ON A SPECIAL CLASS OF RECURRENT EVENTS

By M. P. SCcHUTZENBERGER
Université de Poitiers and University of North Carolina

I. Introduction. Let F be the set of all finite sequences (words) in the symbols
xz ¢ X. According to W. Feller ([2], Chap. VIII), a recurrent event & is a pair
(4, u) where A is a subset of F and u a probability measure fulfilling the condi-
tions recalled below; one says that the event & = (4, u) occurs at the last letter
x;, of a word f = x4, - -+ ;, if and only if f belongs to the set 4; we shall call
A the support of & and denote by T(A, u) the mean recurrence time of the
event &. .

If the pair (B, u’) defines another recurrent event on F, the pair (AN B, u’)
defines also a recurrent event. It results from the general theory of Feller ([2],
Chap. VIII) that, when T(B, u’) is finite, the ratio # = T (B, u')/T(AN B, u')
is, in a certain sense, the limit of the conditional probability that a random word
S € F belongs to A when it is known to belong to B. For given arbitrary A, it is
in general possible to find infinitely many (B, u’) having finite T'(B, ') which
are such that = = 0. '

The main point of this note is to verify several statements which, together,
imply the following property:

Prorerry 1. If the support A s such that T(A N B, u’) is finite for every re-
current event (B, u') having finite T(B, u'), then, for every such (B, u'), =" s
an integer at most equal to a certain finite number 6* which depends only upon A.

Classical examples of this occurrence are the return to the origin in random
walks over a finite group [3] and, in particular, the recurrent event which occurs
at the end of every word whose length is an integral multiple of a particular
integer.

In Section II, we discuss some properties of a class of recurrent events which
we shall call birecurrent; in Section III, we verify the statements mentioned
above, and in Section IV we describe examples of birecurrent supports.

II. Preliminary remarks. We consider F as the free monoid ([1], Chap. 1)
generated by X ; the empty word e is the neutral element of F and the product
1’ of the words f and f” is the word f” made up of f followed by f’; f(f') is called
a left (right) factor of f”; a word is proper if it is different from e.

Feller’s condition ([2], Chap. VIII) that the non empty subset A of F is the
support of a recurrent event can be expressed as follows: U, : ifa e A and f ¢ F,
then, af € A if and only if f ¢ A. This condition implies that A is a submonoid of
F (ie., that e ¢ A and A> © A). We shall say that A is birecurrent if it satisfies
U, and the symmetric condition U;, U, :if a ¢ 4 and f € F, then, fa ¢ A if and
onlyif f € A.

It follows immediately that, if {4} is any collection of supports of recurrent
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(birecurrent) events, the same is true of the intersection C of the sets 4; ; indeed,
C is a submonoid because every A, is a submonoid and, if, e.g., a, of ¢ C, the
word f belongs to all the sets A; (because of U,) and consequently it belongs
also to C.

Throughout this paper, A will denote a recurrent (or, eventually, birecurrent)

support and we shall use the following notations:

A* = the set of all the proper words at the end of which the event whose sup-
port is A occurs for the first time; for any recurrent support B, B* is
defined similarly.

8 = F — A*F (= the complement in F of the right ideal A*F);
R =F — FA*,
We state explicitly the following well known facts:

IL.1. Every f ¢ F admits one and only one factorization f = as with a € 4 and
s € 8 and at least one factorization f = ra’ with a’ ¢ A and r ¢ R. If and only
if A is birecurrent the second factorization is unique for all f ¢ F.

ILY". Every proper a of A admits a unique factorization as a product of ele-
ments of A*.

The two statements are quite intuitive but a formal proof of them has been
given in ([5]); II.1” shows that any bijection (i.e., one to one mapping onto) of
A* onto a set Y can be extended to an isomorphism of A onto the free monoid
generated by Y.

The following remark will be used repeatedly in the course of this paper:

IL1”. When A is birecurrent, if s, s’ ¢ S (r, 7 ¢ R) are such that s is a right
factor of s’ (r is a left factor of ) and that sf, s'f € A (fr, fr' ¢ A) for some
feF,thens = s (r = r'). I, furthermore, f ¢ R (f ¢ S), then sf ¢ A* U {¢}.

Proor. Because of the perfect symmetry of U, and U, we can limit ourselves
to the proof of the statement concerning s and s’. By hypothesis, s’ = f’s for
some f’ ¢ S and sf, f'sf € A ; because of U; , this implies f/ ¢ A. Because of s’ ¢ S =
F — A*F and I1.1’, this, in turn, implies f = e, and we have proved that s’ =
es = s. Let us assume now that sr ¢ A with s ¢ S and r ¢ R. If, in addition,
sr = e, the result is proved. If sr ¢ A — {e}, I1.1’ shows that sr = aa’ with
a e A* and o’ € A; as above, a cannot be a left factor of s and, consequently, a’
is a right factor of r; but, by a symmetrical argument, this shows that a’ = e and
that consequently sr = a & A*. This concludes the proof of I1.1”.

