]/1J7 B(w) exp (zw) dw]. Then

(13)  [alz + f(a) — ¢(w)1B(w) exp (zw) do = [§ B(w) exp™ do[f(b) — f(a)].

We have f'(s) = f(s)[x — ¢(s) + f(s)]. We show that f'(s) > 0, that is, fis a
(strietly) increasing function. This implies that (13) < B(b) exp (ab), the
condition for admissibility a.e. Since ¢ is an increasing function

for ¢ £ B < w.

[ o)) exp (us) d
p(s) <=

= =z + f(s).
f. B(w) exp (z0) do

Thus z + f(s) — ¢(s) > 0, proving f’(s) > 0.

As a further application of Theorem 3, consider the normal distribution with
mean w, w > a, and variance 1. Let A be an arbitrary positive number, and
m=1/(A+1). Let F(z) = [*wexp (—£/2) dt. With Q(w) = B(w)* =
exp (—w’\/2), it follows, in the same way as above, that the estimate

a+ m(z — a) + mF'((z — a)m)]/[F((z — a)mh)]
is admissible.
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