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Summary. Partially balanced arrays are generalizations of orthogonal arrays.
Multifactorial designs derived from partially balanced arrays require a reduced
number of assemblies in order to accommodate a given number of factors. For
instance, an orthogonal array of strength two, six symbols and four constraints,
would require at least 2.62 = 72 assemblies. This is because there does not exist
a pair of mutually orthogonal Latin Squares of order six. But for the same situa-
tion, a partially balanced array in 42 assemblies, is'constructed in this paper.
The method of construction is one of composition which utilizes the existence
of a pairwise partially balanced incomplete block design and an orthogonal array.

"1, Introduction. Suppose A = ((a;;)) is a matrix,s =1, -+ ,m,j =1, -+,
N and the elements a;; of the matrix are symbols 0, 1, 2, --- , s — 1. Consider
the s* 1 X ¢ matrices X’ = (&1, 2, - -+, ) that can be formed by giving
different values to the z’s, z; = 0,1,2, .-+, s — 1;¢ = 1, - - - {. Suppose asso-
ciated with each ¢ X 1 matrix X there is a positive integer A(z1, 22, -+ , 1)
which is invariant under permutations of (z;, 22, - - - , x;). If, for every t-rowed
submatrix of A, the s* ¢ X 1 matrices X occur as columns A(zy, T2, - -+ , %)
times, then the matrix A is called a partially balanced array of strength ¢ in N
assemblies, m constraints (or factors), s symbols (or levels) and the specified
Nz, 23, -+, x;) parameters. When A(xy, 22, -+, @) = \ for all
(21,22, -+ ,x;), the array is called an orthogonal array.

Orthogonal arrays were defined in [6] and [7] and construction of orthogonal
arrays were considered in [1], [2], [3], [6] and [7]. Partially balanced arrays were
defined in [5], where their use as multifactorial designs is also discussed.

In this paper, some methods of construction of partially balanced arrays are
considered. One of the methods is applicable when s = 2 and derives partially
balanced arrays from the well-known A — 4 — v configurations. The other method
is an extension of the Bose-Shrikhande [2] method of construction of orthogonal

arrays.

2. An example of a partially balanced array. Deleting the first three assemblies
and the last row from the orthogonal array A (18, 7, 3, 2) given in [1], one gets a
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partially balanced array of strength two, s = 3 symbols and m = 6 constraints
in N = 15 assemblies. This array has the A(z; , 2.) parameters

Az, 2) = 2 if x; and z, are unlike,
=1 otherwise.

The orthogonal array and the derived partially balanced array are given in
Tables 1 and 2. The columns of the partially balanced array were a little re-
arranged.

TABLE 1
Orthogonal Array A(18, 7, 3, 2) assemblies

Constraints 1 2 3|4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 012/012012 01 2 901 2 0 1 2
2 012[/012120 2 01 12 0 2 0 1
3 012/120012 2 01 2 01 1 2 0
4 012(201201 01 2 1 2 01 2 0
5 012{/120201 1 2 0 01 2 2 0 1
6 012/201120 1 2 02 01 0 1 2
7 000000111 1 1 1 2 2 2 2 2 2

TABLE 2

Partially balanced array (15, 6, 3, 2) assemblies

Constraints 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 000001111 1 2 2 2 2 2
2 021120012 2 0 0 2 1 1
3 102210201 2 1 2 0 0 1
4 110222020 1 2 1 0 1 0
5 221011220 0 0 1 1 0 2
(i 212102102 0 1 01 2 0

Suppose, an orthogonal array A(N, m, s, t) of index M is resolvable into two
disjoint arrays. Further, let one of them be a partially balanced array or a
degenerate partially balanced array (a degenerate array being one which has

some but not all N(zy , 22, - - - , 2:) equal to zero), with N(z1, Z2, -+, x¢) <A
for all.t X 1 matrices X. Then the residual array is a partially balanced array
with A-parameters X(21, T2, -+, Z:) = A — N(%1, %2, * -+ , &;). This provides a

basis for the deletion process of deriving a partially balanced array from an
orthogonal array.

3. Construction of partially balanced arrays for s = 2 from A\ — p — » con-
figurations. '

DEFINITION. A A — u — » configuration of m elements is defined [4] as the
configuration of m elements taken » at a time so that each set of u elements
shall occur together in just N of the sets.

Suppose there are N, sets of » elements each in the configuration. Let N; denote
the number of sets each containing a fixed subset of ¢ elements. Then it is easily
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seen that

(3.1) Nt=>\<’::tt)/(":§) t=0,1,2 - ,p

Consider the matrix A = ((a;;)) of order m X N, derived froma X — u — »
configuration of m elements in N, sets in the following manner: Let o1, @2, -+,
am denote the m elements and s, 82, - - -, sy, denote the N, sets of the configura-
tion. Then let

a;; =1 if a; occurs in the set s;
=0 otherwise.

Consider a p-rowed submatrix of A with elements a;; as defined above. Amongst
the N, columns of the submatrix, a column matrix X,; where its transpose
Xiy= (21, %, , %), & =0o0rl,¢=1 -, uoceurs N(T1, L2, *** , Tu)
times. Specifically, let ; = 1 for¢z = 1,---,randlet z; = O for¢ = r + 1,
-+« , pin X. Then it is easy to show that for such an X

)‘(xlyx% "',xu) = Nf = (” I T)Nr+l + (”' ; r>Nr+2 _
= (=1)*"A""N,

where A stands for the symbol of finite difference,

ANr = Nr+1 - Nr .

