ON SOME METHODS OF CONSTRUCTION OF PARTIALLY BALANCED ARRAYS¹ #### By I. M. Chakravarti² ### University of North Carolina Summary. Partially balanced arrays are generalizations of orthogonal arrays. Multifactorial designs derived from partially balanced arrays require a reduced number of assemblies in order to accommodate a given number of factors. For instance, an orthogonal array of strength two, six symbols and four constraints, would require at least $2.6^2 = 72$ assemblies. This is because there does not exist a pair of mutually orthogonal Latin Squares of order six. But for the same situation, a partially balanced array in 42 assemblies, is constructed in this paper. The method of construction is one of composition which utilizes the existence of a pairwise partially balanced incomplete block design and an orthogonal array. 1. Introduction. Suppose $A = ((a_{ij}))$ is a matrix, $i = 1, \dots, m, j = 1, \dots, N$ and the elements a_{ij} of the matrix are symbols $0, 1, 2, \dots, s - 1$. Consider the s^t $1 \times t$ matrices $X' = (x_1, x_2, \dots, x_t)$ that can be formed by giving different values to the x_i 's, $x_i = 0, 1, 2, \dots, s - 1$; $i = 1, \dots t$. Suppose associated with each $t \times 1$ matrix X there is a positive integer $\lambda(x_1, x_2, \dots, x_t)$ which is invariant under permutations of (x_1, x_2, \dots, x_t) . If, for every t-rowed submatrix of A, the s^t $t \times 1$ matrices X occur as columns $\lambda(x_1, x_2, \dots, x_t)$ times, then the matrix A is called a partially balanced array of strength t in N assemblies, m constraints (or factors), s symbols (or levels) and the specified $\lambda(x_1, x_2, \dots, x_t)$ parameters. When $\lambda(x_1, x_2, \dots, x_t) = \lambda$ for all (x_1, x_2, \dots, x_t) , the array is called an orthogonal array. Orthogonal arrays were defined in [6] and [7] and construction of orthogonal arrays were considered in [1], [2], [3], [6] and [7]. Partially balanced arrays were defined in [5], where their use as multifactorial designs is also discussed. In this paper, some methods of construction of partially balanced arrays are considered. One of the methods is applicable when s=2 and derives partially balanced arrays from the well-known $\lambda-\mu-\nu$ configurations. The other method is an extension of the Bose-Shrikhande [2] method of construction of orthogonal arrays. 2. An example of a partially balanced array. Deleting the first three assemblies and the last row from the orthogonal array A(18, 7, 3, 2) given in [1], one gets a Received October 24, 1960; revised May 26, 1961. ¹ This research was supported in part by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)-213. Reproduction in whole or in part is permitted for any purpose of the United States Government. ² Present address: Statistical Laboratory, Case Institute of Technology, Cleveland 6, Ohio. partially balanced array of strength two, s = 3 symbols and m = 6 constraints in N = 15 assemblies. This array has the $\lambda(x_1, x_2)$ parameters $$\dot{\lambda}(x_1, x_2) = 2$$ if x_1 and x_2 are unlike, = 1 otherwise. The orthogonal array and the derived partially balanced array are given in Tables 1 and 2. The columns of the partially balanced array were a little rearranged. TABLE 1 Orthogonal Array A(18, 7, 3, 2) assemblies | Constraints | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |-------------|---|---|---|---|----|---|---|---|---|----|----|----|----|----|----|----|----------|----| | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | | 3 | | | | | | | | | | | | | | | | | 2 | | | 4 | 0 | 1 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 1 | 2 | 0 | | 5 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 0 | 1 | | 6 | 0 | 1 | 2 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 2 | | 7 | 0 | 0 | 0 | 0 | 0- | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | TABLE 2 Partially balanced array (15, 6, 3, 2) assemblies | Constraints | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | |-------------|---|---|---|----------|---|---|---|---|----------|----|----|----|----|----|----|--| | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | | | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 2 | 1 | 1 | | | 3 | 1 | 0 | 2 | 2 | 1 | 0 | 2 | 0 | 1 | 2 | 1 | 2 | 0 | 0 | 1 | | | 4 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 0 | | | 5 | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | | | 6 | 2 | 1 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 1 | 0 | 1 | 2 | 0 | | Suppose, an orthogonal array A(N, m, s, t) of index λ is resolvable into two disjoint arrays. Further, let one of them be a partially balanced array or a degenerate partially balanced array (a degenerate array being one which has some but not all $\lambda(x_1, x_2, \dots, x_t)$ equal to zero), with $\lambda(x_1, x_2, \dots, x_t) < \lambda$ for all $t \times 1$ matrices X. Then the residual array is a partially balanced array with λ -parameters $\bar{\lambda}(x_1, x_2, \dots, x_t) = \lambda - \lambda(x_1, x_2, \dots, x_t)$. This provides a basis for the deletion process of deriving a partially balanced array from an orthogonal array. # 3. Construction of partially balanced arrays for s=2 from $\lambda-\mu-\nu$ configurations. Definition. A $\lambda - \mu - \nu$ configuration of m elements is defined [4] as the configuration of m elements taken ν at a time so that each set of μ elements shall occur together in just λ of the sets. Suppose there are N_o sets of ν elements each in the configuration. Let N_t denote the number of sets each containing a fixed subset of t elements. Then it is easily seen that $$(3.1) N_t = \lambda \binom{m-t}{\mu-t} / \binom{\nu-t}{\mu-t} t = 0, 1, 2, \dots, \mu.$$ Consider the matrix $A=((a_{ij}))$ of order $m\times N_o$ derived from a $\lambda-\mu-\nu$ configuration of m elements in N_o sets in the following manner: Let α_1 , α_2 , \cdots , α_m denote the m elements and s_1 , s_2 , \cdots , s_{N_o} denote the N_o sets of the configuration. Then let $$a_{ij} = 1$$ if α_i occurs in the set s_j = 0 otherwise. Consider a μ -rowed submatrix of A with elements a_{ij} as defined above. Amongst the N_o columns of the submatrix, a column matrix $X_{\mu,1}$ where its transpose $X'_{1,\mu} = (x_1, x_2, \dots, x_{\mu}), x_i = 0$ or $1, i = 1, \dots, \dot{\mu}$ occurs $\lambda(x_1, x_2, \dots, x_{\mu})$ times. Specifically, let $x_i = 1$ for $i = 1, \dots, r$ and let $x_i = 0$ for $i = r + 1, \dots, \mu$ in X. Then it is easy to show that for such an X (3.2) $$\lambda(x_1, x_2, \dots, x_{\mu}) = N_r - {\binom{\mu - r}{1}} N_{r+1} + {\binom{\mu - r}{2}} N_{r+2} - \dots$$ $$= (-1)^{\mu - r} \Delta^{\mu - r} N_r$$ where Δ stands for the symbol of finite difference, $$\Delta N_r = N_{r+1} - N_r.$$ Value of $\lambda(x_1, x_2, \dots, x_{\mu})$ depends only on the count r of unities in its argument and hence it is invariant under permutation of its arguments. Now provided $\lambda(x_1, x_2, \dots, x_{\mu}) > 0$ for all s^{μ} sets of X, we have Theorem 2.1. The existence of a $\lambda - \mu - \nu$ of m elements with $\lambda(x_1, x_2, \dots, x_{\mu})$ all positive, implies the existence of a partially balanced array of strength μ with parameters s = 2 and $\lambda(x_1, x_2, \dots, x_{\mu})$ as defined in (3.2). Well known examples of $\lambda - \mu - \nu$ configurations are the triple systems, quadruple systems, etc., which are defined in [4]. # 4. An extension of the Bose-Shrikhande method of construction of orthogonal arrays and its use in the construction of partially balanced arrays. DEFINITION. A pairwise partially balanced design with parameters $$(\nu, k_1, k_2, \cdots, k_m; b_1, b_2, \cdots, b_m; \lambda_1, \lambda_2, \cdots, \lambda_t; n_1, n_2, \cdots, n_t)$$ is defined as an arrangement of ν varieties in blocks of m different sizes k_1 , k_2 , \cdots , k_m , there being b_i blocks of size k_i , $\sum_{i=1}^m b_i = b$, satisfying the following conditions: - (i) No block contains a single variety more than once. - (ii) With respect to any variety, the remaining $\nu 1$ varieties fall into t categories, there being n_i varieties in the *i*th category, called the *i*th associates of the variety; $\sum_{i=1}^{t} n_i = \nu 1$. (iii) Two varieties which are *i*th associates, occur together in λ_i blocks, $i = 1, \dots, t$. Then the following relations among the parameters hold, (4.1) $$\sum_{i=1}^{m} b_i k_i (k_i - 1) = \sum_{i=1}^{t} n_i \nu \lambda_i = \nu \sum_{i=1}^{t} n_i \lambda_i.