A UNIFIED THEORY OF ESTIMATION, I

By ArranN BIRNBAUM

Institute of Mathematical Sciences, New York University

0. Introduction and summary. This paper extends and unifies some previous
formulations and theories of estimation for one-parameter problems. The basic
criterion used is admissibility of a point estimator, defined with reference to its
full distribution rather than special loss functions such as squared error. Theo-
retical methods of characterizing admissible estimators are given, and practical
computational methods for their use are illustrated.

Point, confidence limit, and confidence interval estimation are included in a
single theoretical formulation, and incorporated into estimators of an “omnibus”
form called ‘“‘confidence curves.” The usefulness of the latter for some applica-
tions as well as theoretical purposes is illustrated.

Fisher’s maximum likelihood principle of estimation is generalized, given
exact (non-asymptotic) justification, and unified with the theory of tests and
confidence regions of Neyman and Pearson. Relations between exact and asymp-
totic results are discussed.

Further developments, including multiparameter and nuisance parameter
problems, problems of choice among admissible estimators, formal and informal
criteria for optimality, and related problems in the foundations of statistical
inference, will be presented subsequently.

1. A broad formulation of the problem of point estimation. We consider prob-
lems of estimation with reference to a specified experiment E, leaving aside here
questions of experimental design including those of choice of a sample size or a
sequential sampling rule; some definite sampling rule, possibly sequential, is as-
sumed specified as part of E. Let S = {z} denote the sample space of possible
outcomes z of the experiment. Let f(x, 8) denote one of the elementary proba-
bility functions on S which are specified as possibly true. Let @ = {6} denote the
specified parameter space. For each 6 in @ and for each subset of 4 of S, the
probability that E yields an outcome z in A is given by

Prob{X e A |6 = [.f(z, 0)du(z),

where u is a specified os-finite measure on S. (We assume tacitly here and below
that consideration is appropriately restricted to measurable sets and functions
only.)

If v = 4(0) is any function defined on Q(e.g., v(§) = 6 or v(6) = 6°), with
range T, a point estimator of v is any measurable function g = g(z) taking values
in T (orin T, its closure, if, for example, T is an open interval). The problem of
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choosing a good estimator, that is an estimator which tends to take values close
to the true unknown value of v, has been formulated mathematically in various
ways. Most formulations achieve mathematical definiteness by introducing cri-
teria of closeness which appear somewhat arbitrary from some standpoints of
application and undesirably schematic as expressions of the intuitive notion of
closeness.

If @ is given no specific (parametric) structure, then the latter features can
be fully avoided only by a very broad formulation which specifies only that if
7 is true, then an exactly correct estimate (¢ = v) is closer than any incorrect
estimate (g == v). If @ is finite, @ = {6;, -- - 6:}, andv(8) = 6, thisleads to the
formulation of Lindley [1] in which estimators are compared only on the basis
of their error probabilities

D = PrOb{O*(X) = 0i|0i}7 'i:jy = 17 ce k:'l' ;é]y

where *(z) is any estimator of 6. This formulation has no very useful extension
to typical estimation problems in which, for example, @ is an interval, and in
which the event 6*(X) = 6 exactly has typically negligible probability and little
interest.

The case in which Q is any set of real numbers, for example an interval, and
v(6) = 6, may be termed the central problem of theory of point-estimation,
although very important generalizations of this problem have been treated ex-
tensively. For this problem, closeness of 6* to 6 has been specified by the intro-
duction of specific loss functions: The absolute error criterion, |6* — 6|, was
introduced by Laplace. Gauss replaced this by the squared error criterion
(6* — 6)*, which proved mathematically much more tractable and provided a
definite formulation of the problem that seemed equally reasonable.

Each such definite specification of closeness can be criticized as somewhat
arbitrary, except in a context where one postulates the reality of the indicated
costs of errors of each possible kind. To avoid such features it is evidently neces-
sary and sufficient to adopt the following weak specification of closeness: If
97 < 6; < forif 6 < 6; < 01, the estimate 62 is called closer than 6; to 0; if
07 <6< 6 , No comparison as to closeness is to be made. (The latter point was
put forth by Galileo in an exchange which retains interest in connection with
questions of formulation of estimation problems, particularly distinctions be-
tween errors of inference and economic valuations, and the historical origins of
unbiasedness criteria. Cf. [2].)

This specification of closeness leads to comparisons between estimators on the
basis of all of their probabilities of errors of over-estimation and under-estimation

by various amounts d = |6* — 4| :
F(u,6,0%) = Prob {6*(X) < u|60}foru <6,

1.1) a(u,6,6% =
1 —F(u—0,06,6*) = Prob {#*(X) = u |0} foru > 6.

That is; estimators are compared only on the basis of their complete cumulative
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distribution functions (c.d.f’s) F(u, 6, 6*) for each 0 £ Q, rather than on the basis
of certain “summaries” (functionals) of these c.d.f’s such as mean squared error.
The function a(u, 6, 6*), defined for any estimator 6*(z) at each 6 £ 2 and each
u # 6, will be called the risk curve of 6* at 6 (or, more precisely, of 6*(-) at 6).

The family of distributions under consideration may be viewed as having a
parametric structure only in the sense that it is ordered by the labeling of each
function f(z, 8) of x by a different real number 6. From this standpoint, the
problem of estimating 6 is equivalent to that of estimating v = v(8) if the latter
is any specified strictly monotone function. The formulation adopted above is
clearly unaffected by (invariant under) such transformatigns of the parameter
space (2 — y() = T'), as contrasted with most other formulations referred to
above.

A theory of point estimation based on this broad formulation seems appropri-
ate for typical problems of inference occurring in empirical research, since various
kinds of errors of inference and their probabilities admit simple direct interpre-
tations, whereas other formulations introduce specifications akin to costs of
various errors which seem somewhat hypothetical or arbitrary in such situations.
The present theory also has theoretical and technical relevance for estimation
theories based on more restrictive formulations, since it includes such theories
in a formal sense that will be elaborated in a following section.

2. Admissible point estimators. An estimator 6*(x) of 6 is naturally considered
a good one if its error-probabilities are suitably small, i.e., if (the ordinates of)
its risk curves a(u, 0, 6*), for each 6 £ Q and each u > 6, are suitably small.
This leads to a natural partial ordering of estimators, under which some but not
all pairs of estimators can be compared. As a basis for systematic evaluations
and comparisons of estimators we require the following

DeriniTiONS : For a given estimation problem, an estimator 6* is called af least
as good as an estimator 6**if a(u, 9, 6*%) =< a(u, 6, 6**) for all 6 ¢ Q and all u = 6.
If 6* and 6** are each at least as good as the other, then a(u, 6, 6*) = a(u, 8, 6**),
and the estimators are called equivalent. If neither of *, 6** is at least as good as
the other, the two estimators are called not comparable. If 6* is at least as good
as 0** and if a(u, 0, 6*) < a(u, 8, 6**) for some 6 £ @ and some u = 6, §* is
called better than 6**. As estimator 6* is called admissible if no other estimator is
better than 6*. The class of admissible estimators is called the admissible class.
A class of estimators is called complete if, for each estimator outside the class,
there is a better one in the class. The minimal (smallest) complete class, if one
exists, coincides with the admissible class. A class of estimators is called essen-
tially complete if, for each estimator not in the class, there is one at least as good
in the class. A minimal essentially complete class, if one exists, is a subclass of the
admissible class.