Let us assume now that A4 is birecurrent; we denote by ASf(ARSf) the set of
the right (left) factors of f that belong to S(R) and by Af the set of the triples
(r, a, s) such that f = ras and that r ¢ R, a ¢ A, s £ S; such a triple will be
called an A-factorization of f and f will denote the number of distinct triples in
the set of the A-factorizations of f.

IL.2. For any f, f’ € F, 8ff' = max (8f, 8f’) and 8ff" = &f (= §f’) if and only if
for every left (right) factor f” of f/ (of f) the product ff” (f”f’) has a factoriza-
tion ff” = sa (f”f' = ar’) where a ¢ A and where f” is a right (left) factor of a.
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Proor. Let us consider any element g ¢ F and prove that there exists a bijec-
tion o, : ARg — ASg. Indeed, by II.1, to any r ¢ ARg (i.e., to any r ¢ B which
is such that g = r¢g’ for some ¢’ ¢ F') there corresponds a unique s ¢ ASg (de-
termined by the conditions ¢’ = as, a € A, s € S) which we call o,r; because of
the symmetry implied by the hypothesis that A is birecurrent we can construct
in a similar manner a mapping ASg — ARg which we call ¢;". Since, clearly, for
any r ¢ ARg we have (0" o ¢,)r = r and similarly for any s & Sg, this shows
that o, is a bijection and also that the A-factorizations of g are in a one-to-one
correspondence with the elements of ARyg.

We now revert to the proof of I1.2. By the above construction we know that
off’ is equal to df (i.e., to the number of elements in ARf) plus the number of
proper ' ¢ ARf’ such that fr’ ¢ R. Thus, §ff’ = §f with the equality sign if and
only if we do not have ff” ¢ R — ARf for some left factor f” of f/, i.e., if and
only if every such ff” satisfies the condition stated in I1.2. Because of the sym-
metry this concludes the proof.

For any f ¢ F, let us denote by «f the smallest positive integer for which
f ¢ A; of is infinite if the only finite power of f that belongs to A is f° (= e,
by definition).

IL.3. A sufficient condition that the recurrent support A is birecurrent is that
aof is finite for all f ¢ F'; reciprocally if A is a birecurrent support, then, for any
f e F, of is at most equal to the supremum &'f of §f™ over all the positive powers
of f.

Proor. By hypothesis, A satisfies U, and, in order to show that it is birecur-
rent, it will be enough to show that if @ and fa belong to A then f also belongs
to A. Let us assume that (af)™ ¢ A for some positive finite m; we have (af)™ =
a(fa)™'f ¢ A and, because of the fact that a, (fa)™ ' ¢ A and U, , this implies
f € A. This proves the first part of I1.3.

Now let A be birecurrent and f such that &f is finite; by II.1, any
(0 £ n £ &) admits an A-factorization (e, @, , s.) and, by I1.2, to each such
s, there corresponds one A-factorization of f*”. Since, by definition, 8’7 < &7,
we must have s, = s, (= s, say) with 0 = m, n < §f and, e.g., m < n. Thus,
f" = asand f™ = a's with a, @’ £ A and, after cancelling s, we obtain " "a' = a.
Because of U;, this last relation shows that f" ™ belongs to A and, since 0 <
n — m =< &'f, by construction, the result is entirely proved.

Let us assume now that A is birecurrent and that f is such that 8f = §f* < .
We consider the set K (containing at least f*) defined by K = {f’ e fFf:6f' = 8f}.

I1.4. There exists a group @, a subgroup H of G and a mapping ¢t K — G
that have the following properties: ¢ is an epimorphism (i.e., homomorphism
onto) and G is finite; o "H = KN A and the index of H in @ is at most, éf.

Proo¥. According to IT.2, the hypothesis 8f = 8f* implies the existence of a
bijection ¢*:ASf — ARf defined for each s ¢ ASf by o*s, the unique r ¢ ARf
which is such that sr ¢ A ; trivially, o*e = e. Also, by I1.2 and the very definition
of K, we have ARk = ARfand ASk = ASf for any k ¢ K; consequently, K* C K.
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Thus, recalling the definition of ¢; given in the proof of I1.2, we can associate
to any k ¢ K a bijection oy : ARf = ARf defined by of = o* o o .

