QUEUES WITH BATCH DEPARTURES I

By F. G. Foster AND K. M. NYUNT

London School of Economics

1. Introduction. This paper has a pattern closely similar to that of [4]. The
following single-server queueing system is considered.

(i) Units arrive at the sequence of instants 7;, 72, -+, such that the inter-
arrival times, 6, = 741 — 7 > 0 (n = 1,2, --+), are identically distributed
independent random variables with an exponential distribution function,

F(z) =Plb.S2]=1—¢™ (x = 0).

Put e = [§2dF(z). Then A = 1/a.

(ii) Units are served in batches of exactly k units by a single server, in order
of arrival. Denote by x, the service time of the nth batch to be served. We suppose
that {x.} (n = 1,2, ---) is a sequence of identically distributed independent
positive random variables, independent also of the sequence {7,}, with common
distribution function, H(z) = Plx. = =z]. Put ¢(s) = [Ce ™ dH(z),
B = [cxdH(x) and u = 1/B8. Define p ="M\/p.

In the terminology of Foster [3], this system can alternatively be described as
having the 1-input (arrivals) untriggered with input quantity constantly unity,
and an exponential distribution for the 1-input time. The O-input (departures)
is triggered with input quantity constantly, k and a general distribution for the
O-input time. The system has infinite capacity. For definitions of these concepts,
the reader is referred to [3].

Such a batch-size model does not appear to have been treated explicitly in the
literature, although it has obvious applications. A simple special case of it is,
however, implicit in the work of Jackson and Nichols [5]. These authors suppose
that an inter-arrival time devoted to one unit is composed of k consecutive
phases, each exponentially distributed. If instead, we think of this unit as com-
posed of & subunits (corresponding to the phases of arrival) then we have the
idea of batch service: Jackson and Nichols treat the special case of exponential
service times.

Justification for the explicit consideration of batch departure systems resides
in the fact that the results one can obtain are elegant, and form a natural generali-
zation of the case of unit departures, as treated, for example, in Kendall [6].
The analysis in this paper is similar to that in Bailey [1], but the model is in fact
different, and the results obtained here are new. In the terminology of Foster
[3], the model Bailey considered differs from the present one in that the 0-input
in Bailey’s model is untriggered with controlled input quantity of zero to k units,
depending upon the state of the system: the input being, for example, virtual
when the system contains no 1’s. In other words, service begins from time to time
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whether or not there happen to be any units in the system. Bailey obtains for
this system the equilibrium distribution of queue-size at instants just before
service is due to begin.

Denote by £(t), the number of units in the system, including the batch under
service, at the instant ¢. Let o, be the instant at which the nth batch (of size k)
departs from the system on receiving service. Put ¢, = £(o, +0),n = 1,2, --- .
We shall determine the probability generating function (p.g.f.) of the limiting
distribution,

p}- = limy,e Plé = Jl.

The distribution {p]} exists and is independent of the initial state of the system,
if, and only if, p/k < 1. The proof of this statement follows the same lines as in
the case, k = 1, as given in Foster [2].

Let us denote this batch departures model by E./ G*/1 where E; indicates an
exponentially distributed inter-arrival time, and G" indicates that the service
time has a general distribution, and that service is in batches of k£ units. We shall
consider its relation to the unit departures model, E;/G/1, where E; indicates an
Erlang distribution with parameter k. We shall derive the equilibrium dis-
tribution of queue-size at instants just after departures for this latter system in
terms of {p}}. As a special case we shall consider the system, E;/E,/1. In our
previous paper [4] we obtained the equilibrium distribution at instants just before
arrivals for the same system. In this paper we shall establish the identity of the
two formulae, thus verifying a special case of the general proposition that, for the
system G/G/1, when these exist, the equilibrium distribution of queue-size at
instants just after departures is identical with that at instants just before arrivals
(¢f. Khintchine [7]).

2. The system E;/G*/1. Let {».}(n = 1,2, ---) be a sequence of identically
distributed independent random variables with distribution,

kj=P[Vn=j], j=07172)...7

where
@® —A\r J
b= [ 0 g,
] J!
Then », is thought of as the number of units joining the queue during the service-
time of the nth batch.

Put «(2) = D 2okz’. We note that x(z) = ¢{A(1 — 2)}. We assume that
p/k < 1, and also that x(2) is regular within the circle 2| = 1 + §, where 3 is
some small positive number. This implies a slight restriction on the distribution,
H(z), which will always be satisfied in practice. It follows from Rouché’s theorem
that the equation, :

(1) | W) = 2,
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has exactly k roots inside or on the unit circle. For «'(1) = p < k, so that for
some small positive 8, k(1 + 6) < (1 + 8)*. Therefore, on the circle, |z| =144,
[k(2)| = D kjl2)” < (1 4 8)* = |¢*|. Clearly, z = 1 is one root, and it is a s1mple
root. Denote the other k¥ — 1 roots by &;,8;, -+, 0 -

Define P (z) = D 2op'e’.

TrEOREM 1.
- R CERICESIE I (VRS
P'(z) = 2/k(z) — 1 )

Proor. The process, {£,}, is a Markov process with transition matrix described
by the relations:

fnpn = max [£, — £, 0] + v, n=12 .