The above definition of admissibility was included in a list of criteria for point
estimators by Savage [3] (pp. 224-225), but it has not previously been used
systematically.
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The criterion of closeness of estimators introduced by Pitman [4] is based not
on the full e.d.f’s of individual estimators, but on the joint distribution of abso-
lute errors for each pair of estimators; this criterion does not give a partial order-
ing of estimators, and does not lend itself to our present purposes.

For the probabilities of under-estimation and over-estimation, we define also

a(6—, 6, 6*) = Prob {6%(X) < 6| 6} = lim a(6 — ¢; 6, 6%),
(2.1) el 0

a(6+, 6, 6*) = Prob {¢*(X) > 0|6} = lim a(8 + ¢; 6, 6%).
el

For formal convenience, we also define a(#6, 6, 6*) = 0. When reference to a given
estimator 6* is understood, we may write simply a(u, 6), a(6—, 6), or a(6+, 6).
The functions a(6—, 6) and a(8-+, 6) of 6 play a useful technical role, and will
be called respectively the lower and upper location functions of 6*.

In many problems, estimators for which Prob {6*(X) = 6|6} > 0 for some
0 are found not useful. The remaining estimators have continuous c.d.f’s, and
have a(6—, 8) = 1 — a(6+, 8). No two such estimators having different loca-
tion functions can be comparable; for a(6—, 6, 6*) < a(6—, 8, 6**) is equivalent
toa(6+, 6, 6*) > a(8+, 6, 6*); this shows that neither estimator is at least as
good as the other.

The broad and ‘““weak” definition of admissibility adopted here leads to very
large admissible classes in typical problems. However it does not seem unreason-
able to conceive of the problem of point estimation as one in which the investi-
gator chooses an estimator on the basis of consideration of the risk curves of all
estimators in some essentially complete class. In principle this consideration
should be complete, but of course the practical counterpart of this can be at
most a more or less extensive familiarity with an essentially complete class,
developed by study of the risk-curves of a variety of specific estimators, possibly
strengthened by some general theoretical considerations (including envelope
risk-curves, discussed below), and perhaps also by reference to one or several
loss functions and criteria of optimality which may seem more or less appropri-
ate in specific applications. Such an approach is not so difficult to carry out as
might be anticipated, as will be illustrated. Of course difficulties of computation
or complexity may sometimes dictate that an inadmissable estimator must be
adopted; even in such cases, the most general basis on which any particular
estimator might be justified, as not too inefficient, is evidently the comparison
of its risk-curves with those of other estimators, especially admissible ones.

Knowledge of the admissible class or of an essentially complete class of esti-
mators in the present broad sense can be useful in applying other formulations
of the estimation problem. For example, every estimator which is admissible
with respect to a squared error loss function must clearly be admissible in the
present sense; hence the search for estimators good in the former sense can be
restricted without loss to any class known to be essentially complete in the
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broader sense. In this way, a hierarchy of definitions of admissibility leads to a
«corresponding nested hierarchy of admissible or essentially complete classes of
-estimators. (The latter concepts, and that of vector-valued risk functions, were
introduced in other contexts by L. Weiss [5].)

3. Admissible confidence limits. If ¢/ = ¢"/(z) is a point estimator of 6 in a
specified problem, witha(§—, 6, §”) relatively small (typically, appreciably less
than 1) for all 6, then 6” may be used as an upper estimator of 6;if a(6—, 0, 0") =
a < % for all 6, then 6”7 is an upper (1 — «a)-level confidence limit estimator.
Lower estimators are defined similarly.

The merits of any upper estimator depend upon the following considerations,
in suitable combination:

(a) Since a(8—, 6, 8”) is the probability of an error in inferences of the form:
@ is not greater than the observed value 6”(z),” the values a(8—, 6, 6”) should
be suitably small for all 6.

(b) For each 6 and each v > 6, a(u, 6, 8”) is the probability that 6” will be
larger than necessary to provide a valid upper limit for #; hence such values
a(u, 6, 8”) should be suitably small. Such properties in general have been termed
shortness properties by Neyman [6], and, for confidence limits, accuracy proper-
ties by Lehmann [7].

(¢) For each 6 and each v < 0, a(u, 6, 6”) is the probability that 6” will be
in error, as an upper limit for 6, by (# — u) or more; such values a(u, 6, 8”)
should be suitably small, since, at least when other things are equal, 6” should
be misleading by as little as possible.

These considerations lead to definitions of admissibility and of complete
classes of upper estimators (and, similarly, lower estimators) which coincide for-
mally with the definitions found above for point estimators. Hence there is no
necessary formal distinction between the formulations, theories, and techniques
of point estimation on the one hand and confidence limit estimation on the other;
a single formal theory of point estimation suffices, and the distinctions required
are only those of qualitative emphasis and quantitative degree which reflect the
variety of possible purposes for which a point or confidence limit estimator may
be chosen from, say, an essentially complete class.

4. Admissible interval estimators. If J = J(z) = (¢, 0") = (¢'(x), 8" (z)) is
a pair of point estimators such that ¢’'(z) < 6”(z) for each z in S, then J is an
interval estimator of 6. In particular, if Prob {¢/(X) < 6 < ¢"(X) |6} = 1 — «
for each 6, then J is a confidence interval with confidence coefficient 1 — «, or a
(1 — a) confidence interval. (Typically a value (1 — a) > .5 is chosen.) If ¢’
and 6” are respectively lower and upper [(1 — a)/2] confidence limit estimators,
then it is natural to call J a median-unbiased (1 — «) confidence interval.

The merits of any interval estimator J depend upon the following considera-
tions, in suitable combination:

(a) For each 6, the probabilities a(6—, 6, ”) and a(8-, 6, 8'), of underesti-
mation and overestimation of 6 by J, should be suitably small. (As with point
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estimators, it seems desirable to avoid a formulation implying comparability of
these two kinds of errors.)

(b) For each set of values v’ < 8 < u”, the values a(«/, 6, 6’) and a(u”, 6, 8”)
should be suitably small, representing shortness properties of J corresponding
to shortness properties of the lower and upper estimators ¢’ and 6” respectively.

(¢) For each 6 and each u > 6, a(u, 6, 6’) should be suitably small; and for
each 0 and each u < 6, a(wu, 6, 6”) should be suitably small; since, at least when
other things are equal, J should be misleading by as little as possible.

To represent all of these properties, we define the risk curves of an interval
estimator J = (¢, 8”), at each 6, as the pair of functions [a(v/, 9, 6'), a(u”, 6, 6”)]
of ', u”; that is, the risk curves of ' and 6”. Thus the risk curves of J at 6§ are
a representation of the bivariate cumulative distribution of ¢’(X) and 6”(X)
when 6 is true.

These considerations lead us to formulate the following basic definitions: An
interval estimator J = (6’, 6”) will be called at least as good as another J* =
(6*, 6**) if ¢ is at least as good as 6* and 0” is at least as good as 6** in the
sense defined for point estimators in Section 2 above. Similarly, J will be called
better than J* if it is at least as good as J* and also ¢’ is better than 6* and/or
6” is better than 6**. J will be called admissible if no other interval estimator is
better. Complete classes are defined in the usual way. It is convenient to refer
to the pair of functions a(6—, 6, 8”), a(6+, 6, 8') of 6 as the location functions
of J = (¢, 8").