Let us now verify that for any k, ¥’ ¢ K we have o = o3 o o . Indeed, if
(r,a,s) e Ak and (', a’, s') € Ak’ we shall have (r, a”, s') ¢ Akk’ for some a” ¢ A
if and only if sr’ ¢ A and the identity is verified. Because of the hypothesis that
of is finite, this construction shows that the set {ox} (k ¢ K) is a group G and
that the mapping o which sends every & ¢ K onto o4 is an epimorphism.

Observe now that & belongs to 4 if and only if (e, k, e) ¢ Ak, that is, if and
only if o5 keeps e invariant. Again, because G is finite, the elements k ¢ K which
have this last property map onto a subgroup H of G and, clearly, ¢ "H is con-
tained in A. The fact that the index of H in @ is at most equal to the number
of elements in ARf (i.e., to the number §f) is a standard result from group
theory. As a corollary of I1.4 we state I1.4".

I1.4. If A is such that the supremum &* of §f’ over all f’ ¢ F is finite and if
8f = &%, then the representation {o%} described in II.4 is isomorphic to the rep-
sentation of G over the cosets of H.

Proor. The property stated amounts to the statement that the group
G = {o}} is transitive or, in an equivalent fashion, to the fact that for every
s € AST there exists at least one £ ¢ K such that oze = s, i.e., such that k= as
with a € 4.

In order to prove this, let (r, a’, s) ¢ Af. By 11.3 we know that there exist
finite positive integers m and m' such that f* ¢ A and 7™ & A. Thus the product
™7 = ™™ as admits the factorization a”s with a” = f™f™a’ ¢ A and it
belongs to K since, under the hypothesis that §f is maximal, K is identical to fFY.

The next statement is not needed for the verification of property 1. Its aim
is to show that the representation described in Section IV below covers all the
birecurrent supports with finite 6* = sup df.

I1.5. If A is a birecurrent support with finite 6* there exists a monoid M and
an epimorphism (homomorphism onto) v:F — M such that v y4 = 4, and
that M admits minimal ideals.

Proor. Let us consider any f ¢ F and denote by {vf} the set of all f' ¢ F which
satisfy the following condition: for any fi , fo ¢ F, fiffs ¢ A if and only if fif'fo € A.
The relation f’ ¢ {yf} is reflexive and transitive and it is well known that it is
compatible with the multiplicative structure of F' (i.e., it is a congruence); thus
we can identify each set {yf] with an element yf of a certain quotient monoid
M of F. Since f ¢ A if and only if fif fo ¢ A with f; = f» = e, A is the union of
the sets {ya} (a ¢ A) and, trivially, y 'yA = A.

Let us now take an element f such that §f = 6* a finite quantity; according
to I1.2, the maximal character of §f implies that for every fi the product fif has
a left factor fir ¢ A for some r ¢ ARf. Thus, because of the symmetry, any rela-
tion fif f» € A implies fir, sf: ¢ A with (7, a, ) ¢ Af.

It follows immediately that for any two k, k' ¢ K(= fFf), the relation vk =
vk’ is equivalent to the relation ¢k = ok’ in the notations of I1.4. Thus, ¢K is
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isomorphic to a group and since K is the intersection of a right and of a left ideal
of F, this shows that M admits minimal ideals.

We now revert to the preparation of the proof of the main property and we
consider A4, a birecurrent support, B a recurrent support and C = A N B; we
assume that C does not reduce to {e} and that consequently C* (the set of the
proper words at the end of which the events whose supports are 4 and B respec-
tively occur together for the first time) is not empty.

IL.6. Any element f from F — C*F has a unique factorization f = fif. with
fi e B — C*B and f, ¢ F — B*F; conversely any such product fif. belongs to
F — C*F.

Proor. Because of I1.1 any f has a unique factorization f = fif, with f; ¢ B
and f; ¢ F — B*F. Since C is a recurrent support contained in B, any product
fifs with f{ ¢ B and fs ¢ F — B*F belongs to F — C*F if and only if f; belongs
to B — C*B and this concludes the proof.

As mentioned in II.1’, there exists an isomorphism 8:B — @ where @ is the
free monoid generated by Q* = BB* and it is easily verified that the image P of
C by B satisfies U, and U; when, according to our hypothesis, A is birecurrent.
Indeed, P is surely a submonoid of @ and it is enough to verify that the relations
p,p’, pep’ € P imply q € Q (because 87'p, 87'p’, 8 'pgp’ € A imply, e.g., 8 'gp € 4,
by U., then 87'q ¢ A, by U, and, finally ¢ ¢ P = (A N B)).

As before, we define a P-factorization of an element ¢ ¢ Q as a triple (7, p, §)
such that ¢ = 7ps and that 7 e R = Q — QP*, p ¢ P,5 ¢ 8 = Q — P*Q with
P* = BC*. All the remarks made in I1.2 apply here since P is a birecurrent sup-
port in , and we define dq as the number of P-factorizations of q.