The random variable, max (¢, — k, 0], has, in the limit as n — o, the generat-
ing function,
k—1

Pt(2)s™* — :Zo: pH(™* —1).

Therefore, since v, and max [£, — k, 0] are independent, we have the relation,
k—1

PT(z) = (PT(2)e" — 2 pf(2" — 1) }k(2),
7=0
which, on simplifying, reduces to

 Sae-a
P == =1

Since P*(2) is a probability generating function, it is absolutely convergent
in the region, |z| = 1. Therefore, the roots of the numerator in this region must
coincide with those of the denominator, and the latter are

1,61,52,"',5k_1.

Therefore, since the numerator is a polynomial of degree k, we have
k—1

k—1
o =) =0 - DI @ -,
7=
where C is a constant to be determined. Using P*(1) = 1, we find that
k—1
¢=G-p/T1-05)
=

and (2) follows.
If (1) has any roots outside the unit circle, we shall denote them by

Bi, B2, -
and we define ¢; = 1/8; .
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ExampLE 1. If the service-time distribution is Erlang, E, , then
k(z) = {1 + [o(1 — 2)/r}},
and the denominator of (2) becomes
21+ [o(1 = 2)/r))" — 1,
which, being a polynomial of degree k& + r has precisely the (k¥ + r) zeros,
1,061,082, -+, 0-1,B1,B2, ", Br,

and so can be expressed as
k—1 r

C(z — 1)]I=Il (2 — 5;)}} (z — 85),

where C is a constant to be determined. Therefore, substituting in (2) and
normalizing, we obtain

@ o -1(=5) -G

where the e;’s are the reciprocals of the roots outside the unit circle of
the equation,

(4) {1+ [p(1 — 2)/r]}™ =2~

We can show that these roots, and hence the ¢;’s are distinet. For suppose,
on the contrary, that (4) has a double root, say, a. Then for z = a, we should
have, by differentiation of (4).

(5) o{l + [p(1 — 2)/r} 77" = k"
Dividing (4) by (5) and simplifying, we obtain

a = (k/p)l(r + p)/(r + K)].
But this value must now satisfy (4); that is
(6) {(r+ p)/(r + B} = p/k.

Now we are assuming that the traffic intensity, p/%, is less than unity, say o/k =
1 — §, where 0 < § < 1. Substituting in (6) and putting b = k/(r + k), we get
after simplifying,

1—bs=(1—29)"

But this is impossible, unless § = 0. Therefore, (4) has no multiple roots, and
so the e¢;’s are distinct.
It follows that we can write

@) PHe) = 304/ — )
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where

(8) Ci=@1- ei)iI;‘Ij (1 = &)/(1 = e&/e)).

Formula (3) gives the p.g.f. of the equilibrium distribution after departures
for the system, E;/E+/1. The traffic intensity is p/k. We note here for later use
that if the traffic intensity is changed to rp/k, the e;’s become the reciprocals of
the distinct roots outside the unit circle of the equation,

9) [1+ p(1 —2)]7" =4~

ExawmpLE 2. If the service-time distribution is exponential, E; , we have k(z) =
{1 4+ [p(1 — 2)]}7", and (3) becomes

(10) Pte) = (1 —¢/(1 — e) .
where ¢ is the reciprocal of the root outside the unit circle of
(11) (14 (1 =27 =4

The formula (10) is for the system E;/E%/1, with traffic intensity, o/k.

3. Relationship with the unit departures system E./G/1. If £ is the number of
units left by an arbitrary departing batch, then the number of complete batches
of size k in the system at this instant will be

¢ = [g/k])

where [z] denotes the greatest integer not greater than x.

We now interpret the random variable ¢ as the number of units left by an
arbitrary departing unit in the unit departures system E;/G/1, which has mean
service time 1/u and Erlang inter-arrival time distribution, E; , with a mean of
k/X. The traffic intensity is thus p/k.

We consider the distribution of ¢. Define

q}'. = P[¢ = .7]:
and put
Q*(2) = 247
o
Now define
i
Pf = > p}
=0
oy
Qf = ;041' .
Then
0 X +
(12) >pir =T
7=0 1—2z
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and
(13) g’ Qi = ?ﬁzi
We have
QI)F =P ;e'-—l
Q-l‘- =P -2‘;»'—1
and generally
QF = Plyvea J=0,1,---

Therefore,

-+ o .
Q (Z) = Z P.(‘-j+1)lo—1 ZJ.