If two interval estimators have different location functions, they are not
comparable (neither is at least as good as the other); this follows immediately
from the corresponding property for point estimators. A stmple sufficient condi-
tion for admissibility of J = (6’, 6”) is that ¢’ and 6” be admissible point esti-
mators.

6. Confidence curve estimators. The selection of an estimator of one of the
above kinds for purposes of informative inference, including typical applications
in scientific research, is generally admitted to involve elements of choice which
are in some degree arbitrary. Such elements include the choice of a particular
confidence level for an interval estimator, and the choice of location functions
for an interval estimator with given confidence coeflicient. In addition, a point
estimate is sometimes desired along with an interval. Such considerations and
related ones have led to proposals for use simultaneously of a point estimator
and a set of confidence limit or interval estimators having various confidence co-
efficients. Such estimators may be regarded as a modern formulation of a long-
standing practice of reporting estimates in the form 6* 4 koy. , where & is some
constant and o5 = Var (6*(X)). The latter form may be interpreted as an
ordered set of three point estimators. For example, if 6*(X) has a normal dis-
tribution with a known constant variance, and k¥ = 1, then the ‘“estimator”
0*(x) & kos» may be written as the ordered set of estimators

[0*(\1;) — O¢*, 0*(1;)’ 0*(1;) + 0'0’] = [0(3}, '84)) 0(1,', '5)’ 0(:12, '16)]°
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Estimates of this “omnibus” kind can be interpreted flexibly but validly, in any
context of application for informative inferences, in the ways customary for (a)
point estimates such as 6(z, .5), (b) confidence limits such as 6(x, .84) and
6(zx, .16), and (c) confidence intervals such as [6(z, .84), 8(z, .16)].

Tukey [8] proposed that for typical general purposes it would be advantageous
to use a set of five point estimators at standard levels: 6(z, a), with o = 23%,
163%, 50%, 83%%, and 971% . Cox [9] proposed use of the full continuous family
of confidence limits 6(z, @), 0 £ « < 1. Such an omnibus estimator includes
formally, as elements, not only confidence limits at all levels and a median-un-
biased point estimator, but also median-unbiased confidence intervals at all
levels. Whether such estimators should be used in practice, rather than more
standard methods, is a matter of judgment and taste which can perhaps be
decided best in specific contexts of application. It is often convenient, as will be
illustrated below, to discuss estimation theory and techniques for estimators of
this omnibus form, since such discussion includes conveniently and compactly a
treatment of estimators of the various kinds mentioned.

Any such estimator, consisting of a specified set of confidence limit estimators
6(z, a), a in some specified subset of the closed unit interval (possibly the whole
interval), ordered in the sense that a < o implies 8(z, ) = 6(z, o) for each
z in 8, will be called a confidence curve estimator. We shall usually consider the
inclusive case, 0 < a = 1, so as to include formally all other cases. In many
problems it is convenient to give such estimators a form which can be reported
graphically: if for each x ¢ S, 6(x, o) increases continuously from 4 to § as «
decreases from 1 to 0, then we define the confidence curve estimator ¢(6, z), for
each z ¢ S, as the continuous curve (function of 8 ¢ &)

(5.1) ¢(9,z) =min [a, 1 — a| 0(x, a) = 6].

For example, if X is normally distributed with unit variance and mean 6, then
the confidence curve estimator of 6 is

&0 —1x),— » 0= 1,

1—®0—2),z =50 =< o

(52) c(6,z) = {

for any observed value z, the estimate ¢(6, ) can be described by a more or
less complete sketch of its graph when convenient.

The definitions of admissibility and of complete classes for confidence curve
estimators parallel those above for confidence interval estimators. A simple suf-
ficient (but not, in general, necessary) condition that a confidence curve esti-
mator be admissible is that for each «, its element §*(z, @) be an admissible
point estimator. In problems for which there exists a uniformly best confidence
limit estimator for each confidence coefficient, this condition is necessary as well
as sufficient, and there is a unique (a.e.) admissible confidence curve estimator
which consists simply of the family of these best confidence limit estimators.
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6. Elementary theory of admissible point estimators. An important part of
the general theory of admissible point estimators, and of corresponding practical
techniques of estimation, can be developed conveniently by an essentially ele-
mentary use of the theory of tests of one-sided hypotheses as originated by
Neyman and Pearson and as extended (by simple use of their Fundamental
Lemma) to generate a variety of admissible tests of such hypotheses. In prob-
lems for which uniformly best one-sided tests exist, the complete theory of ad-
missible estimators is obtained in this way; for other problems, the development
of the remaining parts of the theory requires more general methods introduced
in Section 10 below.

For each 6, in 2, we consider two one-sided testing problems: (a) the problem
of testing the hypothesis H(6,):6 < 0, (against the general alternative
H'(6,):6 > 6,); and (b) the problem of testing H(6, —):60 < 6, (against the
general alternative H'(8, —):0 = 0,). In case 0, is 2 minimum value in , con-
sideration of H(6, —) is to be omitted; if 6, is a maximum in @, H(6,) is omitted.

Any given point estimator 6* = 6*(z) of 6 can be used in the following way
to define a test of each of the hypotheses mentioned: Accept the hypothesis if
and only if the observed value 6*(z) is consistent with the hypothesis. Such a
test of the hypothesis H(6,) has the acceptance region A(6,) = {z | 6*(z) = 6.};
such a test of H(6,—) has acceptance region A(8,—) = {z | 6*(z) < 6. If
6, < 6 ,then A(6,—) < A(6,) < A(8 —) < A(6); for brevity, we shall say
that such a sequence of sets A(8) is nondecreasing in 6, with the understanding
the argument 6 may take a value (§—) which is considered smaller than 8 and
larger than 6 — e for each positive e.

Such a test of H(8,—) has probabilities of errors of Type I given by

1 — Prob (A(6,—)|6) = a(8,, 6, 6*) foreach 6 < 6,,
and of Type II given by
Prob (4(6,—)]68) = a(6,—, 6, 6*) foreach 6 = 0,.
Such a test of H(8,) has probabilities of errors of Type I given by
1 — Prob (4(6,)|0) = a(6,+, 0, 6*) foreach 6 =< b,,
and of Type II given by
Prob (A(6.)| 0) = a(6,, 0, 6*) foreach 6 > 6,.

Thus each of the error-probabilities a(u, 8, 6*), upon which depend the ad-
missibility of any given point estimator 6* appears as an error-probability of a
test of a one-sided hypothesis based upon use of 6*. These relationships provide
the following simple sufficient condition for admissibility of a point estimator.
LemMma 1. For any specified family of probability density functions f(x, 0) (with
respect to an underlying o-finite measure u(z) defined on the sample space S = {z}),
0eQ (a subset of the real line), a given estimator 6* = 6*(x) (any measurable
function taking values in the closure Q of Q) is admissible if each of the acceptance
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regions A(0,), A(8,—), based on 6* as defined above, gives an admisstble test of
the corresponding one-sided hypotheses H(8,), H(6,—) defined above.

Proor. (A test is called admissible if no other test has all error-probabilities
at least as small, with at least one strictly smaller.) If 6* satisfies the assumptions
of the Lemma but is inadmissible, let 6** be an estimator better than 6*. Then
a(8,, 8, 0**) < a(6,, 6, 6*) foreach 6 £ Q and ea,ch 0, # 6, and the inequality
is stnct for some 6 = 6 £ Q and some 6, = 0, £ Q, 9, > . Assume for definite-
ness that 6, > ¢’ (the other case can be discussed in the same way). Then the
acceptance region {z | 0**(:1:) < 0:) gives a better test of the hypothesis H(8,—)
than does {z | 6*(z) < 0.,} This contradicts the assumed admissibility of the
test based on the latter region, completing the proof.