$$ Suppose there exist the orthogonal arrays $$A_i (\lambda k_i^2, q_i, k_i, 2) \qquad \qquad i = 1, \dots, m'$$ of strength two and index λ and in k_i symbols. Consider the pairwise partially balanced design defined earlier. There are b_i blocks each of size k_i . These b_i blocks provide b_i sets of k_i symbols each. Using each set of k_i symbols once in the orthogonal array A_i , one gets b_i such orthogonal arrays. If all such orthogonal arrays are arranged side by side, then one gets a matrix A with number of columns $N = \lambda \sum_{i=1}^m b_i k_i^2$ and number of rows $q = \min(q_1, q_2, \cdots, q_m)$. In the columns of any two-rowed submatrix of matrix A, every ordered pair (t_u, t_v) of two distinct symbols of varieties which are ith associates will occur $\lambda \lambda_i$ times and every ordered pair (t_j, t_j) of two like symbols occur λr_j times, if the variety t_j occurs in r_j blocks of the pairwise partially balanced design. Hence we have Theorem 4.1. The existence of a pairwise partially balanced design with parameters $(\nu; k_1, k_2, \cdots, k_m; b_1, b_2, \cdots, b_m; \lambda_1, \lambda_2, \cdots, \lambda_t; n_1, n_2, \cdots, n_t)$ and of the orthogonal arrays $A_i(\lambda k_i^2, q_i, k_i, 2)$ $i = 1, \cdots, m$, imply the existence of the partially balanced array of strength two in ν symbols and q = min (q_1, q_2, \cdots, q_m) constraints and $\lambda(x_1, x_2) = \lambda \lambda_i$, where x_1, x_2 stand for two varieties which are ith associates and $\lambda(x, x) = \lambda r_j$, and where the variety x occurs r_j times in the pairwise partially balanced design. As an illustration, a partially balanced array which has been constructed using the method described above, is given below. This is a partially balanced array in $\nu=6$ symbols, N=48 assemblies, m=5 constraints and $$\lambda(x_1, x_2) = 2$$ if (x_1, x_2) are first associates $$= 1$$ if (x_1, x_2) are second associates $$= 2$$ if x_1 and x_2 are like, where x_i , $i = 1, \dots, 6$ are the variety symbols. In constructing this array, the partially balanced design $$(\nu = 6, r = 2, b = 3, k = 4, n_1 = 1, n_2 = 4, \lambda_1 = 2, \lambda_2 = 1)$$ in three blocks $$x_1$$, x_4 , x_2 , x_5 x_2 , x_5 , x_3 , x_6 x_3 , x_6 , x_1 , x_4 and the orthogonal array A(16, 5, 4, 2) have been used. TABLE 3 Orthogonal Array A(16, 5, 4, 2) | R | | | | | | | | | | | | | | | | | |------------------|---|---|---|-------|-------|-------|---|-------|-------|---|-------|-------|---|-------|-------|-------| | \boldsymbol{C} | 0 | 1 | t | t^2 | | L_1 | | | | | | | | | | | | | | | | | | L_2 | 0 | 1 | t | t^2 | t | t^2 | 0 | 1 | t^2 | t | 1 | 0 | 1 | 0 | t^2 | t | | L_3 | 0 | 1 | t | t^2 | t^2 | t | 1 | 0 | 1 | 0 | t^2 | t | t | t^2 | 0 | 1 | Making successively the identifications (1) (2) (3) $$1 = x_1$$ $1 = x_2$ $1 = x_1$ $t = x_2$ $t = x_3$ $t = x_3$ $t^2 = x_4$ $t^2 = x_5$ $t^2 = x_4$ $0 = x_6$ $0 = x_6$ $0 = x_6$ and using them on the above array in place of $(0, 1, t, t^2)$, one gets three arrays, A_1 , A_2 and A_3 . Then the array $A_0 = [A_1 A_2 A_3]$ is the desired partially balanced array in 6 symbols and 48 assemblies. Let A^* denote the array derived from A by truncating the first row and the first four columns (as indicated by the horizontal and vertical lines). Then the arrays A_1^* , A_2^* and A_3^* are obtained from A^* using the three identifications of variety-symbols given above. Let E denote the array $$E : egin{bmatrix} x_1 & x_2 & \cdots & \cdots & x_6 \ x_1 & x_2 & \cdots & \cdots & x_6 \ x_1 & x_2 & \cdots & \cdots & x_6 \ x_1 & x_2 & \cdots & \cdots & x_6 \ x_1 & x_2 & \cdots & \cdots & x_6 \end{bmatrix}$$ Then the array $A_0^* = [E \ A_1^* \ A_2^* \ A_3^*]$ is a partially balanced array in $\nu = 6$ symbols, N = 42 assemblies, m = 4 constraints and $\lambda(x_i, x) = 1$, $\lambda(x_i, x_j) = 2$ if x_i and x_j are first associates and $\lambda(x_i, x_j) = 1$ if they are second associates. **5.** Acknowledgment. Thanks are due to Professor R. C. Bose for kindly going through the manuscript and for his helpful comments. #### REFERENCES - Bose, R. C. and Bush, K. A., "Orthogonal arrays of strength two and three," Ann. Math. Stat., Vol. 23 (1952), pp. 508-524. - [2] Bose, R. C. and Shrikhande, S. S., "On the composition of balanced incomplete block designs," *Canad. J. Math.*, Vol. 12 (1960), pp. 177-188. - [3] Bush, K. A., "Orthogonal arrays of index unity," Ann. Math. Stat., Vol. 23 (1952), pp. 426-434. - [4] CARMICHAEL, R. D., Introduction to the Theory of Groups of Finite Order, Dover Publications, New York, 1937. - [5] CHAKRAVARTI, I. M., "Fractional replication in asymmetrical factorial designs and partially balanced arrays," Sankhyā, Vol. 17 (1956), pp. 143-164. - [6] Rao, C. R., "On hypercubes of strength d and a system of confounding in factorial experiments," Bull. Cal. Math. Soc. Vol. 38 (1946), pp. 67-78. - [7] RAO, C. R., "Factorial experiments derivable from combinatorial arrangements of arrays," J. Roy. Stat. Soc. (Suppl.), Vol. 9 (1947), pp. 128-139.