1—2 5
But from (12) we have

+ P+(1)) dv
(1 — U)DH-I 4

where C is a contour around the origin excluding the poles of P*(2)/(1 — 2).
Therefore,

Q+(z) _y 7 / P*(v) dv

62w Jo (1 — w)pGHOE?
so that
_ P*(v) dv
(14) Q') ¢ (1 — o)ok(l — v*2)°

The poles of the integrand within C' are at
v = w2, j=12,.-,k,
where  is a kth root of unity. The residue at v = w’2* is
I/ZkP—F(wj llk)wj I/k/(l J llk)

Therefore, summing the residues, we obtain the alternative formula,

+ 1 —2 P+( lek)wa 1/k
(15) @) = ; [

ExampLe 3. If the service-time distribution is Erlang, E,, then P*(z) is
given by (7), and so from (14),
" _'_l_f Ci(1 —2) dv
(16) Q) = ,;127r1} e (1 — o)1 — o)kl — v*e)

This is the p.g.f. of the equilibrium distribution of queue-size after departures
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in the system E;/E./1. For traffic intensity rp/k, the ¢;’s are the reciprocals of
the roots outside the unit circle of Equation (9).
Now we have
f C;(1 —2) dv
2mi Jo (1 — o)A — v)o*(1 — v"‘z)

1—0*
an f A —¢ v)(l — ) ( 1 - v"‘z)dv
— C,‘ 1 - 'l)_k
-/ 1 —¢v)yv—1)1—v" @,
since the neglected part of the integral has no poles inside C. The integral (17)

is most easily evaluated by considering the single pole.of the integrand out81de
C at v = 1/¢; . The residue is

—Ci/(1 = &)I(1 — ¢)/(1 — €2)].

Since the integrand is rational with denominator of degree at least 2 higher than
that of the numerator, it follows that (17) is equal to minus the residue outside
C. Therefore, we have

(18) Q) = ;0,-/0 — )1 — /(1 — éa).

ExampLE 4. If the service-time distribution is exponential, E; , we have
from (14)

+ _l—z 1 — ¢ dv
V@ = 5 TG yrd =)

— (1 - &/ - é2)

by consideration of the pole at v = 1/¢ outside C. 1/¢ is the single root outside
the unit circle of equation (11). This is the p.g.f. of the equilibrium distribution
of queue-size after departures in the system E,/E;/1 when the traffic intensity
is p/k. The formula is, however, found to be identical (apart from notation)
with that obtained by Jackson and Nichols [5] for the distribution before arrivals
in the same system. A more general case of this observation is considered in the

next section.

4. Relationship between the queue-size distributions at departure and at
arrival points for the system E./E,/1. In our previous paper [4] we obtained the
p.gf., Q(z), for the equilibrium distribution of queue size before arrivals for the

system E/E./1,

_1-z P(®) dv
19) o@) =122 TR
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C is a contour around the origin excluding the poles of P(v)/(1 — v), and
P(y) = - Vi)
2 :I=Il (1 — v
where for traffic intensity rp/k, the v;’s are the roots inside the unit circle of
(20) /(o +1—2)f =4

We shall now establish that Q(z) is identical with Q¥ (z) as given by formula
(18) above. We first examine the relationship between the roots, 1/¢;, of (9)
and the roots, v; , of (20).

Now if 1/¢; is a root of Equation (9), then

(21) & =11+ n(l - 1/e)].
Let us define

(22) vi =14 p(1 = 1/¢).
It follows that

(23) e =p/(p+1—1v;)
and, from (21),

(24) v = €.

Now from (23) and (24),
v;=1o/(p+ 1 —v)I"

But this shows that v, is a root of Equation (20), and moreover, from (24), .
lvil < 1.

The relation (22) thus establishes a one-to-one correspondence between the
r roots, 1/¢; , of (9) outside the unit circle and the r roots, v; , of (20) inside the
unit circle. Since we have proved that the roots, 1/¢; , are simple, it follows that
the poles of the integrand in (19) outside C are also simple.

From (22), we have

p(l/e; — 1) =1 — s,

and
p(l/ei — 1/e) = vi — vi-
Therefore,
(I —e)/(1 = e/e) = (1= vi)/(¥i — ¥s)-
Now define

D;=(1- 'Yi)’l,‘Ij (1 = 7)/(X = vilvs)-
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It follows that
(25) Ci/(1 — &) = 5 'Di/(1 — 7;).
Analogously to formulae (16) and (17), we can now write
v 1 D;i(1 — 2) dv
(26) ) = 2o e T =) = o0l = 779
r D r—-l(l — v—‘r)
27) = 27nf A —=yjv)w—1) 1 —vrz

Each integrand in (27) has a single pole outside C at v = 1/v; , and the residue is
—v; Di/ (L — v) (1 = ¥7)/(1 — +3)
which, by using (24) and (25), we can transform to
—Ci/(1 — &) (1 — &)/(1 = €z).

Since in (27) the sum of the integrands has its denominator of degree hlgher by
2 than that of the numerator, it follows that Q(z) = D51 Ci/(1 — ;) (1 — &)/
(1 — é%), which is formula (18) above, and we have proved that, in the system
E,/E,/1, the equilibrium distribution of queue size at instants just before arrivals
is identical with that at instants just after departures.

6. Further work. Let 71, 72, -+ denote the sequence of instants at which
units join the batch departures system. In a sequel we shall consider the existence
of the limiting distributions, {p;} and {p;}, defined, respectively, by

p; = lime.., PIE() = j]
and
p; = lima.o PlE(7: — 0) = jl.
We shall also examine the relationships existing between the three distributions
{pi, (97} and {pj}.
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