Many estimators of interest can be conveniently investigated theoretically
and constructed practically by the device of using as indicated below a function
v(z, 0), defined for each sample point = and each 8 ¢ Q. If, for each fixed ,
v(z, 6) is a measurable function of z, it is a statistic; and as 6 varies, v(z, 8)
represents a family of statistics. We term such a function v a quasistatistic.

CoroLLARY 1. A suffictent condition for admissibility of an estimator 6*(x) is
that it be defined, for each x, as the solution 0 of the equation v(zx, ) = 0, where v
18 a quasistatistic such that:

(a) For each z in S, v(z, §) = 0 holds for a unique 6 in Q.

(b) If 6 < 6y and 6, 0, are in Q, then {z | v(z, 6;) < 0} C {z|v(x, 6:) < 0}.
(4 simple sufficient condition for (b) is that for each x, v(zx, 0) be decreasing in 6.
If (a) holds, it suffices that v(x, 8) be nonincreasing in 8, for each z.)

(¢) For each 0, in R, the acceptance regions {z|v(z, 6,) =< 0} and
{x|v(z, 8,) < 0} are admissible respectively for testing the one-sided hypotheses
H(8,) and H(6,—).

Proor. If v(zx, 8) satisfies the stated conditions, the conclusion follows im-
mediately from Lemma 1 upon observing that

{zlo(z, 0.) =0} ={z|0*(z) = 04} and {z|v(z,0,) <O} = {z]6*(z) < 0;}

When an estimator 6* is defined implicitly, by use of a quasistatistic v(z, 6),
as the solution 6 of the equation »(z, 8) = 0, in applications it is not necessary
to have an explicit formula for 6*(x) since for any observed sample point z it
suffices merely to determine the corresponding root 6 of the defining equation;
and in the cases of many such estimators of practical and theoretical interest,
no explicit formula for 6*(x) is available. The preceding lemma shows that
basic qualitative properties of efficiency can be established for such estimators
without use of any explicit formula for 6*(x). Their quantitive properties can
also be determined without such explicit formulas: Since v(z, u) < 0 is equiva-
lent to 6*(z) < u, and v(x, u) = 0 is equivalent to 6*(z) = u, we have

Prob [6*(X) < u| 6] = Prob [»(X,u) <0]|6] foru <6

6.1 ,0,0%) =
1) a{u 6,6%) {Prob [6*(X) = u | 8] = Prob [v(X,u) = 0] 6] foru > 6.
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Thus all quantitative properties of such estimators 6* can be determined, when
convenient, by determining

Prob [v(X,u) 0|6 and Prob [p(X,u) = 0]|6] foreach wu > 6.

Some theoretical properties of such estimators are also conveniently treated
in terms of the c.d.f’s. of v. For example, if foreachn = 1,2, -- -, 0> is an esti-
mator determined by a quasistatistic v, = v,(z., 8), then the condition that
the sequence of estimators 60, be consistent (that is, that lim, a(u, 6, %) = 0,
for each 6 £ @ and each u # 6), can be stated, and in many cases conveniently
proved, in the form: lim, Prob [v.(X,.,u) < 0|6 = 0 or 1, according as
u < 6oru > 0, for each 6 ¢ Q.

7. Uniformly best estimators. Any estimator 0*(x) of 8 will be called a uni-
formly best estimator if each of the tests of one-sided hypotheses based on 6*, in
the manner of the preceding section, is a uniformly best test (uniformly most
powerful on H’ and uniformly least powerful on H). Since each such test is ad-
missible, each such estimator is admissible.

It is well known that for a one-sided testing problem there exist uniformly
best tests of all sizes, if there exists a sufficient statistic {(x) with the monotone
likelihood ratio property (m.l.r.) ([7], Sect. 3.2). ‘

LeEmMA 2. If the family of density functions f(x, 6), 6 € @, admits a sufficient
statistic t = t(x) having the monotone likelihood ratio property, then an essentially
complete class of admissible estimators is constituted by estimators of the form
6* = 0*(t, y), any nondecreasing function of t and of y, where y is an observed
value of an auziliary randomization variable Y having under each 0 the same uni-
form distribution on the unit interval 0 < y < 1, and such that ¢’ < t” implies
0*(t, y') < 6%(t", y") for all ', y”. If t(z) has a continuous c.d.f., for each 0,
then estimators of this form but not depending upon y constitute an essentially com-
plete class of estimators.

Proor. Let 6*(x, y) be any estimator (possibly depending on an auxiliary
randomization variable Y), let G(8) = Prob {6* < 6| 6}, let G(6—)=
Prob {#*(X) < 6| 6}, let F(¢, 6) = Prob {{(X) < ¢| 6}, where t{(z) is a suf-
ficient statistic with’ the m.L.r. property, and let z(i(x), y, 6) = yF(i(z), 8) +
(1 — y)F(t(x)—, 6). Consider the quasistatistic

v=(z,y,0) = 2(t(x), y, ) — G(0).

For each 6,, A(6,) = {(z, y)|v(z, y, 0,) < 0} is clearly a uniformly best ac-
ceptance region for testing H(6,) at level 1 — G(8,) = a(8,+, 6,, 6*). Con-
sider the quasistatistic v = v'(z, y, 8) = z(i(z), y, 0) — G(6—) = v +
[G(6) — G(6—)]. For each 6,, A(8,—) = {(=, y)|v'(=, y, 0,) < 0} is clearly
a uniformly best acceptance region for testing H(6,—); at 6 = 6, it has
Type II error-probability G(8,—) = a(0,—, 6., 0*%).

To verify that these acceptance regions constitute a sequence of sets which is
nondecreasing in 6 in the sense defined in Section 6, we note that obviously
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A(6,—) < A(6,), and we proceed to prove that 6; < 6, implies A(6,) C
A(6:—): Assume that (2’, ') € A(6,); but («’, y') 2 A(6,—); then

2 =2(i(2'), ¥, 6) < G(6,)
and
2" = 2(i(2"), ¥, 6:) = G(6:—).

A best test of H(6,) of size (1 — 2’) (the test which rejects when z(¢(x), ¥, 61) =
z’) has maximum power at § = 6,, namely 1 — 2”; the test with acceptance
region {z | 6*(xz) < 6} has size 1 — G(6,) < (1 — 2’) and hence has power
Prob {6*(X) > 6,|6:} < 1 — 2”. Hence 2” < Prob {6*(X) =< 6|6} =
Prob {#*(X) < 6} = G(6:—), a contradiction which proves that A(6) C
A(6:—).

For each (z, y), let 6** = 6**(z, y) be defined by

0**(z,y) = inf {6]0Q, (z,y) e A()}.

Then 6** is a nondecreasing function of ¢(x) and of y, and is a uniformly best
estimator having the same location functions as the arbitrarily given 6*. Since
6** is admissible, it is strictly better than 6* or else is equivalent to 6%, complet-
ing the proof.

If for each 6, F(t, ) is continuous and increasing in ¢, and if for each ¢, F(t, 9)
is continuous and decreasing in 6, then we have the admissible confidence curve
estimator

(7.1) c(8,t) = min [F(,0),1 — F(&, 0)],
where ¢ = t(z) is an observed value.