Value of N(zy, %, - - - , 2,) depends only on the count r of unities in its argument
and hence it is invariant under permutation of its arguments.
Now provided A(x1, 2, - -+ , 2x) > 0 for all s* sets of X, we have

(32)

TrueorEM 2.1. The existence of a X — p — v of m elements with N(21 , 2, ++ -, Zy)
all positive, implies the existence of a partially balanced array of strength u with
parameters s = 2 and N(21, T2, * ++ , Tu) as defined in (3.2).

Well known examples of A — u — » configurations are the triple systems,
quadruple systems, etc., which are defined in [4].

4. An extension of the Bose-Shrikhande method of construction of orthogonal
arrays and its use in the construction of partially balanced arrays.
DEFINITION. A pairwise partially balanced design with parameters

(V’kl)kﬁa"')km;blab2)"')bm;xl’)ﬂ""’)‘i;nly’n?""ant)

is defined as an arrangement of » varieties in blocks of m different sizes k; , k: ,

-, kn , there being b, blocks of size k., > 71 b; = b, satisfying the following
conditions:

(i) No block contains a single variety more than once.

(ii) With respect to any variety, the remaining » — 1 varieties fall into ¢
categories, there being n, varieties in the ¢th category, called the ¢th associates
of the variety; Y cmini = » — 1.
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(iii) Two varieties which are 7th associates, occur together in \; blocks,
t=1,---,t
Then the following relations among the parameters hold,

m t t
(4.1) Z b,‘k,‘(k.‘ - 1) = z NivN; = v Z NiNi.
1=1 =1

=1
Suppose there exist the orthogonal arrays
A‘i()\kgjqi,ki,2) i:l,...’m’

of strength two and index N and in k; symbols. Consider the pairwise partially
balanced design defined earlier. There are b; blocks each of size k;. These b;
blocks provide b; sets of k; symbols each. Using each set of k; symbols once in
the orthogonal array 4, one gets b; such orthogonal arrays. If all such orthog-
onal arrays are arranged side by side, then one gets a matrix A with number
of columns N = N D7, bk} and number of rows ¢ = min(g, gz, *** , gm).
In the columns of any two-rowed submatrix of matrix A, every ordered pair
(t., t») of two distinet symbols of varieties which are ¢th associates will occur
M\; times and every ordered pair (¢;, t;) of two like symbols ocecur Ar; times, if
the variety ¢; occurs in 7; blocks of the pairwise partially balanced design. Hence
we have. «

TraEOREM 4.1. The existence of a pasrwise partially balanced design with param-
elers (V;kl7k2’ e ’km;bl7 bﬁa ) bm; )‘17 )‘27 ) )‘t; N, Ngy *--, nt)
and of the orthogonal arrays A;(\k; , qs, ki, 2) 5 = 1, -+, m, imply the existence
of the partially balanced array of strength two in v symbols and ¢ = min
(@1, @2, -+, qm) constraints and N(x1, x2) = A\;, where x1, x2 stand for two
varieties which are ith associates and \(x, x) = Nr;, and where the variety x occurs
r; ttmes tn the patrwise partially balanced design.

As an illustration, a partially balanced array which has been constructed
using the method described above, is given below. This is a partially balanced
array in » = 6 symbols, N = 48 assemblies, m = 5 congtraints and

Mz, z2) = 2 if (21, x2) are first associates

1 if (x1, x,) are second associates
= 2 if x; and z, are like,
where x;,7 = 1, - - - , 6 are the variety symbols. In constructing this array, the
partially balanced design
(v=6,r=2b=3k=4,m=1n=4N=2Nn=1)
in three blocks
X1, Xy, 22, Tp
Te, X5, T3, g
T3, Tg, X1, X4

and the orthogonal array A (16, 5, 4, 2) have been used.
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TABLE 3
Orthogonal Array A(16, 5, 4, 2)
R 0000 1 1 1 1 ¢t ¢t t ¢t £ & £ p
¢c o1 ¢te[f0 1 ¢t £ 0 1 t & 1t o
L, 01 ¢t #|1 0 ¢ ¢t ¢ ¢ 0 1 # ¢t 1 0
L, 01 ¢t #|¢t ¢# 0 1 ¢ ¢t 1 0 0 # ¢
Ly, 01 ¢t £ |{¢¢ ¢t 1 0 1 0 ¢# ¢t ¢t # 0 1
Making successively the identifications
(1) (2) (3)

1= AT 1= T2 1= 1

t = Lo t = X3 t = X3

t2=$4 t2=$5 * t2=ZU4

0= X 0= Xg 0= Xe

and using them on the above array in place of (0, 1, ¢, ), one gets three arrays,
A, Az and A; . Then the array Ao = [4; A2 Aj] is the desired partially balanced
array in 6 symbols and 48 assemblies. Let A* denote the array derived from A
by truncating the first row and the first four columns (as indicated by the hori-
zontal and vertical lines). Then the arrays AT, A; and A5 are obtained from A4*
using the three identifications of variety-symbols given above. Let E denote the

array
xl x2 e o« e xﬁ"
xl x2 “ .. o« .. xs
xl x2 .« e DY xﬁ
xl x2 .. LI xﬁ
Then the array As = [E A7 Ay A3]is a partially balanced array in » = 6 sym-

bols, N = 42 assemblies, m = 4 constraints and M(z; ) = 1, N(a,, z;) = 2 if
2; and x; are first associates and A(z;, z;) = 1 if they are second associates.
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