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A COMBINATORIAL LEMMA FOR COMPLEX NUMBERS!

By GrLEN BaXTER

Aarhus University, Aarhus, Denmark

Although combinatorial lemmas have been used quite successfully in analyzing
sums of random variables [1, 2], to the best of our knowledge these considerations
have been restricted to the case of real numbers and real variables. It is our
purpose in this note to show by a simple example that combinatorial lemmas
for complex numbers can also be given and applied to analyzing random walks
in the plane.

1. Random walks in the plane. Let {Z;} be a sequence of independent, identi-
cally distributed complex-valued random variables. Let Sy = 0, and let S, =
Ziv+ -+ Zy,n = 1. Weecal Sy, Si, -, Sa, -+ a random walk in the
plane. The combinatorial lemmas given below are concerned with the convexr
hull of the random walk. Specifically, every walk Sy, -+, S, (n 4+ 1 points in
the plane) determines a smallest closed, convex set containing these points.
The boundary of this set is called the (convex) hull® of Sy, ---, S.. Later,
we will be concerned with three properties of the hull of a walk. We list these
properties in the form of variables for later reference.

K, : the number of variables Z;, ---, Z, which are line segments in
the hull of Sy, -+, S,, '

(1) H,: the number of line segments (sides) in the hull of So, ---, S,,
L, : the length of the hull of Sp, ---, S. .

2. Combinatorics. Let 2,, 2,, - - - , 2, be a set of n» complex numbers and let
ss=2a+ -+ a.lford,%, -, i is any permutation of 1,2, --- | n, we
let s,(¢) = 2i; + - -+ + 2;, . The notation 2, will represent the sum of the vectors
in a subset 4 of 2;, - - -, 2z, while z, will denote the (non-directed) line segment
corresponding to 2, . We need an important definition which seems to be the
natural analogue of “rational independence” for real numbers.

DerFINTTION. Let 21, - - -, 2, be complex numbers with partial sums sy, -- -,
s, . We say the vectors 2, - -+, 2, are skew if 24 is parallel to z; only when
A = B.

Every vector z in the plane, when extended along its length, determines two
half-planes which we call the right and left half-planes of 2z, respectively. We
include the line itself in both of the half-planes.

LeEMMA 1. Let 21, -« - , 2. be skew vectors with sum z. Then, there exists exactly
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2 Some authors call this the boundary of the hull.
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one cyclic permutation o of 21, «+ - , 2, sSuch that the points so(a), $1(a), - - 8a(c)
all lie in the left (right) half-plane of z. (See Fig. 1).

Fia. 1

Proor. Since 2z, -, 2, are skew vectors, there is at most one point among
S0, *** , Ss—1 in the right half-plane of z which is a maximum distance (possibly
zero) from the line determined by z. If s is this point (k = 0,1, -++,n — 1),
we takeo: b+ 1, -+ ,n, 1, - -+, k. The uniqueness of ¢ follows from the unique-
ness of the index k. Note that among all n! permutations of 2,, - - - , 2, exactly
(n — 1)! are such that so(a), -+, 8,(c) lie in the left-half plane of z.

Let z;, -, 2, be a fixed set of skew vectors. Every permutation o determines
a “path” so(o), 81(a), + -+, sa(s). Since each line segment of the hull of this
path connects two points of the path, each line segment of the hull is a sum of a
subset of the vectors 2, : -+, 2, . Moreover, this subset uniquely determines
the line segment. The next lemma tells us how often a particular segment is
likely to appear in the hull of a path. To avoid having to adopt a convention for
degenerate polygons when n = 1, we will assume that n = 2 from now on.

LemMA 2. Let 2, -« , 2, be fizred skew vectors and let A be a fixed subset of m
of these vectors. Then, the line segment z4 appears in the hull of exactly

2(m — )I(n — m)!

of the n! paths so(a), + + + , su(0) as o ranges over all permutations.