8. Score quasistatistics and generalized maximum likelihood estimators. For
a given family f(z, 6), 0 € ©, let 6,(8), 62(8) be two functions defined on Q, taking
values in &, and satisfying 6:(8) < 6.(8) and 6,(8) < 6 < 6,(6) for 8 £ Q. Then
for each 8 ¢ Q, a best test at level a(8') of H1:0 = 6:(6') against H.:0 = 6:(6")
is one which accepts H; when the quasistatistic

(8.1) S(z, 6:(8), 62(6)) = [log f(=, 62(6)) — log f(z, 61(6))1/[6:(6) — 6:(6)]

satisfies S(z, 6,(0"), 6:(6')) < G(#, a(6’)), where G(¢’, «(6')) is a constant
such that «(6’) is the probability, when ¢ is true, that this inequality will be
satisfied. For many problems the functions 6,(6), 6:(8), and «(8) can be chosen
so that the generalized score quasistatistic v(z, 0) = S(z, 6.(8), 6:(0)) —
G(8, «(0)), 8¢9, satisfies the conditions of Corollary 1 and hence defines an
admissible estimator 6*(x) as the solution 6 of the equation v(z, ) = 0. If, for
example, Prob {v(X, §) = 0|6} = 0 for 6 £Q, and the set {z | f(z, §) > 0} is
independent of 6 £, then each acceptance region {z|v(z, ) < 0} gives a
best test which is essentially unique (a.e. Py, 6 £ 2), and hence admissible for
testing H(0) and H(6—).
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Again, as

if the derivative exists at each z, for each 6 ¢ Q; consider as above the (locally-
best) score quasistatistic v(z, ) = S(z, ) — G(0, «(0)). If this v(x, 6) satisfies
the conditions of Corollary 1, then an admissible estimator 6*(z) is defined as
the solution 6 of the equation v(x, 8) = 0. It is well known [7] that if for every
set A we have

S [ 1@0 du= [ Z 52,0 an,

then an acceptance region {x |v(z, §) < 0} gives a locally-best test of H(8)
and of H(6); under additional mild restrictions, such as those mentioned above,
these tests are also admissible. Such estimators will be called locally-best esti-
mators. Estimators of this form were proposed on different theoretical grounds
by Tukey (8], in connection with the methods discussed in Section 5 above, and
by Wald [10], who showed that under broad regularity conditions they are
asymptotically efficient. The case G(6, a(6)) = 0 determines (through the
equation S(z, ) = 0) the maximum likelihood estimator é(z), which is thus
shown to be admissible and locally-best under the conditions mentioned.

To illustrate the meaning of the locally-best property in terms of the risk-
curves of an estimator, consider a median-unbiased locally-best estimator, for
which a(6—, 8) = a(0-+, 6) = %; for convenience here we define a(6, 6) = L.
The locally-best property has been defined in terms of the operating character-
istics of tests, represented by a(u, 8) as a function of 6, for each fixed u; and by
a maximum condition on the (absolute values of the right and left) derivatives
of a(u, 0) with respect to 6, at § = w. This condition, when realized, clearly
implies a similar maximum condition on the derivatives of a(u, 6) with respect
to u, for each fixed 6, at v = 6, when continuous partial derivatives of a(u, 6)
exist. And the latter maximum condition directly represents concentration of
the distribution of the estimator around 6.

Estimators defined by use of the various score quasistatistics mentioned may
be called generalized maximum likelihood estimators. (If score statistics have
discontinuous distributions, their use can be supplemented if desired by use of
randomization variables; we omit discussion of this complication.)

If Prob {v(X, 8) = 0|6} = 0 for each 8 ¢ Q, then each such estimator has
the location functions a(8—, 6) = 1 — a(6+, 8) = «a(0). If a(8) = «, a con-
stant, such an estimator is a confidence limit; if @(6) = %, such an estimator is
a median-unbiased point estimator. In the important case that X =
(Yy, ---, Y,), a sample of independent observations ¥, we have S(X, 0) =
>t 8(Y:, 6); the normal approximation (based on the Central Limit Theo-
rem)

a(8—, 6, 8) = Prob {S(X, 6) < 0|6 =&(0) =%
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(using that E(S(X, 0)] 6) = 0) is often close; hence in such cases the maximum
likelihood estimator #(z) is approximately median-unbiased. If S(X, 6) has a
symmetrical distribution under 6, then clearly 8 is exactly median-unbiased.

In some cases, as illustrated below, a family of score quasistatistics, e.g.

(8.3) v(z, 6, @) = S(z, 0) — G(6, ), 0=sas1,
or
(84) v(z, 6, a) = S(z, 0:(0), 6:(0)) — G(6, @), 0=sas],

can be used to determine admissible confidence curve estimators 6(z, @), 0 <
a = 1, as solutions of equations v(z, 6, @) = 0.

8.1 Large-sample approximations. If x = (y1, --- , ya) is a sample of n inde-
pendent identically distributed observations (non-identical distributions can be
discussed similarly),

8z, 6.(0), 6:(9) = 3 S(u:, 6u(9), B(6)).

Let
w(u, 8) = E[S(Y1, 61(w), 82(w))] 6]
and
o*(u, ) = Var [S(Y1, 6:(w), 6x(u))| 6]

exist for each 0, u £ &. We allow 6,(8) = 6.(0) = 0 here, taking S(X, 6, 8) =
S(X, 0) in this case, and assume that 6,(6), 6.(8) are fixed, while n may vary,
in the present discussion.

In the special case v.(z, §) = > S(yi, 6), if v.(z, 6) satisfies the condi-
tions of Cor. 1, then the maximum likelihood estimator 6,(z) is the solution 6
of v,(z, 8) = 0. We have by Khintchine’s Theorem (even if ¢°(u, 6)’s do not
exist) that n'v,(X, u) converges in probability to u(u, 8) when 6 is true. If
u' < 0 < u” implies u(u’, 8) < u(6, §) = 0 < u(u”, 0), then lim, a(u, 6, 8,) =
0 for u # 6; that is, 8, is consistent.

Returning to the general case, for large n the Central Limit Theorem gives
the normal approximation to the distributions of

0a(X, 0, @) = ; S(Y:, 6:(u), 6a(u)) — Ga(u, a):

G.(u,a) — nu(u, 0))
nto(u, 0)

)

(8.1.1) Prob {s,(X, u, a) < 0|0} = @ (
and for u = 6, the approximate determination of G,(6, «):

(8.1.2) a=% (%) ,or G,(6, a) = n*o'(o, 0)‘1’_1(01),
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which in the preceding formula gives

. 0) (6, 0) __
13) P J(X,u) <0]60) =a(—nt% ’ ! )
(8.1.3) Prob {v.(X,u) < 0|6} ( na(u,(?) +a(u,0)(b ()
For the maximum likelihood estimator, G, = 0, corresponding to ¢ = % in
these formulae. Thus the risk curves of the confidence limit estimator 6* =
0.(z, o) determined by v.(z, 0, ) = 0 are approximately

®(h(u, 6, a, n)), u <6,
(8.1.4) a(u,0,6,(+, @) =
1 — ®(h(u,0,0,n)), u>0,0<a <1,
where
_ lf/-"(u, 0) 0(0) 0) —1
h(u, 8, ¢,n) = —n o) + o) & (a).