I1.7. Forany b ¢ B, §6b < 4b.

ProoF. Let 7 be any element of B and define 8*7 as the (uniquely determined)
element r ¢ R such that (7, a, e) ¢ Ab for some a ¢ A. We show that the restriction
of the mapping 8* to any set ARq (¢ ¢ Q) is an injection (i.e., is one to one into).
Indeed, if 7, 7 ¢ ARq we have, e.g., # = 7q’ for some ¢’ ¢ Q; thus, if g*7 = g*7
(= r, say), we have the following relations: 877 = ra ¢ B with a ¢ A; 877 =
ra’ ¢ B with @’ ¢ A; ra’ = rab’ with b’ = 87'¢8 ¢ B. Consequently, a’ = ab’
and, because of U,, b’ ¢ A. This shows that ¢’ = Bb’ belongs to P and that
finally, ¢’ = e because of the relation # = 7¢’ ¢ R. Thus, # = 7 and our con-
tention is proved.

The remark I1.7 is also proved since we have shown that for any b ¢ B there
exists an injection of ARBb into ARb.

I1.8. If 6* (= sup &f) is finite and if 8b = o6* for at least one b ¢ B, then &*
(= sup 3q) is a divisor of 5*.

Proor. Under these hypotheses, we may assume without loss of generality that
B contains an element f such that §f = &* and §8f = §*. We use the notations
of I1.4 and I1.4’. By construction, the image G’ by ¢ of BN K is a subgroup of
G and we have BN ¢ '(HN G’) = AN BN K. Thus, by a standard result of
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group theory the index &"* of HN @ in @ is a divisor of the index of H in G
(ie., of 6*). We prove now that &* is in fact equal to §*; for this we repeat the
construction of I1.4 and I1.4’ with 8(BN K) in the role of K and we obtain an
epimorphism &: (BN K) — G such that * is the index of the subgroup H of G.
We recall the definition of the mapping 8* used in I1.7 and we observe that we
can define a bijection 8*: ARf N B*ARSf — ARBf such that % o g* is the
identity mapping of ARBf onto itself; 8*~ induces in a natural fashion an epi-
morphism §**: G’ — G and, trivially, H N G’ is the inverse image of H by g**.
Thus &§* is equal to 6’* and I1.8 is proved.

III. Verification of property 1. We keep the notations already introduced and
we assume that (4, p) is a recurrent event. According to Feller, u satisfies the
two conditions:

Mo:ue = land forany f e F, uf = 2 (ufe:z ¢ X),

M, :ifa e Aandf eF then uaf = uauf.

We shall say that u is a positive product measure if pff’ = ufuf’ > 0 for any f,
f' € F, and, in this case, M, is trivially satisfied.

We denote by |f| the length of the element f and for any subset F’ of F we
use the following notations: Fr, = {f € F': |f| < n}; uF’ = limp.w 2, {uf:f € Fl}.
It follows that uF’ < 1 if F’ is such that any f ¢ F has at most one left factor
which belongs to F’; this condition is satisfied in particular by any subset of 4*
and, according to Feller’s definition, we shall say that (A, u) is persistent if and
only if uAd* = 1. The next two statements are verified by an imitation of
Feller’s proof procedure.

IIL.1. For any recurrent event (4, u) we have T (A4, u) = uS.
Proor. Let us introduce for any s ¢ S the notation S(s) = SN sF. We verify
the identities

(I11.1). forallm = [s|:0 < us — pAmi1(8) = uSmsr(s) — uSn(s);
(IIL.1’). forallm = 1: (1 — uA*) + (udA* — pA}) = uSm — uSma

Indeed, (III.1) is an immediate consequence of My and of the fact that the sets
{8} U Sm(8)X and Smi1(s) U Axii(s) are identical for any m = |s|. (IIL.1") is
the special case of (IIL1) for s = e.

From this second identity we deduce that if ud* = 1 we have
limpw (Sm — uSm—1) = 0. Thus, a fortior: (from the first identity) pd* = 1
implies us = pud*(s). We now sum the second identity from m = 1 to m = n.
After rearranging terms, we obtain:

(ITL.17). w8, = (n + 1)1 — wd}) + D {lojuo: a ¢ A%}.

This shows that if (A4, u) is not persistent, xS is infinite and we assume now that
pA* = 1. Under this hypothesis, T(4, u) is defined as lim,.« > {|a| ua: a £ 4%},
and- since uA* = 1 implies that

(n+ 1)1 — pd%) = D2 {(n + 1pa:a e A* — AT},
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we can write for all n
S {la|pa:a e A%} < uSn = X {|a| na:a e A* — A%} + D {la| pa:a e A%},

This concludes the proof since it shows that uS = T'(4, u) if this last quantity
is finite and that uS is infinite if T'(4, p) is so.