Proor. Let 2,41 = —s, and let A’ denote the complement of 4 in (2, « -,
Zn s Zny1). We call so(a) , +++, 8a(0), Sat1(d) = so(o) the completed path asso-
ciated with z; , - -+, 2;, . In order that z, (or equivalently z,') appears in the
hull of sy(a), - -, sa(a), it is necessary that 2, = siym(c) — sx(a) for some k.
We can thus think of any completed path sy(a), <+, Sp41(e) whose hull con-
tains 24 as subdivided naturally into two ordered sets of vectors, (z4,,, **-,
Zipom) WA (Zigypmirs ** 5 Ziny Zn41, *** , 2it). The paths corresponding to each
of these ordered sets of vectors must lie in the same half-plane of 2, . Moreover
any ordering of the vectors in A and A’ subject to the condition that their
paths lie in the same half-plane of 2, gives rise to a completed path so(o), * -,
sa1(0), the origin (and hence the value of k) being determined from the position
of 2,41 in the ordering of A’. Thus, we need only to count how many different
pairs of orderings of A and A’ there are such that both subpaths lie in the same
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half-plane of z, . From Lemma 1 we find that there are (m — 1)!(n — m)!
ways of ordering A and A’ so that the subpaths both lie in the left half-plane of
2z, . Taking into account also the right half-plane of 2, the proof is completed.

3. Application to random walks in the plane. In the applications Z; = X; +
1Yy, where X; and Y, are real-valued random variables with a joint density
function. This implies that, with probability one, Z;, --: , Z, are skew vectors.
If o: 4y, -+, s is & permutation of 1, - -+, n, then K,(¢), Ha(s), and L.(o)

are defined as in (1) in terms of the sums So(c), -+, Sa.(c) of the permuted
vectors Zi, , + 5 Zi, -
ExampLE 1.

Expectation of K, . By the identical distribution property, E{K.} = E{K.(s)}
for any permutation o. Thus,

(2) n\E{K,} = Ef ;) K.(0)}.
For any skew vector values of Z,, -+, Z,, the summation on the right in (2)
equals the total number of times than any of the n possible one point sets 4 =
{Z:} determines a segment Z, in the hull of So(¢), -+, Sa(c) as o ranges over
all permutations. This means
(3) S Kuo) =22, (n— 1)1 =2nl
' m=1

Thus, we expect to find exactly 2 of the vectors Z;, - - -, Z, as line segments in
the convex hull of So, -+ -, S» . We note in passing that (3) is a universal rela-
tion, valid for any values of the skew vectors.

ExAmMPLE 2.

Ezxpectation of H, . Once again we have E{H,} = E{H.(c)} for every permu-
tation ¢. Thus,

(4) nIB(H,} = E{ 2@ Ha(0)}.
For skew vector values of Z;, -+, Z, the summation on the right in (4) is
equal to the total number of lines in the n! hulls of the paths So(a), < - -, Sa(o)

as o ranges over all permutations. Equivalently, from Lemma 2

2 Ha(e) = 2 2(m — Dl(n — m)!

(5) =23 (m—l)!(n—m)!(?n)
= 2n! :/_:“,1 1/m.

Finally,

(6) E{H,} =2 Z 1/m = 2logn.

m=1
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Once again we note that (5) is a universal relation valid for any sequence of
skew vectors.

ExAMPLE 3.

Expectation of L, . (Spitzer and Widom [3])% It is easy to see that

(7) nIB(Ld = B{ 20 Ln(o)}.
By an argument similar to that leading to (5), we find
(8) 2@ La(o) = 242(m — 1)l(n — m)!|Z.4].
Thus,
E{L}

;2(m — D)l(n — m)\E{|Z4]}/n!

i;l 2(m — 1)\(n — m)zc‘n) E{|Sal} /0!

n

> E{|Sul}/m.

m=1
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A COMBINATORIAL DERIVATION OF THE DISTRIBUTION OF THE
TRUNCATED POISSON SUFFICIENT STATISTIC!

By T. CacourLos

Columbia University

Let X,, - -+, X, be independently distributed with the Poisson distribution
truncated away from zero, i.e.,

et W

(1) P(z) = —

— x=1,2, ++--- .
e zl’ ¢

Tate and Goen showed [2] that T' = 371 X, has the distribution
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