Here the sufficient (and necessary) condition for consistency of 6,(z, ), for a
fixed o, 0 < @ < 1, is again that v’ < § < w” imply u(u', ) < 0 < u(u”, 6).

These approximations are of some theoretical and practical use in connection
with the sometimes-difficult problem of verification of the conditions of Corol-
lary 1, as illustrated in the discussion of Example 1 in Section 9 below.

8.2 Local approximations for locally best estimators. In cases where there exist
precise estimators, that is estimators whose risk curves are small except for u
very near 6, it is natural to center attention on small neighborhoods of the
possible true values 6, and to consider estimators whose risk curves are relatively
small in such neighborhoods, such as those based on score quasistatistics with
6:(0) — 6,(6) small or zero for all 6. If y’'(u, 8) = [6/(0u)]u(u, 8) and o’ (u, ) =
[0/(3u)]o(u, 0) exist, then A’'(u, 6, o, n) = [8/(du)]h(u, 8, @, n) gives the Taylor
series approximation

(8.2.1) h(u, 6, e, n) = h(6, 0, a, n) + h'(6, 8, o, n)(u — 6)

and a corresponding alternative form of the above approximation to
a(u, 8, 6.(-, «)). In the special case of locally-best score quasistatistics, since
«(6, 8) = 0 and u'(6, ) = o°(6, 6), we find

(822) h(u, 6, a,n) = n'o(6,0)(0 — u) + 37 (a) [1 + ‘; ((: :)) 6 — u)].

In the first term, the coefficient n's(8, 8) of the error (6 — w) is (1(0))*, where
I1(9) is Fisher’s “Information in X at 6.” The second term is zero for a = %
and for the maximum likelihood estimator; for other estimators, the first term
dominates the second as n increases. The indicated approximations to risk curves

are

(8.2.3)  a(u, 0, 8,) = a(u, 6, 0.(+, .5)) = &(—n's(6, 0)|u — 6]),
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and for o = %
a(u, 6, 0.(-, a))
S | _ -1 01(0;_0_) _ ]\l
d){ n'c(6,0)(8 —u) + & (a)[a((i,e) (0 —u)+1 f,u<0

1 —®{ --- same argument --- }, u > 6,

It

(8.24)

(more roughly) &{— n's(6, 6) |lw — 6]}.

II-

These approximations exhibit the approximate normality of distribution of
these estimators for large ». While locally best estimators are in general not
comparable with other estimators (e.g., those above with 6,(8) < 6,(6) for all 6)
having similar location functions except in problems of a simple structure, the
designation “Information” for I(8) is clearly appropriate and useful for cases
in which so much precision is attainable that interest is practically restricted to
very small |u — 6|, in which case an appropriate choice of an estimator will
usually be one which is locally best or perhaps one defined as above with 6,(6) —
6,(0) small for all 6.

It should be noted that the preceding approximations which utilize a Taylor
series approximation are not accompanied by bounds on errors of approxima-
tions. Even in cases where such approximations are very close, under a severely
nonlinear transformation of the parameter space (6§ — n = n(8) with »(8) dif-
ferentiable and increasing) such approximations can become very inaccurate.
Hence the principal concrete value of such approximation formulae seems to
be that they provide convenient quantitative conjectures which are more or
less plausible but which require independent confirmation or disconfirmation
for specific problems and sample sizes. Similar remarks apply to the preceding
approximation formulae based on the Central Limit Theorem only, with the
qualification that such approximations could be termed ‘“less asymptotic” than
those which also use the Taylor series approximation, in the sense that the former
approximations are unaffected by monotone transformations of the parameter
space, and their use can in principle be accompanied by use of the known bounds
on errors in the Central Limit Theorem approximation.

8.3 Remarks on asymptotic effictency of estimators. The theory of the asymptotic
efficiency of maximum likelihood estimators (cf., for example, Cramér [11], pp.
489-490, 500-504) utilizes a criterion of asymptotic efficiency which is restrictive
in that it applies only to estimators having asymptotically normal distributions
with means equal to the parameter estimated ; such estimators are clearly asymp-
totically median-unbiased (probability of underestimation approaches 1 as =
increases). It is advantageous to use a less restrictive criterion of asymptotic
efficiency, one which applies to all (sequences of) estimators which are asymp-
totically median-unbiased. In order to embrace confidence limit estimation as
well as point estimation, it is advantageous to define a criterion of asymptotic
efficiency which can be applied to any sequence of estimators whose probabilities
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of underestimation (at each 6) converge with increasing » to a fixed constant a.
0 < a < 1; any such sequence may be termed an asymptotically valid sequence
of confidence limit estimators (of specified coefficient «).

Under broad conditions (some simple ones were given above) consistent
estimators exist; it is then natural to define asymptotic efficiency of estimators
in terms of the properties of risk curves of estimators in the neighborhood of the
true value of 8: an asymptotically efficient sequence of confidence limit esti-
mators may be defined informally as one which is asymptotically valid and
asymptotically locally best. The estimators defined above and illustrated in the
following section based upon quasistatistics of the form v,(x,, 6, a) =
S(zn, 0) — Ga(8, a) provide examples of such estimators, and have the further
properties of being exactly (non-asymptotically) valid and locally-best (and
typically admissible). Additional examples are based on quasistatistics of the
form v,(2a, 0, @) = S(Zn, 01,2(0), 022(0)) — Gn(6, @) where as n increases
02,,(8) — 61,,(0) decreases to zero rapidly enough to give the asymptotically
locally-best property; such estimators have the further properties of exact
validity and admissibility, and the functions 6:,(8) can be chosen so that for
any finite sample size a suitable emphasis is given to avoiding errors exceeding
specified positive magnitudes; for practical applications, such estimators seem
preferable in principle to (exactly) locally-best estimators.

The usual asymptotic theory (Cramér, l.c.) is free of the important assump-
tion (b) of Corollary 1 above. From the present standpoint it may be observed
that the principal role of the regularity assumptions of the usual theory is 1o
guarantee that with increasing =, for each 6, the probability of the set of points
x, on which S(z, , ) is decreasing in u (at least for u near 6) approaches unity
(that is, our condition (b) “tends to hold’’ as n increases).

The remarks of Lehmann [12] on the limited value of any exclusively-asymp-
totic theory of optimum tests apply with equal force to estimation theory
Asymptotically efficient estimators may approach efficiency at arbitrarily slow
rates as n increases. Only on the basis of an auxiliary non-asymptotic investiga-
tion of the quantitative and /or qualitative (optimality) properties of an asymp-
totically efficient estimator can it be recommended in an application with
specified (finite) sample size.

9. Examples.

ExampLE 1. Normal mean. Let x = (11, - -+, y.) be a sample of n independent
observations from a normal distribution with known variance, say o° = 1, and
unknown mean 0, —» < 6 < «. Then

n 3
flx,8) = (2r)™* exp{ — 1> (ys — 0)2}.
1=1
Since this example, with the statistic #(z) = § = i y:/n, satisfies the con-
ditions of Lemma 2, estimators of the form 6*(%) which are nondecreasing func-
tions of § constitute an essentially complete class of admissible estimators. In
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the general case where ¢ has any known positive value, letting ®(u) denote the
standard normal c.d.f, we have uniformly best confidence limit estimators at
each level e or 1 — a:

(9.1) 0z, 0) = § — & (a)on ™.