For any s ¢ S let us define B*(s) as {e} if s = ¢ and, as the set of those f ¢ F
such that sf ¢ A%, if s = e.

III.2. If A is birecurrent, u a product measure and (4, u) persistent, we have
T(A, ) = uR and, for all s ¢ S, 1 = uR*(s).

Proor. Under these hypotheses all the notions are perfectly symmetrical.
Thus, the identity (III.1”) shows that uR, = uS. and, as a special case, that
uR = T(A, p). Since any a ¢ A*(s) has a unique factorization ¢ = sf with
f € R*(s), and since u is a product measure, we have for all m = |s| the identity

(II1.2) pAm(s) = psuRm—jsi(s)-

Thus, we have in any case uR(s) = uAd*(s)/us = 1 because of the formula
(II1.1); with the equality sign when (4, u) is persistent because as seen above
us = ud*(s).

II1.3. If A is birecurrent and u a product measure, T(4, u) = &*.

Proor. We use the notations of Section II and we recall the following facts:

(1) According to II.17, R*(s) is a subset of R;

(2) for the same reason, if s, s’ ¢ ASf for some f ¢ F, the sets R*(s) and R*(s’)
are disjoint.

(3) if 6* is finite and &f = &* then, by I1.2, to every r ¢ R there corresponds
one s £ ASf such that sr ¢ A*. Thus, in this case, the union of the sets B*(s)
over all s ¢ ASf is equal to B. Now to the proof! We shall show that if 6f = &*
we have the inequalities uR < §f < uR and, trivially, the result will follow by
I11.2.

The second inequality is vacuously true when (4, u) is not persistent since,
then, uR is infinite. When (A4, u) is persistent we have for any f’ ¢ F the in-
equality 8f’ = Y {uR*(s): s ¢ ASf"} < uR since, then, uR*(s) = 1 and since
the sets R*(s) are pairwise disjoint. Thus the second inequality is always true.
If now 6f = &*, we know by 3 above that Y {uR*(s): s ¢ ASf} = uR. Since in
any case, as we have seen in the proof of II1.2, we have uR*(s) = 1, it follows
that uR < 6* and the result is proved.

IIL.4. If (B, u) is a recurrent event and if A4 is birecurrent we have
T(AN B, u) = &*T(B, u)

where §* is defined below.
Proor. Let B = {b ¢ B': ub > 0} and C = AN B; it is easily verified that
(B, u) is again a recurrent event and that, according to IIL.1. we have

T(AN B',p) = T(AN B, u) = u(F — C*F)
T(B', n) = T(B, n) = u(F — B*F).
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We keep the notations used in the proofs of I1.6 and I1.7 and we observe that,
by taking into account II.6 and the condition M, on y, the remark III.4 is
equivalent to the relation u(B — C*B) = &*. In order to prove this identity we
define a measure v on @ by the relation »8b = ub, for all b ¢ B; because of M,
and of the definition of B, » is a positive product measure and, since we know
that P = BC is birecurrent, (P, ») is a recurrent event on Q. Because of III.1
and II1.3 T(P, ») = »(Q — P*Q) = &*. But, by definition, »(Q — P*Q) =
v3(B — C*B) = u(B — C*B) and the result is proved.

IIL.5. If 6* is finite, and (B’, u) persistent for some measure u which satisfies
the condition that for every f ¢ F at least one element from FfF has positive
measure, then §* is a divisor of §*.

Proor. Because of the conditions satisfied by u and §* we can find an element
f such that §f = 6* and that uf > 0; we have f = b’s’ with V' ¢ B
and &' ¢ F — B*F. Because (B, u) is persistent, it follows from IIL.1
that u(B* — §'F) = us’. Since this last quantity is positive, there exists at least
one element b ¢ B¥ §'F. Finally, because of I1.2 we have éb'b = §* with b'b ¢ B.
Thus, we can apply I1.8 and the result is proved.

The next statement is intended to give a characterization of the birecurrent
supports in terms of their intersection with other recurrent events; by £ we mean
any fixed birecurrent support such that T(E, n) is finite for some positive prod-
uct measure u; E* is defined as usual and we say that (E’, u’) belongs to the
family ((E)) if the two following conditions are met:

(i). (E', u') is a recurrent event on F;

(ii). there exists a finite integer m such that any element from E’* is the
product of m words from E*. It is trivial that under these hypotheses E’ is bire-
current. Since F itself is a birecurrent support (with F* = X) a simple example
of a family ((E)) is the family of the birecurrent events (F(my , un) Where F
is the set of all words whose length is a multiple of m and where u., is a suitable
measure.

II1.6. If the recurrent support A is such that (AN E’, u") is persistent for every
(E', ') € ((E)), then, A is a birecurrent support.

Proovr. This is a simple application of I1.3 and we use the notations of this
remark. If of is finite for all f, then we know by II.3 that A is birecurrent. Thus
we may suppose that A and f are such that of is infinite and we show that
(AN E', u) is not persistent for some suitable (E’, u’). Indeed, by the second
part of I1.3 we know that f™ & E for some finite positive m. Thus f™ admits a
factorization as a product of m’ elements from E*. We take E’ defined by the
condition E”* = E*™ and 1’ defined by the condition that x/f™ = 1 and u/f’ = 0
for any other f ¢ E'*. The conditions M, and M, recalled at the beginning of
this section are obviously satisfied and T(E’, u’) is finite. Finally, (A N E’, u’)
cannot be persistent since A N E’ reduces to {e} and this ends the proof.

Clearly, the conditions of IIL.6 are satisfied if A is such that T(AN B, u) < «
for any (B, u) with finite T'(B, u).

The next statément is a simple application of II.2.
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IIL.7. If A is birecurrent and if 6* is finite, then, for any product measure, u,
the distribution of the recurrence time of (A, u) has moments of every order.

Proor. Let A’ = {a & 4: ua > 0}. Trivially, A’ is birecurrent and, by I1.7 we
know that every f ¢ F has at most §* A’-factorizations. Since the distribution of
the recurrence times of (A4, u) and (A’, u) are the same, there is no loss of gen-
erality in assuming that A = A’, i.e., that u is positive.

Since &* is finite there exists an element f ¢ F which, because of IT.2, has the
property that for any proper s ¢ S the product sf has a factorization sf = ar
with a € A*A. Thus, for any integer 7, the definition S = F — A*F allows us
to write the inequality

Suf:f e A% alf] < IfI < (0 + DI = pd¥aunlf] — pd30f] £ 0 — u)"™

Consequently the distribution of the |a| for a ¢ A*,4.e., of the recurrence time
of A*, is dominated by an exponential distribution and this proves the result.

IV. Examples. We want to describe a class of monoids, V, which allows the
construction of birecurrent supports. For this purpose, we consider a group G’
(whose elements are identified with the corresponding elements of its Frobenius
algebra) and a subgroup H’ which contains no proper normal subgroup of G’;
I = {3} and J = {j} are two sets of indices and w is a I X J matrix with entries
w;; in H'. Without loss of generality we can assume that there exists no pair of
indices 7, j/ ¢ J (¢, ¥ € I) and no element & & H’ such that w;h =
wijr (hwi; = wyr;) identically forallz e I (7 e J).

We shall denote by V the set of all I X I matrices v with entries in @ U {0}
that have the following property: for each j & J there exists an index j/ £ J and
an element g;;» ¢ G’ which are such that the product vw.; (with w.; = the jth
column vector of w) is equal to w.;.g;;» (i.e., to the vector whose sth entry is
equal to w;;+g;;-). Trivially, this condition implies that » has one and only one
non zero entry in each line; it also implies the exisfence of an isomorphism
v — 7 which sends V onto the monoid V of the J X J matrices defined by the
symmetric condition and which is such that vw = w?, identically; V is a monoid
and it contains as minimal ideal the set ¥V, of all matrices whose 7th column
vector is equal to w.;g (with any 7 ¢ I, j ¢ J, g € G’) and whose ¢/th column
vector is zero for ¢’ # 1.

IV.1. The subset L C V of the matrices of V which have at least one entry
in H' satisfies U, and U; .

Proor. L is not empty since it contains at least the neutral element of V. Let
us assume that » ¢ L and that v,;» ¢ H'. Because of the hypothesis that all the
entries of w belong to H’, the 7th coordinate of vw.; for any j ¢ J, (that is, v;;-w.-;)
belongs to H'. Thus, vw.; = w.;-h for some 5/ ¢ J and h ¢ H; it follows that all
the non zero entries-of » belong to H’. This shows that L is a monoid and, trivi-
ally, that it satisfies U, and U, .

IV.1', If F is a free monoid and v’:F — V an homomorphism, then the subset
A = (LN +'F) is a birecurrent support and the corresponding parameter,
8*, is at most equal to the index of H in G'.
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Proor. The first part of the statement does not need a proof; we verify the
second part by showing that for any f ¢ F (with the notations of I1.2) there exists
an injection of ARf into the set of the left H'-cosets. Let r, ' ¢ ARf with, e.g.
v = rf’; for any ¢ ¢ I, the condition (y'r):; % O defines in a unique manner
' eland g = (Y'r)u € G'. In a similar way, we define ¥ ¢ I and ¢’ ¢ G’ by
the condition 0 % (y/f')irir (= ¢'). Since (v/r')ir = (v'rf')sir = gg’ we see that
g and ¢’ belong to the same H’-coset if and only if g ¢ H’, that is, if and only
if f' € A, that is, finally, if and only if »r = ' and this ends the proof.