When a = 3, we obtain the classical estimator 7, which is seen to be a uni-
formly best median-unbiased estimator. Since 7 is independent of ¢, it can be
used even when o is unknown, in which case it remains median-unbiased and is
uniformly best over all values of 6 and o. (The latter property can be represented
formally in term of risk curves a(u, 6, o, 6*), representing the distributions of
any estimator 6*(x) as they depend upon 6 and ¢. This illustrates a general
method of extending the treatment of the present paper to problems involving
nuisance parameters.) The same property clearly holds for each of the classical
least squares estimators of an estimable function in linear regression theory
under normality assumptions, and for the classical estimator of each component
of the mean of a multivariate normal distribution. (In a different formulation
of the estimation problem, Stein [13] has shown that in general the latter classical
estimators are inadmissible; this result is based upon a decision-theoretic formu-
lation in which the particular form adopted for the loss function plays a crucial
role.)

ExAMPLE 2. Logistic mean. Let z = (y1, -+ - , y») be a sample of n independent
observations from a logistic distribution with unknown mean 6:

Prob (Y £ y|6) = ¥(y — 6) = (1 +exp{—(y — O)})7,
—o <y < o, —o < § < o;
Y has the density function

(92.1) y(y—0) =exp{—(y— 0)}/(1+exp{—(y—8)})’, —o <y < =.

For any fixed A > 0, taking 6,(8) = 6 — A, 6,(6) = 6 + A, determines a score
quasistatistic

1

S(z,0 — 8,6+ 4) =
(9.2.2)

[ tog vtre =0 - 2) —rogwr =0 + 0],

For any fixed o, 0 £ o £ 1, taking a(0) = « determines a score quasistatistic

(9.2.3) v(z, 0, a) = S(z,0 — A, 0+ A) — G(8, a)

which satisfies the conditions of Corollary 1 of Section 6 above, and hence de-
termines an admissible confidence limit estimator 6* = 6(x, a) as the solution
6 of the equation v(z, 8, @) = 0. Since 0 is a translation parameter, G(8, ) is
independent of 6, and may be written G(«). By symmetry, G(.5) = 0. G(a)
can be determined approximately, except for a very near 0 or 1 and for very
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small n, by use of the Central Limit Theorem. A locally best confidence limit
estimator §* = 6(z, &) is determined as the solution 8 of the equation

(9.24) v(x, 0, a) = S(X, 0) — G(a) = 0.

Here S(y, 6) = [9/(06)] log ¥(y — 0) = 2¥(y — 6) — 1; ¥(Y — 6) has, when
0 is true, a uniform distribution on the unit interval; hence when 0 is true the
c.df. of D7 ¥(¥; — 6) (and hence that of S(X, 0)) can be calculated as in
Cramér [11], pp. 244-246. The normal approximation gives (since

‘72(0) = Var [S(Y, 0)‘ 6] = %, Var [S(X7 G)I 6 = n/3))
G(a) = 7' (a)(n/3)7

a = } gives exactly G(.5) = 0 and determines the maximum likelihood estimator
b = 6(z, .5). In general, a locally best confidence limit estimator 0(z, a) is
determined (approximately, except fos @ = .5) as the root 6 of the equation
S(z, 8) = &7'(a)(n/3)?, or

(9.2.5) iZil\I'(y; —68) = (n/2) + & (a)(n/3)/2.

Such an equation is easily solved numerically by use of Berkson’s tables of
¥(u) ([14]).

The present example serves also to illustrate the determination of an ad-
missible confidence curve estimator by use of a family of quasistatistics as de-
scribed at the end of Section 6 above. Each of the families of quasistatistics
v(w, 0, @), 0 < a < 1 considered here (each based upon a fixed A = 0) has
the property that 6(zx, ) is, for each fixed z, decreasing in «; in fact, for each z,
0(z, a) decreases continuously from « to — « as « increases from 0 to 1. Thus
for each observed r, each 6 (—® =< 6 < «) will be a confidence limit 6(z, )
for some a; we can conveniently determine the required solutions 6(z, a) of

TABLE I

i 0; Si approx. a; exact a;
1 2.0 —0.559 .288

2 1.4 —0.256 .399

3 1.18 —0.758 .470

4 1.12 —0.031 .488

5 1.08 —0.0005 .4998 .4998
6 3.08 —0.927 177

7 4.0 —1.166 .122

8 5.0 —1.511 .065

9 6.0 -2.0 .023
10 7.0 —2.462 .007

11 —1.0 1.924 .973

12 -2.0 2.523 .994 .998

13 0.0 1.0 .841 .833
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v(z, §, @) = 0 in the form
(9.26) a(z, 6) = Prob {S(X, 6) < S(z, 0)| 6} = &(S(x, 6)(3/n)})

for as many values of 6 as desired.

NUMERICAL EXAMPLE. Let x = (31, 42, ¥3) = (0, 0, 6). Letting 6, denote a
trial valueof 8, S; = S(z, 0;), and a; = a(z, 6;) = Prob {S(X, 6;) =< S(z, 6,)| 63},
¢ =1,2, ---,and taking 6, = § = 2 as a trial value plausibly near 6(z, .5) = 6,
we obtain

3
81 =22 ¥(y;—2) —3 = —.559 & =&(—0.559) = .288.
=1
Further similar computations are summarized in Table I and in Fig. 1, a sketch
of the confidence curve ¢(6, x) = min [a(z, 8), 1 — a(z, 0)].
The closeness of the normal approximations can be checked in the present
case by use of the exact formula (based on Cramér, l.c.)

(z3/6, 0==z=1,
(9.2.7) a(z, ) = {26 — (z — 1)*/2, 1252,
1 — (3 —2)%s, 2 <253,

where z = 2(x, 0) = (S(z, 8) + 3)/2. The approximation is seen to be quite
adequate here. In other examples, if exact values of a(x, 8) cannot be obtained
by use of standard tables or tractable integrals, one may consider checking ap-
proximate values of a(z, 8), for a few values of 6 of particular interest, by use
of (a) the error-bound on the normal approximation, (b) numerical integration,
(¢) empirical sampling (Monte Carlo), or possibly (d) an asymptotic expan-
sion. For (a) and (d), see Wallace [15].

The values 8; above, for ¢ = 2, --- , 5, were determined by 6,41, = 6; + S;,
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based on Fisher’s formula 6,4, = 6; 4+ S(z, 6:)/Var [S(X, 6,)| 6.] for iterative
calculation of maximum likelihood estimates.

The values 6 and 6;; above were chosen as trial approximations to the con-
fidence limits 0(zx, .025), 8(x, .975) respectively, by use of the asymptotic formula
for such confidence limits:

b + &7(.975)/(Var [S(X, 0)] )} = 6 + 2.

The poor approximations obtained provide a limited illustration of the fact that
such approximations are “more asymptotic,”” i.e., may be expected to be often
less close, than the normal approximations to distributions of score statistics.

ExampLE 3. Rectangular mean. Let x = (y1, -+, y») be a sample of n inde-
pendent observations on a random variable ¥ with density

life -3 =sy=s0+3

0 otherwise.

(9.3.1) h(y, 8) = {

with 6 = E(Y) unknown. Let r and s denote respectively the smallest and the
largest of the observed values y; . Let 6* = 6*(r, s) be any function, defined for
all r, s such that » < s < r 4 1, which satisfiess — 3 < 6*(r,s) < r + % and
which is nondecreasing in r and in s. Then 6*(r, s) satisfies the conditions of
Lemma 1 since, for each 6,, {z | 6* < 6,} and {z | 6* < 0,} satisfy the (neces-
sary and) sufficient condition given by Pratt [16] for admissibility of one-sided
tests on 0. (It can be shown that such estimators constitute an essentially com-
plete class.)