Reciprocally, if A is a birecurrent support with finite 6* we can take (with the
notations of I1.5) ' = G and H' = H and find, I, J and w such that yF = M
is a submonoid of V. Then Vo, C +F and a sufficient condition that vf ¢ V, is
of = 6*. We shall not prove these results here since they are a straightforward
application of Clifford’s theory [4].

IV.1”, If 6* is finite and if for each f ¢ F there exists a finite positive m such
that yf™ € Vo, then the parameter §* defined in I1.7 is always a divisor of &*.

Proor. We consider the group G’ defined in II.8. According to the general
theory of monoids [4] the only groups contained in vF under the hypothesis of
IV.1” are in fact contained in V,. Consequently, they are isomorphic to sub-
groups of G and this concludes the proof.

IV.2. If A is a birecurrent support such that A* is a finite set then either there
exists an s ¢ S for which sF N A = ¢ (and then (4, p) is not persistent for any
positive product measure u) or else, the conditions of IV.1” are satisfied by 4.
In this second case, yF is a group if and only if A* reduces to the set of all the
words having some fixed finite length. [5].

Proor. We assume that A* is finite and that A N sF = ¢ for all s £ S; then,
by the very definition of v the monoid vF is finite. By I1.2 we see that if 7,
r" ¢ ARf for some f ¢ F, then the equation yr = 47’ implies » = /. Thus, the
parameter §* is finite. Let us take any element f ¢ F; the hypothesis that 6f < &*
implies that for some pair (f/, f*) one has f'ff” ¢ A*. Thus for allf ¢ F, §f™ = &*
for large enough m since, otherwise, A* would not be finite. This proves that A
satisfies the conditions of IV.1”.

We now make the supplementary assumption that vF is a group G with
vA = H, and we consider a, an element of maximal length of A*. If |a| = 1
the result is vacuously true since, then, A = F. If |a| = 2 we write ¢ = sza’
with xz, 2’ ¢ X. Because of U, , no left factor of a belongs to A* and because of
the maximality of |a|, we have szz” ¢ A for all z” & X. Thus, all the generators
of F belong to the same left H-coset. For this reason, we cannot have sz” ¢ A*
for any 2” £ X and, because again of the maximal character of |a| this implies
that sz”z'"" ¢ A* for any two 27, '"' ¢ X. Thus, for any two elements «, 2’ ¢ X,
the left coset x2’H does not depend upon the choice of z and «’. If |a| = 2, this
proves the result. If |a| = 3 we can write s = sy with y € X and by the same
argument we prove that for any z, 2/, " ¢ X the coset zz'z” H does not depend
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upon the choice of these three elements. Since |a] is finite, by hypothesis, a simple
induction gives the result. -

The next statements discuss the existence of birecurrent supports with finite
6*. Without loss of generality, we shall assume from now on that X contains a
Jinite number =2 of elements.

IV.3. For any finite » = 3 there exist infinitely many different birecurrent
supports with this value of &*.

Proor. In the next section we shall show the existence of at least one birecur-
rent support with é* = 2 and A* infinite. In this section we show that to every
birecurrent support A and element £ A* we can associate one other birecurrent
support B with 85 = &* + 1 and B* infinite and that, for the same A* and
different choice of u ¢ A*, the two corresponding new supports are different.
Thus IV.3. will be entirely proved with the help of IV.4.. Let us now take u £ A*,
a fixed element, and define: J = (uF N Fu) — {u}; J* = J — J® (ie., = the
subset of those elements of J that cannot be written as the product of two ele-
ments of J). With the help of I1.1”, it is easily verified that there exists a bire-
current support B which is such that B* = J* U (4* — {u}) and we prove that
for all f ¢ F' the number (say, 6(B, f)) of its B-factorizations is at most equal to
of + 1. In order to do this, we slightly extend the notations of I1.2, and for any
subset F’ of F we say that the triple (f”, f/, f'"’) is a F’-factorization of f if ' ¢ F’
and f”f'f""" = f; also, we denote by §(F’, f) the number of distinct F’-factoriza-
tions of f and we observe that by induction on the length of f, the result of II.3
can be summarized by the identity |f| + 1 = (4, f) + (4%, f).

Here, we have

8(4%, f) = 8(A* — {u}, ) + 8({u}, 1),
8(B*, f) = 8(4* — {u}, f) + 8(J% 1),

We want to show that 6(B*, f) < 8(4* f) + 1. If 6({u}, f) = 0 or 1, we have
8(J* f) = 0 and the result is proved; consequently, we assume now
that 8({u},f) = 2 and we consider two {u}-factorizations (f; , u,f1) and (fa, u, f2)
with, e.g. |fi| = |f2|- The element w determined by the equation f = frwfs belongs
to J; it belongs to J* if and only if there is no {u}-factorization (fs, u, f3) for
which |fi] < |fs] < |fel; it follows instantly that 8(J*, f) = 6({u}, f) — 1 and
the result is proved.

IV.4. For each finite n = 3 there exist at least two different birecurrent sup-
ports with A* finite and 6* = n.

Proor. One of these supports has been described in IV.2; in ofder to produce
the other one, we take a birecurrent support 4, a fixed element u ¢ (F — A*F)N
(F — FA*) and we construct another birecurrent support B with 85 = &*; in
the last part of the proof we verify that by a proper choice of u and A* we can
make B* finite.
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Let the following sets be defined:
C* = A* — A*N (uF U Fu),
Z = {fiuf e A¥* — A*N Fu},
Z' = {f:fu e A* — A*N uF},
J* = A*N uF N Fu,
P* = {f: fu e A*N uF}.

Thus, A* admits a partition into the sets C*, uZ, Z'u and J*; by construction,
there exists a recurrent support P such that P* = P* — P (with P = {e} if P*
is empty) and one can verify that there exists a birecurrent support B such that
B* admits a partition into the sets C*, {u} and Z'PuZ.

In order to verify that 65 = 8* we take an arbitrary positive product measure
w and, for any F' C F, we write T(F') as an abbreviation for Y, (|f] uf: f € F').
Thus, by ITI.3, we have, e.g., 6* = T(A, u) = T(A*).

By a simple computation, we obtain when 6* is finite: 6* = T(4*) = T(C*) +
T(P*) + |ul(pZ + pZ' + wP*)pu + (T(Z) + T(Z') + T(P*))uu. Also,
wZ = pZ' =1 — uP*;uP = (1 — wP*)™; T(P) = (1 — uP*)7’T(P*). Now,
T(B*) (= &%) is equal to the sum T(C*) + |uluw + T(Z'PuZ); because of
the above relations, we have T(Z'PuZ) = |u|lpupZ + (T(Z) + T(Z') +
T(P*))uu and this concludes the second part of the proof.

Let us now observe that B* is finite if and only if C* is finite and P = {e}.
The first condition is surely satisfied when A* is finite and the second one is
equivalent to P* = ¢, that is, to A*N uF N Fu = ¢.

Thus, if A* is the set of all words of length n > 2 and if 2, , 2, & X, the word
u = 27z, belongs to F — A*F and to F — FA* and it satisfies our last condi-
tion; this ends the proof of IV .4.

If we take n = 2 and w = x; we find that P* = z, and the corresponding B*
is infinite; this is the example needed for IV.3.

IV.5. For each finite n there exists only a finite number of birecurrent sup-
ports A with 6* = » which satisfy one or the other of the two following supple-
mentary conditions: that vF is a group or that A* is finite.

Proor. This is obvious for the first condition since, because of I1.4’, it amounts
to the fact that for any finite n there exist only finitely many groups of permu-
tation on n symbols.

With respect to the second condition we first verify the following elementary
remark: let Ko = F — {e}, K1, K,, - -+ be a decreasing sequence of subsets of
F defined inductively by the relation K,y = {fFf:fe K,}. If X is finite there
exists for every finite ¢ a finite value d(¢) which is such that every word of
length at least d(z) has at least one factor belonging to K, . Indeed, if d(¢) has
already been defined, we take d(¢ + 1) as d(¢) (1 + |X|*®) where |X| denotes
the number of elements of X. Then, every word of length d(z + 1) contains at
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least two disjoint identical factors of length d(7) and the result follows by in-
duction.

We now observe that if f # e the hypothesis that A* is a finite set (with finite
6*) implies that §ff’f = inf (6% &f + 1). Indeed, this is surely true if &f" > &f
or if 8ff"f = &*; in the remaining case, i.e., in the case that 8f = &ff'f < &* we
would have according to I1.2, for all finite m, §(ff')™f = &f < &* and, according
to the same remark, there would exist for all finite m at least one a ¢ A* admit-
ting (7)™ as a factor, which is impossible since 4* is assumed to be finite.

Thus, by induction, every word f of length = d(6*) is such that §f = §* and,
consequently, it cannot be a factor of a word a ¢ A*. This proves that for given
8* the hypothesis that A* is finite imposes that the lengths of the words from
A* is bounded and it concludes the proof (cf.[6]).
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