For samples of size n = 2, each of the following estimators is admissible and
median-unbiased:

6*(z) = (r 4+ s)/2, the usual mean-unbiased estimator.

o) = [s—4 if s =r 427
= lr+ @ -1)2 ifssr+27
8 (z) = [r+ %, ifr<s—27
—{s—(2;—1)/2, ifrzs—27%

Among median-unbiased admissible estimators, 6’ is uniformly best with respect
to errors of under-estimation, and 6” is uniformly best with respect to errors of
over-estimation. Analogous confidence curve estimators are easily constructed.

For any fixed k, 0 < k < .5, for testing hypotheses of the form H(6,):0 < 6,
or H(8,—):6 < 6,, there is an admissible acceptance region

A0, =f{x|(r+8)/2=260,+Fk s <0, + .5
and another admissible acceptance region

A'(8,) ={z|(r+s)/2=80,—k or r=86,— .5}
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From such tests we obtain admissible confidence limit estimators at each level,
and the corresponding admissible confidence curve estimator:
0,f6 =27+ Horf =s — .5
(93.2) c(6,z) = 2 .
2[5 — |6 — (r 4+ s)/2I, otherwise.

If x = (09, 1.1) = (r, s), or alternatively if z = (0.6, 1.4) = (r, s), we ob-
tain respective confidence curve estimates which reflect that the ‘“amount of
information in a sample’”’ increases with (s — 7):

c(8,x) c(6,x)
] /\ ] m
lo s o 15 ) 5 0o 15
— ) —» —— ) —»

Alternatively, for any fixed k, —.5 < k =< .5, there is for each H(6,) and
H(0,—) an admissible acceptance region

A(8,) = {z| (5 —k)r+ (5+k)s =6, + K.

From such tests we obtain admissible confidence limit estimators at each con-
fidence level, and the corresponding admissible confidence curve estimator:

0,f0 =r+ Horf =s — .5,

(933) c(8,z) = { )
[1 —1|r+s—20/(1 — s+ r)]/2,otherwise.

For the two samples considered above, we obtain the respective confidence
curve estimates:

c(8,x) c(6,%)
] /\ ) /\
lo 5 o 15 o s o 15
- 8 > — —>

Since the last curve lies under that given by the first estimator for the same
sample, it provides stronger inferences about 6. This is not inconsistent with the
admissibility of the first estimator, which provides (at most confidence levels)
stronger inferences (shorter confidence intervals) from relatively uninformative
samples like the first sample.

ExampLE 4. Cauchy median. Let Y have the Cauchy density function A(y, §) =
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I/e(1 4+ (y — 0)?), —o <y< o, —0 <0< . Then S(y, 6) =
2(y — 6)/[1 + (y — 6)%. Taking v(z, §) = S(y, 6), the conditions of Corollary
1 are satisfied, and v(z, 8) = O defines the median-unbiased locally-best esti-
mator 6*(y) = y. However for a # .5, 0 < a < 1, the conditions of Corollary
1 are not satisfied by »(z, 8) = S(y, ) — G(a). For x = (y1, y2), even for
o= .5 000 = Sz, 0 = >,y S(y:, 0) fails to satisfy the conditions of
Corollary 1. (For |y. — | large, S(z, ) = 0 has three roots §.) Thus in
general there do mot exist confidence limit estimators (nor median-unbiased estima-
tors) which are locally-best uniformly in 0.
Detailed treatment of other examples will be reported elsewhere.

10. Introduction to general theory of admissible estimators. To illustrate the
general theory of admissible estimators, and the place of the methods introduced
above within the general theory, we consider the case in which Q is finite: @ =
{616 =1,2, ---k}. The principal features of the general case (in which Q is
any subset of the real line) can be illustrated conveniently in this case, for which
the complete theory can be developed by relatively elementary methods. For
any such estimation problem, we have a specified family of density functions

f(x, 8),0 =1, --- | k. For each estimator 6*(z), let
Prob [8*(X) = 8], if w6,
b(u) 0, 0*) = I
0, ifu=20.

We may interpret such an estimation problem in relation to a different multi-
decision problem, that of choosing, on the basis of an observed value z, one of %
specified simple hypotheses. Any measurable function 6*(z) taking only the
values 1, - - -k, represents both a possible solution to the multidecision problem
and an estimator.

For the multidecision problem, the merits of each decision function 6*(x) are
represented completely by its error-probabilities b(j, 6, 6*). A decision function
6* is called admissible if there is no other for which all corresponding error-
probabilities are at least as small, with at least one strictly smaller. Complete
classes, minimal essentially complete classes, etc., are defined correspondingly
(cf., Lindley [1] and Wolfowitz [17]). It is readily seen that a necessary condi-
tion that #*(z) be admissible for the estimation problem is that it be admissible
for the multidecision problem.

The relations between the estimation and multidecision problems can be il-
lustrated further in terms of techniques, related to Bayes’ formula, which play
basic roles in the theory of each problem: For any estimation problem specified
as above, let ¢ = g(u, 0) be an arbitrary real-valued function such that g(u, 8) =
0 for u, 8 = 1, ---k; any such function will be called a weight function (for the
estimation problem). For any such ¢ and any estimator 6*, we define the Bayes
risk:

k

(10.1) R(qg, 0*) = ;l “Z=}1 q(u, 8)a(uy, 6, 6%).
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For any multidecision problem specified as above let @ = Q(u, 8) = 0 be an
arbitrary weight-function; then for any multidecision function 6* the correspond-
ing Bayes risk is:

(10.2) R(Q, 6*) = Z Z Q(u, 0)b(u, 6, 6*).
=1 u=1
For any given 6* and q(u, 9), it is easily verified that
(10.3) R(g 6*) = 22 22QU, 9), b(j, 6, 6%),
where
2. q(u,0), forj > 6,
jzu>0
Q5,0 = 0, forj = 9,
Z q(u, 9), forj < 6.
jifu<

For each 6, Q(j, 0) is nondecreasing in j for j = 6, and nonincreasing in j for
j £ 6. Thus each weight-function ¢(w, 6) for the estimation problem determines
uniquely a weight-function Q(j, 6) for the multidecision problem which has, for
each 6, a single relative minimum; and conversely each such @ determines a
unique g. Thus the Bayes solutions 6* for the estimation problem (i.e., the func-
tions * which, for some given g, minimize R(g, §*)) are a subclass of the Bayes
solutions for the multidecision problems, characterized by the preceding re-
striction on the possible forms of the weight function Q(u, 6) for the latter
problem.

- For any given Welght-functlon g, the determination of Bayes estimators is
conveniently carried out as follows: Let @ be determined by ¢ as above. Then
R(g, 6*) = R'(Q, 6*) is minimized if, for each x, 6*(z) takes the (a) value u
which minimizes s Q(u, 0)f(z, 8). Various simple conditions for admissi-
bility of such Bayes multidecision functions, when applicable, immediately imply
admissibility of the same functions as estimators.

Various specific formulations of the estimation problem can be exhibited as
special cases of the present formulation, corresponding to various choices of the
weight-function g. This applies in particular to mean-squared error and other
loss function formulations; choice of suitable simple loss functions, taking at
most two positive values for each 6, leads to estimators defined by score quasi-
statistics.
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